1,767
Views
17
CrossRef citations to date
0
Altmetric
Review

Zika virus pathogenesis and current therapeutic advances

ORCID Icon, ORCID Icon, , , , , , & ORCID Icon show all

References

  • Nyaruaba R, Mwaliko C, Mwau M, et al. Arboviruses in the East African Community partner states: a review of medically important mosquito-borne Arboviruses. Pathog Glob Health. 2019;113:209–228.
  • Dick GWA, Kitchen SF, Haddow AJ, et al. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46. DOI:10.1016/0035-9203(52)90042-4.
  • MacNamara FN. Zika virus: A report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg. 1954;48:139–145.
  • Lupton K. Zika virus disease: a public health emergency of international concern. Br J Nurs. 2016;25:198–202.
  • Lanciotti RS, Lambert AJ, Holodniy M, et al. Phylogeny of Zika Virus in Western Hemisphere, 2015. Emerg Infect Dis. 2016;22:933–935.
  • Tabata T, Petitt M, Puerta-Guardo H, et al. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe. 2016;20:155–166.
  • Musso D, Roche C, Robin E, et al. Potential sexual transmission of Zika virus. Emerg Infect Dis. 2015;21:359–361.
  • Musso D, Nhan T-X, Robin E, et al. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill. 2014;19. DOI:10.2807/1560-7917.ES2014.19.14.20761.
  • Li C, Deng Y-Q, Zu S, et al. Zika virus shedding in the stool and infection through the anorectal mucosa in mice. Emerg Microbes Infect. 2018;7:169.
  • Atkinson B, Hearn P, Afrough B, et al. Detection of Zika Virus in Semen. Emerg Infect Dis. 2016;22:940.
  • Regla-Nava JA, Viramontes KM, Vozdolska T, et al. Detection of Zika virus in mouse mammary gland and breast milk. PLoS Negl Trop Dis. 2019;13:e0007080.
  • Gourinat A-C, O’Connor O, Calvez E, et al. Detection of Zika virus in urine. Emerg Infect Dis. 2015;21:84–86.
  • Musso D, Roche C, Nhan T-X, et al. Detection of Zika virus in saliva. J Clin Virol. 2015;68:53–55.
  • Jampol LM, Goldstein DA. Zika Virus. Infection and the Eye. JAMA Ophthalmol. 2016;134:535–536.
  • Govero J, Esakky P, Scheaffer SM, et al. Zika virus infection damages the testes in mice. Nature. 2016;540:438.
  • Mlakar J, Korva M, Tul N, et al. Zika Virus Associated with Microcephaly. N Engl J Med. 2016;374:951–958.
  • Rasmussen SA, Jamieson DJ, Honein MA, et al. Zika Virus and Birth Defects — reviewing the Evidence for Causality. N Engl J Med. 2016;374:1981–1987.
  • Song B-H, Yun S-I, Woolley M, et al. Zika virus: history, epidemiology, transmission, and clinical presentation. J Neuroimmunol. 2017;308. DOI:10.1016/j.jneuroim.2017.03.001
  • Boorman JPT, Porterfield JS. A simple technique for infection of mosquitoes with viruses transmission of Zika virus. Trans R Soc Trop Med Hyg. 1956;50:238–242.
  • Haddow AJ, Williams MC, Woodall JP, et al. Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest. Bull World Health Organ. 1964;31: 57–69. pmid:14230895; PubMed Central PMCID: PMC2555143.
  • Kirya BG, Okia NO. A yellow fever epizootic in Zika Forest, Uganda, during 1972: part 2: monkey serology. Trans R Soc Trop Med Hyg. 1977;71:300–303.
  • Darwish MA, Hoogstraal H, Roberts TJ, et al. A sero-epidemiological survey for certain arboviruses (Togaviridae) in Pakistan. Trans R Soc Trop Med Hyg. 1983;77:442–445.
  • Henderson BE, Hewitt LE, Lule M. Serology of wild mammals. Virus Res Inst Annu Rep. 1968;409:48–51.
  • Sirohi D, Chen Z, Sun L, et al. The 3.8 Åresolution cryo-EM structure of Zika virus. Science. 2016;352:467–470.
  • Hasan SS, Sevvana M, Kuhn RJ, et al. Structural biology of Zika virus and other flaviviruses. Nat Struct Mol Biol. 2018;25:13–20.
