144
Views
0
CrossRef citations to date
0
Altmetric
Review

The relevance of studying insect–nematode interactions for human disease

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789–1858.
  • WHO. (2007). Global programme to eliminate lymphatic filariasis: progress report on mass drug administration in 2006 (0049-8114). WORLD HEALTH ORGANIZATION.
  • Blaxter ML. Caenorhabditis elegans is a nematode. Science. 1998;282(5396):2041–2046.
  • Bockarie MJ, Pedersen EM, White GB, et al. Role of vector control in the global program to eliminate lymphatic filariasis. Annu Rev Entomol. 2009;54(1):469–487.
  • Taylor MJ, Hoerauf A, Bockarie M. Lymphatic filariasis and onchocerciasis. Lancet. 2010;376(9747):1175–1185.
  • CDC. Recommendations of the international task force for disease eradication. Morbidity Mortality Weekly Rep. 1993;42(16):1–38.
  • Molyneux DH, Zagaria N. Lymphatic filariasis elimination: progress in global programme development. Ann Trop Med Parasitol. 2002;96(8):15.
  • WHO. Global update on implementation of preventive chemotherapy against neglected tropical diseases in 2018. Weekly Epidemiological Rec. 2019a;94(38):425–438.
  • Michael E, Malecela-Lazaro MN, Simonsen PE, et al. Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis. 2004;4(4):223–234.
  • Burgert-Brucker CR, Zoerhoff KL, Headland M, et al. Risk factors associated with failing pre-transmission assessment surveys (pre-TAS) in lymphatic filariasis elimination programs: results of a multi-country analysis. PLoS Negl Trop Dis. 2020;14(6):e0008301.
  • De Souza DK, Gass K, Otchere J, et al. Review of MDA registers for lymphatic filariasis: findings, and potential uses in addressing the endgame elimination challenges. PLoS Negl Trop Dis. 2020;14(5):e0008306.
  • Ottesen EA, Duke BOL, Karam M, et al. Strategies and tools for the control/elimination of lymphatic filariasis. Bull World Health Organ. 1997;75(6):491–503.
  • WHO. Global programme to eliminate lymphatic filariasis: progress report on mass drug administration, 2010. Weekly Epidemiological Rec. 2011; 86(35): 377–387
  • Schwab AE, Boakye DA, Kyelem D, et al. Detection of benzimidazole resistance–associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment. Am J Trop Med Hyg. 2005;73(2):234–238.
  • Friedrich MJ. WHO’s top health threats for. JAMA. 2019;321(11):1041. 2019.
  • WHO. (2019b). Ten threats to global health in 2019. World Health Organisation. https://www.who.int/emergencies/ten-threats-to-global-health-in-2019. Accessed 22 December 2019.
  • Lewis EE, Clarke DJ. Nematode parasites and entomopathogens. In: Vega FE, Kaya HK, editors. Insect pathology. 2nd ed. Academic Press; Oxford. WorldCat; 2012. p. 395–424.
  • Torres-Barragan A, Suazo A, Buhler WG, et al. Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biol Control. 2011;59(2):123–129.
  • Zhang C, Liu J, Xu M, et al. Heterorhabditidoides chongmingensis gen. nov., sp. nov. (rhabditida: rhabditidae), a novel member of the entomopathogenic nematodes. J Invertebr Pathol. 2008;98(2):153–168.
  • Benseddik Y, Joutei AB, Laghfiri M, et al. Efficacy assessment of entomopathogenic nematodes native to morocco against the white grubs rhizotrogus obesus lucas and geotrogus olcesii fairmaire (coleoptera: scarabaeidae). Crop Prot. 2021;143:105534.
  • Coppel HC, Mertins JW. Examples of insect pest suppression utilizing nematodes. In: Biological insect pest suppression. Springer-Verlag; Berlin. WorldCat; 1977. p. 98–105.
  • Vega FE, Kaya HK, Tanada Y, Eds. Insect pathology. 2nd ed. Elsevier/Academic Press; Amsterdam. 2012.
  • Dillman AR, Sternberg PW. Entomopathogenic nematodes. Curr Biol. 2012;22(11):R430–R431.
  • Kaya HK, Gaugler R. Entomopathogenic nematodes. Annu Rev Entomol. 1993;38(1):181–206.
  • Katiyar D, Singh L. Filariasis: current status, treatment and recent advances in drug development. Curr Med Chem. 2011;18(14):2174–2185.
