195
Views
0
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the antileishmanial effect of polyclonal antibodies and cationic antimicrobial peptides

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Saurabh S. Leishmaniasis. Lancet. 2019;393(10174):871.
  • Bilgic-Temel A, Murrell DF, Uzun S. Cutaneous leishmaniasis: a neglected disfiguring disease for women. Int J Womens Dermatol. Jul 2019;5(3):158–165.
  • Catta-Preta CMC, Mottram JC. Drug candidate and target for leishmaniasis. Nature. Aug 2018;560(7717):171–172.
  • Machado PA, Carneiro MPD, and Sousa-Batista AJ, et al. Leishmanicidal therapy targeted to parasite proteases. Life Sci. 2019;219:163–181.
  • World Health Organization, editor. Framework for action on cutaneous leishmaniasis in the eastern Mediterranean region 2014–2018 . (World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt: World Health Organization). 2014; 26.
  • Robles-Loaiza AA, Pinos-Tamayo EA, Mendes B, et al. Peptides to tackle leishmaniasis: current status and future directions. Int J Mol Sci. 2021;22(9):4400.
  • Cobb SL, Denny PW. Antimicrobial peptides for leishmaniasis. Curr Opin Invest Drugs. 2010;11(8):868–875.
  • El-Dirany R, Shahrour H, Dirany Z, et al. Activity of anti-microbial peptides (AMPs) against leishmania and other parasites: an overview. Biomolecules. 2021 Jul;11(7):984.
  • Lima PG, Oliveira JTA, Amaral JL, et al. Synthetic antimicrobial peptides: characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci. 2021;278:119647.
  • Ji S, Li W, Zhang L, et al. Cecropin A-melittin mutant with improved proteolytic stability and enhanced antimicrobial activity against bacteria and fungi associated with gastroenteritis in vitro. Biochem Biophys Res Commun. 2014 Sep 5;451(4):650–655.
  • Cho JH, Sung BH, Kim SC. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim Biophys Acta. Aug 2009;1788(8):1564–1569.
  • Park CB, Yi KS, Matsuzaki K, et al. Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Nat Acad Sci. 2000 Jul 18;97(15):8245–8250.
  • Cardoso MH, Meneguetti BT, Costa BO, et al. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int J Mol Sci. 2019 Oct 1;20(19):4877.
  • Jang SA, Kim H, Lee JY, et al. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides. 2012 Apr;34(2):283–289.
  • Sarkar T, Chetia M, Chatterjee S. Antimicrobial peptides and proteins: from nature’s reservoir to the laboratory and beyond. Front Chem. 2021 Jun;9:691532.
  • Moslehi M, Namdar F, Esmaeilifallah M, et al. Evaluation of different concentrations of imatinib on the viability of leishmania major: an in vitro Study. Adv Biomed Res. 2019;8:61.
  • Appendix A of the European convention for the protection of vertebrate animals used for experimental and other scientific purposes (Ets No. 123): guidelines for accommodation and care of animals ( Article 5 Of The Convention). 2006.
  • Leenaars M, Hendriksen CF. Critical steps in the production of polyclonal and monoclonal antibodies: evaluation and recommendations. ILAR J. 2005 Jan 1;46(3):269–279.
  • Wingfield P. Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci. Appendix 3:Appendix 3F May 2001. DOI:10.1002/0471140864.psa03fs13
  • Oliveira I, Moragas Tellis CJ, Chagas M, et al. Carapa guianensis Aublet (Andiroba) seed oil: chemical composition and antileishmanial activity of limonoid-rich fractions. Biomed Res Int. 2018;2018:5032816.
  • Humane killing of mice and rats. Vol. 1, Melbourne: The University of Melbourne; 2016 April 12. (Office for Research Ethics & Integrity | Animal Care & Use Standard)
  • Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Iimmunol. 1981 Apr 1;126(4):1614–1619. (Baltimore, Md.: 1950).
  • de Oliveira Cardoso F, de Souza Cda S, Mendes VG, et al. Immunopathological studies of Leishmania amazonensis infection in resistant and in susceptible mice. J Infect Dis. 2010 Jun 15;201(12):1933–1940.
  • Volpedo G, Huston RH, Holcomb EA, et al. From infection to vaccination: reviewing the global burden, history of vaccine development, and recurring challenges in global leishmaniasis protection. Expert Rev Vaccines. 2021 Sep;15:1–16.
  • Khamesipour A. Therapeutic vaccines for leishmaniasis expert opinion on biological therapy. Expert Opinion on Biological Therapy. 2014 Nov 1;14(11):1641–1649.
  • Pradhan S, Schwartz RA, Patil A, et al. Treatment options for leishmaniasis. Clin Exp Dermatol. 2022 Mar;47(3):516–521.
  • Briones Nieva CA, Cid AG, Romero AI, et al. An appraisal of the scientific current situation and new perspectives in the treatment of cutaneous leishmaniasis. Acta Trop. 2021 Sep;221:105988.
  • Hadighi R, Boucher P, Khamesipour A, et al. Glucantime-resistant Leishmania tropica isolated from Iranian patients with cutaneous leishmaniasis are sensitive to alternative antileishmania drugs. Parasitol Res. 2007 Oct;101(5):1319–1322.