  • Kostyuchenko VA, Lim EXY, Zhang S, et al. Structure of the thermally stable Zika virus. Nature. 2016;533:425.
  • Prasad VM, Miller AS, Klose T, et al. Structure of the immature Zika virus at 9 Å resolution. Nat Struct Mol Biol. 2017;24:184–186.
  • Kuno G, Chang G-J-J. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol. 2007;152:687–696.
  • Adibi J, Marques E, Cartus A, et al. Teratogenic effects of the Zika virus and the role of the placenta. Lancet. 2016;387. DOI:10.1016/S0140-6736(16)00650-4
  • Platt D, Smith A, Arora N, et al. Zika virus–related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. Sci Transl Med. 2018;10:eaao7090.
  • Agumadu VC, Zika Virus: RK. A Review of Literature. Cureus. 2018;10:e3025–e3025.
  • Burke RM, Pandya P, Nastouli E, et al. Zika virus infection during pregnancy: what, where, and why? Br J Gen Pract. 2016;66:122–123.
  • Lessler J, Ott C, Carcelen A, et al. Times to key events in Zika virus infection and implications for blood donation: A systematic review. Bull World Health Organ. 2016;94:841–849.
  • Miner JJ, Cao B, Govero J, et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell. 2016;165:1081–1091.
  • Hamel R, Dejarnac O, Wichit S, et al. Biology of Zika virus infection in human skin cells. J Virol. 2015;89:8880–8896.
  • Wells MF, Salick MR, Wiskow O, et al. Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection. Cell Stem Cell. 2016;19:703–708.
  • Meertens L, Labeau A, Dejarnac O, et al. Axl mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Rep. 2017;18:324–333.
  • Hastings A, Yockey LJ, Jagger B, et al. TAM receptors are not required for Zika virus infection in mice. Cell Rep. 2017;19:558–568. DOI:10.1016/j.celrep.2017.03.058
  • Morrison TE, Diamond MS. Animal models of Zika virus infection, pathogenesis, and immunity. J Virol. 2017;91:JVI.00009–17.
  • Ma W, Li S, Ma S, et al. Zika virus causes testis damage and leads to male infertility in mice. Cell. 2017;168:542.
  • Rossi SL, Tesh RB, Azar SR, et al. Characterization of a novel murine model to study zika virus. Am J Trop Med Hyg. 2016;94:1362–1369.
  • Dowall SD, Graham VA, Rayner E, et al. A susceptible mouse model for Zika virus infection. PLoS Negl Trop Dis. 2016;10:1–13.
  • Dowall S, Graham V, Rayner E, et al. Lineage-dependent differences in the disease progression of Zika virus infection in type-I interferon receptor knockout (A129) mice. PLoS Negl Trop Dis. 2017;11:e0005704.
  • Tang W, Young M, Mamidi A, et al. Model of Zika virus sexual transmission and vaginal viral replication. Cell Rep. 2016;17:3091–3098.
  • Aliota M, Caine L, Walker E, et al. Characterization of Lethal Zika Virus Infection in AG129 Mice. PLoS Negl Trop Dis. 2016;10:e0004682.
  • Zmurko J, Marques RE, Schols D, et al. The viral polymerase inhibitor 7-Deaza-2ʹ-C-Methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl Trop Dis. 2016;10:1–15.
  • Fernandes N, Nogueira J, Réssio R, et al. Experimental Zika virus infection induces spinal cord injury and encephalitis in newborn Swiss mice. Exp Toxicol Pathol. 2016;69. DOI:10.1016/j.etp.2016.11.004.
  • Chan JFW, Zhang AJ, Chan CCS, et al. Zika virus infection in dexamethasone-immunosuppressed mice demonstrating disseminated infection with multi-organ involvement including orchitis effectively treated by recombinant type I interferons. EBioMedicine. 2016;14:112–122.
  • Li H, Saucedo-Cuevas L, Regla-Nava AJ, et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell. 2016;19: DOI:10.1016/j.stem.2016.08.005.
  • Dudley DM, Aliota MT, Mohr EL, et al. A rhesus macaque model of Asian-lineage Zika virus infection. Nat Commun. 2016;7:12204.
  • Berry N, Ferguson D, Ham C, et al. High susceptibility, viral dynamics and persistence of South American Zika virus in New World monkey species. Sci Rep. 2019;9:14495.
  • Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat Med. 2016;22:1256.