  • Ryss A, Vieira P, Mota MM, et al. A synopsis of the genus bursaphelenchus fuchs, 1937 (aphelenchida: parasitaphelenchidae) with keys to species. Nematology. 2005;7(3):393–458.
  • Adams BJ, Fodor A, Koppenhöfer HS, et al. Biodiversity and systematics of nematode–bacterium entomopathogens. Biol Control. 2006;38(1):4–21.
  • Boemare N. Interactions between the partners of the entomopathogenic bacterium nematode complexes, steinernema-xenorhabdus and Heterorhabditis-Photorhabdus. Nematology. 2002;4(5):601–603.
  • Chang DZ, Serra L, Lu D, et al. A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema. PLoS Pathog. 2019;15(5):e1007626.
  • Lu D, Macchietto M, Chang D, et al. Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathog. 2017;13(4):e1006302.
  • Brivio MF, Mastore M, Pagani M. Parasite-host relationship: a lesson from a professional killer. Invertebrate Survival Journal. 2005;2:41–53.
  • Taylor MJ, Bandi C, Hoerauf A. Wolbachia bacterial endosymbionts of filarial nematodes. Adv Parasitol. 2005;60:245–284.
  • Hughes GL, Rasgon JL. Wolbachia infections in arthropod hosts. In: Vega FE, Kaya HK, editors. Insect pathology. Second ed. Elsevier Inc; Amsterdam. 2012. p. 351–366.
  • Werren JH, Windsor ADO, Guo H,LM. Distribution of Wolbachia among neotropical arthropods. Proceedings: Biological Sciences, 262(1364), 197–204. JSTOR. 1995.
  • Hallem EA, Rengarajan M, Ciche TA, et al. Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr Biol. 2007;17(10):898–904.
  • Stock SP. Insect-parasitic nematodes: from lab curiosities to model organisms. J Invertebr Pathol. 2005;89(1):57–66.
  • Brivio MF, Mastore M. Nematobacterial complexes and insect hosts: different weapons for the same war. Insects. 2018;9(3):117. /z-wcorg/.
  • Cooper D, Eleftherianos I. Parasitic nematode immunomodulatory strategies: recent advances and perspectives. Pathogens. 2016;5(3):58.
  • Ciche TA, Sternberg PW. Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts. BMC Dev Biol. 2007;7(1):101.
  • Ruby EG. Symbiotic conversations are revealed under genetic interrogation. Nature Rev Microbiol. 2008;6(10):752–762.
  • McSorley HJ, Hewitson JP, Maizels RM. Immunomodulation by helminth parasites: defining mechanisms and mediators. Int J Parasitol. 2013;43(3–4):301–310.
  • White MPJ, McManus CM, Maizels RM. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology. 2020;160(3):248–260.
  • Pedersen EM, Mukoko DA. Impact of insecticide-treated materials on filaria transmission by the various species of vector mosquito in Africa.Ann Trop Med Parasitol.2002;96(Suppl 2):S91–95.
  • WHO. (1984). Lymphatic filariasis: fourth report of the WHO expert committee on filariasis. World Health Organization.
  • Curtis CF, Malecela-Lazaro M, Reuben R, et al. Use of floating layers of polystyrene beads to control populations of the filaria vector Culex quinquefasciatus. Ann Trop Med Parasitol. 2002;96(8):97.
  • Maxwell CA, Curtis CF, Haji H, et al. Control of Bancroftian filariasis by integrating therapy with vector control using polystyrene beads in wet pit latrines. Trans R Soc Trop Med Hyg. 1990;84(5):709–714.
  • Maxwell CA, Mohammed K, Kisumku U, et al. Can vector control play a useful supplementary role against bancroftian filariasis? Bull World Health Organ. 1999;77(2):138–143.
  • WHO. (2010). Progress report 2000-2009 and strategic plan 2010-2020 of the global programme to eliminate lymphatic filariasis: halfway towards eliminating lymphatic filariasis. World Health Organization.
  • Manga L. Vector-control synergies, between ‘roll back malaria’ and the global programme to eliminate lymphatic filariasis, in the African region. Ann Trop Med Parasitol. 2002;96(8):129.
  • Rodriguez M, Ortiz E, Bisset JA, et al. Changes in malathion and pyrethroid resistance after cypermethrin selection of Culex quinquefasciatus field populations of Cuba. Med Vet Entomol. 1993;7(2):117–121.
  • Kim H, Kim J. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15(5):321.