  • Ulmschneider JP. Charged antimicrobial peptides can translocate across membranes without forming channel-like pores. Biophys J. 2017 Jul 11;113(1):73–81.
  • Iwasaki T, Saido-Sakanaka H, Asaoka A, et al. In vitro activity of diastereomeric antimicrobial peptides alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. J. Insect Biotechnol. Sericology. 2007;76(1):125–129.
  • Eshtiaghi S, Nazari R, Fasihi-Ramandi M. In-silico and in-vitro evaluation of antibacterial, cytotoxic, and apoptotic activity and structure of modified CM11 peptide. Int J Pept Res Ther. Jun 2021;27(2):1069–1078.
  • Costa F, Teixeira C, Gomes P, et al. Clinical application of AMPs. Adv Exp Med Biol. 2019;1117:281–298.
  • Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol. Mar 2016;25(3):167–173.
  • Lofgren SE, Miletti LC, Steindel M, et al. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals. Exp Parasitol. 2008 Feb;118(2):197–202.
  • Amani J, A Barjini K, Moghaddam M, et al. In vitro synergistic effect of the CM11 antimicrobial peptide in combination with common antibiotics against clinical isolates of six species of multidrug-resistant pathogenic bacteria. Protein Pept Lett. 2015;22(10):940–951.
  • Saugar JM, Rodriguez-Hernandez MJ, de la Torre BG, et al. Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of Acinetobacter baumannii: molecular basis for the differential mechanisms of action. Antimicrob Agents Chemother. 2006 Apr;50(4):1251–1256.
  • Moghaddam MM, Abolhassani F, Babavalian H, et al. Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli. Probiotics Antimicrob Proteins. 2012 Jun;4(2):133–139.
  • Rivas L, Luque-Ortega JR, Andreu D. Amphibian antimicrobial peptides and Protozoa: lessons from parasites. Biochim Biophys Acta. Aug 2009;1788(8):1570–1581.
  • Efimova SS, Schagina LV, Ostroumova OS. Channel-forming activity of cecropins in lipid bilayers: effect of agents modifying the membrane dipole potential. Langmuir. 2014 Jul 8;30(26):7884–7892.
  • Milani A, Benedusi M, Aquila M, et al. Pore forming properties of cecropin-melittin hybrid peptide in a natural membrane. Molecules. 2009 Dec 11;14(12):5179–5188.
  • Kordestani Shargh E, Pirestani M, Sadraei J. In vitro toxicity evaluation of short cationic antimicrobial peptide (CM11) on Blastocystis sp. Acta tropica. Acta Tropica. 2020 Apr;204:105384.
  • Ebrahimzade E, Mohebali M, Shayan P, et al. Investigation of the antimicrobial activity of a short cationic peptide against promastigote and amastigote forms of Leishmania major (MHRO/IR/75/ER): an in vitro study. Exp Parasitol. 2019 Jan;196:48–54.
  • Aqeele G, Shayan P, Ebrahimzade Abkooh E, et al. Evaluation of curcumin and CM11 peptide alone and in combination against amastigote form of Iranian strain of L. major (MRHO/IR75/ER) in vitro. Exp Parasitol. 2021 Oct;229:108151.
  • Elmore DE. Insights into buforin II membrane translocation from molecular dynamics simulations. Peptides. Dec 2012;38(2):357–362.
  • Pc YGS, Kim SC, Cheong C. Solution structure of an antimicrobial peptide buforin II. FEBS Lett. 1996 Nov 25;398(1):87–90.
  • Kobayashi S, Takeshima K, Park CB, et al. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry. 2000 Jul 25;39(29):8648–8654.
  • Kobayashi S, Chikushi A, Tougu S, et al. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Biochemistry. 2004 Dec 14;43(49):15610–15616.
  • Park CB, Kim MS, Kim SC. A novel antimicrobial peptide from bufo bufo gargarizans. Biochem Biophys Res Commun. 1996 Jan 5;218(1):408–413.
  • Hollmann A, Martinez M, Maturana P, et al. Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem. 2018;6:204.
  • Cirioni O, Silvestri C, Ghiselli R, et al. Therapeutic efficacy of buforin II and rifampin in a rat model of Acinetobacter baumannii sepsis. Crit Care Med. 2009 Apr;37(4):1403–1407.
  • Giacometti A, Cirioni O, Del Prete MS, et al. Activity of buforin II alone and in combination with azithromycin and minocycline against Cryptosporidium parvum in cell culture. J Antimicrob Chemother. 2001;47(1):97–99.
  • Mahdavi Abhari F, Pirestani M, Dalimi A. Anti-amoebic activity of a cecropin-melittin hybrid peptide (CM11) against trophozoites of Entamoeba histolytica. Wien Klin Wochenschr. Sep 2019;131(17):427–434.
  • Karimi Tanha S, Pirestani M, Sadraei J. Effect of cecropin–melittin chimeric peptide (CM11) on Trophozoite of Giardia lamblia In vitro. J. Maz. Univ. Med. Sci. 2019 Oct;1029(177):42–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.