  • Osuna CE, Lim S-Y, Deleage C, et al. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat Med. 2016;22:1448–1455.
  • Lindenbach B, Thiel HJ, Rice CM. Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields virology. Philadelphia, PA: Lippincott-Raven; 2007. p. 1101–1152.
  • Sirohi D, Chen Z, Sun L, et al. The 3. 8 Å resolution cryo-EM structure of Zika virus. Science. 2016;5316(1–7). 80: DOI:10.1126/science.aaf5316
  • Li L, Lok S-M, Yu I-M, et al. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science. 2008;319:1830–1834.
  • Sotcheff S, Routh A. Understanding flavivirus capsid protein functions: the tip of the iceberg. Pathog (Basel, Switzerland). 2020;9:42.
  • Wu Y, Liu Q, Zhou J, et al. Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discov. 2017;3:17006.
  • Rastogi M, Sharma N, Singh SK. Flavivirus NS1: A multifaceted enigmatic viral protein. Virol J. 2016;13:1–10.
  • Best S. The many faces of the flavivirus NS5 protein in antagonism of Type I interferon signaling. J Virol. 2016;91:JVI.01970–16.
  • Grant A, Ponia SS, Tripathi S, et al. Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling. Cell Host Microbe. 2016;19:882–890.
  • Culshaw A, Mongkolsapaya J, Screaton G The immunology of Zika Virus. F1000Research 2018;7:203. DOI:10.12688/f1000research.12271.1.
  • Zhang X, Xie X, Xia H, et al. Zika Virus NS2A-Mediated Virion Assembly. MBio. 2019;10:e02375–19.
  • Avila G, Nogales A, Park J-G, et al. A natural polymorphism in Zika virus NS2A protein responsible of virulence in mice. Sci Rep. 2019;9:19968.
  • Muñoz-Jordán J, Sánchez G, Laurent-Rolle M, et al. Inhibition of interferon signaling by Dengue virus. Proc Natl Acad Sci U S A. 2003;100:14333–14338.
  • Liang Q, Luo Z, Zeng J, et al. Zika Virus NS4A and NS4B proteins deregulate akt-mtor signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell. 2016;19. DOI:10.1016/j.stem.2016.07.019.
  • Pijlman GP, Funk A, Kondratieva N, et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008;4:579–591.
  • Donald CL, Brennan B, Cumberworth SL, et al. Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil. PLoS Negl Trop Dis. 2016;10. DOI:10.1371/journal.pntd.0005048.
  • Schuessler A, Funk A, Lazear H, et al. West nile virus noncoding subgenomic RNA contributes to viral evasion of the Type I interferon-MEDIATED antiviral response. J Virol. 2012;86:5708–5718. DOI:10.1128/JVI.00207-12
  • Akiyama BM, Laurence HM, Massey AR, et al. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science. 2017;354:1148–1152. DOI:10.1126/science.aah3963.Zika
  • Funk A, Truong K, Nagasaki T, et al. RNA structures required for production of subgenomic flavivirus RNA. J Virol. 2010;84:11407–11417.
  • Urosevic N, van Maanen M, Mansfield J, et al. Molecular characterization of virus-specific RNA produced in the brains of flavivirus-susceptible and -resistant mice after challenge with Murray Valley encephalitis virus. J Gen Virol. 1997;78(Pt 1):23–29.
  • Lin K-C, Chang H-L, Chang R-Y. Accumulation of a 3ʹ-terminal genome fragment in Japanese encephalitis virus-infected mammalian and mosquito cells. J Virol. 2004;78:5133–5138.
  • Pijlman G, Funk A, Kondratieva N, et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2009;4:579–591.
  • Chang R-Y, Hsu T-W, Chen Y-L, et al. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3. Vet Microbiol. 2013;166:11–21.
  • Manokaran G, Finol E, Wang C, et al. Dengue subgenomic RNA binds TRIM25 to inhibit interferon Expression for Epidemiological Fitness. Science. 2015;350:217–221.
  • Bidet K, Dadlani D, Garcia-Blanco MA, et al. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mrnas and are targeted by a dengue virus non-coding RNA. PLOS Pathog. 2014;10:e1004242.
  • Slonchak A, Khromykh AA. Subgenomic flaviviral RNAs: what do we know after the first decade of research. Antiviral Res. 2018;159:13–25.
  • Liu Y, Liu H, Zou J, et al. Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology. 2014;448:15–25.