  • Yin C, Shen G, Guo D, et al. InsectBase: a resource for insect genomes and transcriptomes. Nucleic Acids Res. 2016;44(D1):D801–D807.
  • Carvalho DO, McKemey AR, Garziera L, et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis. 2015;9(7):e0003864.
  • Lacroix R, McKemey AR, Raduan N, et al. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLOS One. 2012;7(8):e42771.
  • Castillo JC, Reynolds SE, Eleftherianos I. Insect immune responses to nematode parasites. Trends Parasitol. 2011;27(12):537–547.
  • Mand S, Debrah AY, Klarmann U, et al. Doxycycline improves filarial lymphedema independent of active filarial infection: a randomized controlled trial. Clinl Infect Dis. 2012;55(5):621–630.
  • Taylor MJ, Makunde WH, McGarry HF, et al. Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial. Lancet. 2005;365(9477):2116–2121.
  • Clare RH, Cook DAN, Johnston KL, et al. Development and validation of a high-throughput anti-Wolbachia whole-cell screen: a route to macrofilaricidal drugs against onchocerciasis and lymphatic filariasis. J Biomol Screen. 2015;20(1):64–69.
  • Clare R (2019). Anti-filarial drug discovery: targeting the Wolbachia endosymbiont [PhD Thesis]. University of Liverpool.
  • Jeyaprakash A, Hoy MA. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol. 2000;9(4):393–405.
  • Miller WJ, Ehrman L, Schneider D. Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog. 2010;6(12):e1001214.
  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell. 2009;139(7):1268–1278.
  • Moreira LA, Saig E, Turley AP, et al. Human probing behavior of Aedes aegypti when infected with a life-shortening strain of Wolbachia. PLoS Negl Trop Dis. 2009;3(12):e568.
  • Suh E, Mercer DR, Fu Y, et al. Pathogenicity of life-shortening Wolbachia in Aedes albopictus after transfer from Drosophila melanogaster. Appl Environ Microbiol. 2009;75(24):7783–7788.
  • Brelsfoard CL, Séchan Y, Dobson SL. Interspecific hybridization yields strategy for South Pacific filariasis vector elimination. PLoS Negl Trop Dis. 2008;2(1):e129.
  • Hughes GL, Koga AR, Xue P, et al. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog. 2011;7(5):e1002043.
  • Turley AP, Moreira LA, O’Neill SL, et al. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. PLoS Negl Trop Dis. 2009;3(9):e516.
  • O’lorcain P, Holland CV. The public health importance of Ascaris lumbricoides. Parasitology. 2000;121(S1):S51–S71.
  • UN. Transforming our world: the 2030 agenda for sustainable development. United Nations; New York. 2015.
  • Markaki M, Tavernarakis N. Modeling human diseases in Caenorhabditis elegans. Biotechnol J. 2010;5(12):1261–1276.
  • Tissenbaum HA. Using C. elegans for aging research. Invertebrate Reproduction & Development. 2015;59(sup1):59–63.
  • Chamilos G, Lionakis MS, Lewis RE, et al. Role of mini-host models in the study of medically important fungi. Lancet Infect Dis. 2007;7(1):42–55.
  • Bai X, Adams BJ, Ciche TA, et al. A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLOS One. 2013;8(7):e69618.
  • Blaxter ML, Koutsovoulos G. The evolution of parasitism in Nematoda. Parasitology. 2015;142(S1):S26–S39.
  • Tailliez P, Laroui C, Ginibre N, et al. Phylogeny of photorhabdus and xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. proposal of new taxa: x. vietnamensis sp. nov., p. luminescens subsp. caribbeanensis subsp. nov., p. luminescens subsp. hainanensis subsp. nov., p. temperata subsp. khanii subsp. nov., p. temperata subsp. tasmaniensis subsp. nov., and the reclassification of p. luminescens subsp. thracensis as p. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol. 2010;60(8):1921–1937.
  • Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nature Rev Microbiol. 2012;10(11):743–754.
  • Chen C, Chen Y, Lu P, et al. Proteus mirabilis urinary tract infection and bacteremia: risk factors, clinical presentation, and outcomes. J Microbiol Immunol Infect. 2012;45(3):228–236.
  • Stolk W, Prada JM, Smith ME, et al. Are alternative strategies required to accelerate the global elimination of lymphatic filariasis? Insights from mathematical models. Clinl Infect Dis. 2018;66(Supplement_4):S260–S266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.