  • Pompon J, Manuel M, Ng GK, et al. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathog. 2017;13. DOI:10.1371/journal.ppat.1006535.
  • Moon SL, Dodd BJT, Brackney DE, et al. Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology. 2015;485:322–329.
  • Schnettler E, Sterken MG, Leung JY, et al. Noncoding Flavivirus RNA Displays RNA Interference Suppressor Activity in Insect and Mammalian Cells. J Virol. 2012;86:13486–13500.
  • Göertz GP, Fros JJ, Miesen P, et al. Noncoding subgenomic flavivirus RNA is processed by the mosquito RNA interference machinery and determines West Nile virus transmission by culex pipiens mosquitoes. J Virol. 2016;90:10145–10159.
  • Moon SL, Dodd BJT, Brackney DE, et al. Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology. 2012;485:2029–2040.
  • Fan YH, Nadar M, Chen CC, et al. Small noncoding RNA modulates Japanese encephalitis virus replication and translation in trans. Virol J. 2011;8:492.
  • Shan C, Muruato AE, Nunes BTD, et al. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med. 2017;23:763–767.
  • Sumathy K, Kulkarni B, Gondu RK, et al. Protective efficacy of Zika vaccine in AG129 mouse model. Sci Rep. 2017;7:46375.
  • Xie X, Yang Y, Muruato AE, et al. Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis. MBio. 2017;8:e02134–16.
  • Modjarrad K, Lin L, George SL, et al. Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials. Lancet. 2018;391:563–571.
  • Baldwin WR, Livengood JA, Giebler HA, et al. Purified inactivated Zika vaccine candidates afford protection against lethal challenge in mice. Sci Rep. 2018;8:16509.
  • Moreno S, Timón M. DNA vaccination: an immunological perspective. Inmunologia. 2004;23:41–55.
  • Das Neves Almeida R, Racine T, Magalhães KG, et al. Zika Virus vaccines: challenges and perspectives. Vaccines (Basel). 2018;6:62.
  • Larocca RA, Abbink P, Peron JPS, et al. Vaccine protection against Zika virus from Brazil. Nature. 2016;536:474. DOI:10.1038/nature18952
  • Dowd KA, Ko S-Y, Morabito KM, et al. Rapid development of a DNA vaccine for Zika virus. Science. 2016;354:237LP– 240. DOI:10.1126/science.aai9137
  • Gaudinski MR, Houser KV, Morabito KM, et al. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials. Lancet. 2018;391:552–562.
  • Tebas P, Roberts CC, Muthumani K, et al. Safety and Immunogenicity of an Anti–Zika Virus DNA Vaccine — preliminary Report. N Engl J Med. 2017. DOI:10.1056/NEJMoa1708120.
  • Maslow JN. Vaccine development for emerging virulent infectious diseases. Vaccine. 2017;35:5437–5443.
  • Abbink P, Larocca RA, De La Barrera RA, et al. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science. 2016;353:1129–1132.
  • López-Camacho C, De Lorenzo G, Slon-Campos JL, et al. Immunogenicity and Efficacy of Zika Virus Envelope Domain III in DNA, Protein, and ChAdOx1 Adenoviral-Vectored Vaccines. Vaccines (Basel). 2020;8:307.
  • Kim E, Erdos G, Huang S, et al. Preventative vaccines for Zika virus outbreak: preliminary evaluation. EBioMedicine. 2016;13:315–320.
  • Boigard H, Alimova A, Martin GR, et al. Zika virus-like particle (VLP) based vaccine. PLoS Negl Trop Dis. 2017;11:e0005608–e0005608.
  • Dikhit MR, Ansari MY, Vijaymahantesh K, et al. Computational prediction and analysis of potential antigenic CTL epitopes in Zika virus: A first step towards vaccine development. Infect Genet Evol. 2016;45:187–197.
  • Pardi N, Hogan MJ, Pelc RS, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543:248.
  • Richner JM, Himansu S, Dowd KA, et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell. 2017;168:1114–1125.e10. DOI:10.1016/j.cell.2017.02.017
  • Chahal JS, Fang T, Woodham AW, et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci Rep. 2017;7:252.
  • Retallack H, Di Lullo E, Arias C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci. 2016;113:201618029.
  • Li Z, Brecher M, Deng Y-Q, et al. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res. 2017;27. DOI:10.1038/cr.2017.88.
  • Delvecchio R, Higa LM, Pezzuto P, et al. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses. 2016;8:322.
  • Yang S, Xu M, Lee EM, et al. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discov. 2018;4:31.
  • Kim J-A, Seong R-K, Kumar M, et al. Favipiravir and ribavirin inhibit replication of Asian and African strains of Zika Virus in different cell models. Viruses. 2018;10:72.
  • Dai S, Zhang Y, Xu B, et al. Establishment of baculovirus-expressed VLPs induced syncytial formation assay for flavivirus antiviral screening. Viruses. 2018;10:365.
  • Saiz J-C, Vázquez-Calvo Á, Blázquez AB, et al. Zika virus: the latest newcomer. Front Microbiol. 2016;7:496.
  • Drugs.com. Prescription drug information, interactions & side effects. n.d.
  • Russo R, Junior N, Cintra A, et al. Expression, purification and virucidal activity of two recombinant isoforms of phospholipase A2 from Crotalus durissus terrificus venom. Arch Virol. 2019;164. DOI:10.1007/s00705-019-04172-6.
  • Carneiro BM, Batista MN, Braga ACS, et al. The green tea molecule EGCG inhibits Zika virus entry. Virology. 2016;496:215–218.
  • Cruz-Oliveira C, Carvalho C, Neris R. Co-protoporphyrin IX and Sn- protoporphyrin IX inactivate Zika, Chikungunya and other arboviruses by targeting the viral envelope. Sci Rep. 2018;8. DOI:10.1038/s41598-018-27855-7.
  • Le LJ, Loe M, Lee R, et al. Antiviral activity of pinocembrin against Zika virus replication. Antiviral Res. 2019;167. DOI:10.1016/j.antiviral.2019.04.003.
  • Aparecida Coronado M, Josef Eberle R, Bleffert N, et al. Zika virus NS2B/NS3 proteinase: A new target for an old drug - Suramin a lead compound for NS2B/NS3 proteinase inhibition-. Antiviral Res. 2018;160. DOI:10.1016/j.antiviral.2018.10.019.
  • Ahe D, Huehnchen P, Balkaya M, et al. Suramin-induced neurotoxicity: preclinical models and neuroprotective strategies. Molecules. 2018;23:346.
  • Barrows NJ, Campos RK, Powell ST, et al. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe. 2016;20:259–270.
  • Davis JA, Paylor R, McDonald MP, et al. Behavioral effects of ivermectin in mice. Lab Anim Sci. 1999;49:288–296.
  • Roy A, Lim L, Srivastava S, et al. Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants. PLoS One. 2017;12. DOI:10.1371/journal.pone.0180632.
  • Yuan S, Chan JF-W, den-Haan H, et al. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antiviral Res. 2017;145:33–43.
  • Li Z, Sakamuru S, Huang R, et al. Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Res. 2017;150: DOI:10.1016/j.antiviral.2017.12.018
  • Chen X, Yang K, Wu C, et al. Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease. Cell Res. 2016;26:1260.
  • Chan JF-W, Chik KK-H, Yuan S, et al. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res. 2017;141:29–37.
  • Eyer L, Zouharová D, Širmarová J, et al. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antiviral Res. 2017;142:63–67.
  • Eyer L, Nougairède A, Uhlířová M, et al. An E460D substitution in the NS5 protein of tick-borne encephalitis virus confers resistance to the inhibitor Galidesivir (BCX4430) and also attenuates the virus for mice. J Virol. 2019. DOI:10.1101/563544.
  • Taylor R, Kotian P, Warren T, et al. BCX4430 – A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J Infect Public Health. 2016;9. DOI:10.1016/j.jiph.2016.04.002.
  • Julander J, Siddharthan V, Evans J, et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res. 2016;137. DOI:10.1016/j.antiviral.2016.11.003.
  • Ferreira AC, Zaverucha-do-Valle C, Reis PA, et al. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. Sci Rep. 2017;7:9409.
  • Stephen P, Baz M, Boivin G, et al. Structural Insight into NS5 of Zika Virus Leading to the Discovery of MTase Inhibitors. J Am Chem Soc. 2016;138. DOI:10.1021/jacs.6b10399.
  • Hamel R, Dejarnac O, Wichit S, et al. Biology of Zika virus infection in human skin cells. J Virol. 2015;89:8880–8896.
  • Li C, Deng Y-Q, Wang S, et al. 25-hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity. 2017;46:446–456.
  • Oestereich L, Rieger T, Neumann M, et al. Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (Favipiravir) in a mouse model for crimean-congo hemorrhagic fever. PLoS Negl Trop Dis. 2014;8:e2804.
  • García-Nicolás O, V’kovski P, Vielle N, et al. The small-compound inhibitor K22 displays broad antiviral activity against different members of the family flaviviridae and offers potential as a panviral inhibitor. Antimicrob Agents Chemother. 2018;62. DOI:10.1128/AAC.01206-18.
  • Rausch K, Hackett BA, Weinbren NL, et al. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virus. Cell Rep. 2017;18:804–815.
  • Li F, Lang Y, Ji Z, et al. A scorpion venom peptide Ev37 restricts viral late entry by alkalizing acidic organelles. J Biol Chem. 2018;294:jbc.RA118.005015.
  • Han Y, Mesplède T, Xu H, et al. The antimalarial drug amodiaquine possesses anti-ZIKA virus activities. J Med Virol. 2018;90. DOI:10.1002/jmv.25031.
  • Qing M, Yang F, Zhang B, et al. Cyclosporine inhibits flavivirus replication through blocking the interaction between host cyclophilins and viral NS5 protein. Antimicrob Agents Chemother. 2009;53:3226LP– 3235. DOI:10.1128/AAC.00189-09
  • Carvalho O, Félix D, de Mendonça L, et al. The thiopurine nucleoside analogue 6-methylmercaptopurine riboside (6MMPr) effectively blocks Zika virus replication. Int J Antimicrob Agents. 2017;50. DOI:10.1016/j.ijantimicag.2017.08.016.
  • Beck S, Zhu Z, De Oliveira M, et al. Mechanism of action of methotrexate against Zika virus. Viruses. 2019;11:338.
  • Huang Y, Li Y, Zhang H, et al. Zika virus propagation and release in human fetal astrocytes can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Cell Discov. 2018;4. DOI:10.1038/s41421-018-0017-2.
  • Willard KA, Elling CL, Stice SL, et al. The oxysterol 7-ketocholesterol reduces zika virus titers in vero cells and human neurons. Viruses. 2019;11:1–17.
  • Merino-Ramos T, Jiménez de Oya N, Saiz J-C, et al. Antiviral activity of nordihydroguaiaretic acid and its derivative Tetra-O-Methyl nordihydroguaiaretic acid against West Nile virus and Zika virus Antimicrob Agents Chemother. 2017;61:e00376–17.
  • Xu M, Lee EM, Wen Z, et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med. 2016;22:1101–1107.
  • Leonardi W, Zilbermintz L, Cheng L, et al. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus OPEN. Sci Rep. 2016;6. DOI:10.1038/srep34475.
  • Oya N, Blázquez A-B, Casas J, et al. Direct Activation of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by PF-06409577 inhibits flavivirus infection through modification of host-cell lipid metabolism. Antimicrob Agents Chemother. 2018;62(AAC.00360–18). DOI:10.1128/AAC.00360-18
  • Costa VV, Del Sarto JL, Rocha RF, et al. N-Methyl-D-Aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. MBio. 2017;8:1–16.
  • Arbuckle JH, Gardina PJ, Gordon DN, et al. Inhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent Antiviral State and Suppress Infection by Diverse Viral Pathogens. MBio. 2017;8:e01141–17.
  • BioCryst Completes Phase 1 Clinical Trial of Galidesivir - Drugs.com MedNews. n.d.
  • WHO. WHO vaccine pipeline tracker. WHO 2016.
  • Muthumani K, Griffin BD, Agarwal S, et al. In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine. Npj Vaccines. 2016;1:1–11.
  • Hörner C, Bodmer B, Fiedler A, et al. Vaccine candidate mediates protection against Zika virus in an allogeneic mouse pregnancy model. J Virol. 2018;93. DOI:10.1128/JVI.01485-18
  • Richner JM, Jagger BW, Shan C, et al. Vaccine mediated protection against Zika virus induced congenital disease contributed to the design of safety and other experiments with ZIKV-NS1-LAV in mouse models. Cell. 2017;170:273–283.
  • Isbrucker RA, Edwards JA, Wolz E, et al. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 3: teratogenicity and reproductive toxicity studies in rats. Food Chem Toxicol. 2006;44:651–661.
  • Clain E, Haddad J, Koishi SL, et al. The Polyphenol-Rich Extract from Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island, inhibits the early stages of Dengue and Zika Virus infection. Int J Mol Sci. 2019;20:1860.
  • Julander JG, Siddharthan V, Evans J, et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res. 2017;137:14–22.
  • Coutard B, Barral K, Lichière J, et al. Zika virus Methyltransferase: structure and functions for drug design perspectives. J Virol. 2017;91:e02202–16.
  • Brecher M, Li Z, Liu B, et al. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog. 2017;13:e1006411. DOI:10.1371/journal.ppat.1006411
  • Yu Y, Deng YQ, Zou P, et al. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat Commun. 2017;8. DOI:10.1038/ncomms15672.
  • Shiryaev S, Farhy C, Pinto A, et al. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res. 2017;143. DOI:10.1016/j.antiviral.2017.04.015.
  • Tong X, Smith J, Bukreyeva N, et al. Merimepodib, an IMPDH inhibitor, suppresses replication of Zika virus and other emerging viral pathogens. Antiviral Res. 2017;149. DOI:10.1016/j.antiviral.2017.11.004
  • Beck S, Zhu Z, Oliveira MF, et al. Mechanism of action of methotrexate against Zika virus. Viruses. 2019;11:338.
  • Pascoalino BS, Courtemanche G, Cordeiro MT, et al. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000Research 2016;5:2523. .
  • Adcock RS, Chu Y-K, Golden JE, et al. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antiviral Res. 2017;138:47–56.
  • Costa-Nunes JP, Cline BH, Araújo-Correia M, et al. animal models of depression and drug delivery with food as an effective dosing method: evidences from studies with celecoxib and dicholine succinate. Biomed Res Int. 2015;2015:596126.
  • Wichit S, Hamel R, Bernard E, et al. Imipramine inhibits Chikungunya virus replication in human skin fibroblasts through interference with intracellular cholesterol trafficking. Sci Rep. 2017;7. DOI:10.1038/s41598-017-03316-5.
  • Singh PK, Khatri I, Jha A, et al. Determination of system level alterations in host transcriptome due to Zika virus (ZIKV) Infection in retinal pigment epithelium. Sci Rep. 2018;8: DOI:10.1038/s41598-018-29329-2
  • Cheng F, da Silva ASR, Huang AI-C, et al. Suppression of Zika Virus Infection and Replication in Endothelial Cells and Astrocytes by PKA Inhibitor PKI 14-22. J Virol. 2018;92:1–17.
  • Haviernik J, Štefánik M, Fojtíková M, et al. Arbidol (Umifenovir): A Broad-spectrum Antiviral Drug that Inhibits Medically Important Arthropod-borne Flaviviruses. Viruses. 2018. DOI:10.3390/v10040184.
  • Varghese FS, Rausalu K, Hakanen M, et al. Obatoclax inhibits alphavirus membrane fusion by neutralizing the acidic environment of endocytic compartments. Antimicrob Agents Chemother. 2017;61:1–17.
  • Petruska J, Frank D, Freeman G, et al. Toxicity and carcinogenicity studies of chlorpromazine hydrochloride and p -Cresidine in the p53 heterozygous mouse model. Toxicol Pathol. 2002;30:696–704.
  • Kuivanen S, Bespalov MM, Nandania J, et al. Obatoclax, saliphenylhalamide and gemcitabine inhibit Zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism. Antiviral Res. 2017;139:117–128.
  • Cairns D, Boorgu DSSK, Levin M, et al. Niclosamide rescues microcephaly in a humanized in vivo model of Zika infection using human induced neural stem cells. Biol Open. 2018;7:bio031807.
  • Kao JC, HuangFu WC, Tsai TT, et al. The antiparasitic drug niclosamide inhibits dengue virus infection by interfering with endosomal acidification independent of mTOR. PLoS Negl Trop Dis. 2018;12:1–16.
  • Freitas L, Leal D, Neris R, et al. da Silva Frost P. Acute and chronic neurological consequences of early-life Zika virus infection in mice. Sci Transl Med. 2018;10. DOI:10.1126/scitranslmed.aar2749.
  • Costa V, Del Sarto J, Rocha R, et al. N -Methyl-d-Aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. MBio. 2017;8:e00350–17.
  • Simanjuntak Y, Liang -J-J, Chen S-Y, et al. Ebselen alleviates testicular pathology in mice with Zika virus infection and prevents its sexual transmission. PLOS Pathog. 2018;14:e1006854.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.