690
Views
0
CrossRef citations to date
0
Altmetric
Review

Bordetella pertussis and outer membrane vesicles

References

  • Nieves DJ, Heininger U . Bordetella pertussis. Microbiol Spectr. 2016;4(3). DOI:10.1128/microbiolspec.EI10-0008-2015
  • Kilgore PE, Salim AM, Zervos MJ, et al. Pertussis: microbiology, disease, treatment, and prevention. Clin Microbiol Rev. 2016;29(3):449–486. DOI:10.1128/CMR.00083-15
  • Kapil P, Merkel TJ. Pertussis vaccines and protective immunity. Curr Opin Immunol. 2019;59:72–78. Accessed11 08 2002.
  • Black S. Epidemiology of pertussis. Pediatr Infect Dis J. 1997;16:S85–S89. Accessed 10 08 2022.
  • WHO. Pertussis vaccines: WHO position paper, August 2015. Weekly Epidemiological Record. 2015 Accessed 28 06 2022;90(35):433–460.
  • Dilli D, Bostanci İ, Dallar Y, et al. Recent findings on pertussis epidemiology in Turkey. Eur J Clin Microbiol Infect Dis. 2008;27(5):335–341. DOI:10.1007/s10096-007-0442-x
  • Tan T, Trindade E, Skowronski D. Epidemiology of pertussis. Pediatr Infect Dis. 2005;24(5):S10–S18.
  • Yasui Y, Mitsui T, Nishimura T, et al. School-Age children and adolescents suspected of having been to be infected with pertussis in Japan. Vaccine. 2018;36(20):2910–2915. Accessed 11 08 2022.
  • Bento AI, Riolo MA, Choi YH, et al. Core pertussis transmission groups in England and Wales: a tale of two eras. Vaccine. 2018;36(9):1160–1166. DOI:10.1016/j.vaccine.2018.01.046
  • WHO [Internet] Pertussis. Available from: https://www.who.int/health-topics/pertussis#tab=tab1.
  • ECDC [Internet]. Pertussis: annual epidemiological report for 2017, Stockholm. [cited 2019 Apr]. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-pertussis.pdf.
  • Decker MD, Edwards KM. Pertussis (Whooping cough). J Infect Dis. 2021;224(Supplement_4):S310–S320.
  • . CDCMortality and morbidity weekly report. pertussis vaccination: use of acellular pertussis vaccines among infants and young children recommendations of the advisory committee on immunization practices (ACIP). Available from. 1997;46(RR–7):1–25. https://www.cdc.gov/mmwr/preview/mmwrhtml/00048610.htm
  • Skowronski DM, De Serres G, MacDonald D, et al. The changing age and seasonal profile of pertussis in Canada. J Infect Dis. 2002;185(10):1448–1453. DOI:10.1086/340280
  • Klein NP, Bartlett J, Rowhani-Rahbar A, et al. Waning protection after fifth dose of acellular pertussis vaccine in children. Nejm. 2012;367(11):1012–1019. DOI:10.1056/NEJMoa1200850
  • Rumbo M, Hozbor, Hozbor D. Development of improved pertussis vaccine. Hum Vaccine Immunother. 2014;10(8):2450–2453.
  • Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in nonhuman primate model. Proc Natl Acad Sci, USA. 2014;111(2):787–792.
  • Le T, Cherry JD, Chang SJ, et al. Immune responses and antibody decay after immunization of adolescents and adults with an acellular pertussis vaccine: the APERT study. J Infect Dis. 2004;190(3):535–544. DOI:10.1086/422035
  • Breakwell L, Kelso P, Finley C, et al. Pertussis vaccine effectiveness in the setting of pertactin-deficient pertussis. Pediatrics. 2016;137(5):e20153973. DOI:10.1542/peds.2015-3973
  • Bart MJ, Harris SR, Advani A, et al. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. Mbio. 2014;5(2):e01074. DOI:10.1128/mBio.01074-14
  • Quinlan T, Musser KA, Currenti SA, et al. Pertactin-Negative variants of Bordetella pertussis in New York State: a retrospective analysis, 2004–2013. Mol Cell Press. 2013;28(4):138–140. DOI:10.1016/j.mcp.2013.12.003
  • Bodilis H, Guiso N. Virulence of pertactin-negative Bordetella pertussis isolates from infants, France. Emerg Infect Dis. 2013;19(3):471–474.
  • Lam C, Octavia S, Ricaford L, et al. Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia. Emerg Infect Dis. 2014;20(4):626–633. DOI:10.3201/eid2004.131478
  • Hiramatsu Y, Miyaji Y, Otsuka N, et al. Significant decrease in pertactin-deficient Bordetella pertussis isolates, Japan. Emerg Infect Dis. 2017;23(4):699–701. DOI:10.3201/eid2304.161575
  • Zomer A, Otsuka N, Hiramatsu Y, et al. Bordetella pertussis population dynamics and phylogeny in Japan after adoption of acellular pertussis vaccines. Microb Genom. 2018;4(5):e000180. DOI:10.1099/mgen.0.000180
  • Barkoff AM, Mertsola J, Pierard D, et al. Pertactin-Deficient Bordetella pertussis isolates: evidence of increased circulation in Europe, 1998 to 2015. Euro Surveill. 2019;24(7):1700832. DOI:10.2807/1560-7917.ES.2019.24.7.1700832
  • Tozzi AE, Celentano LP, Ciofi Degli Atti ML, et al. Diagnosis and management of pertussis. Cmaj. 2005;172(4):509–515. DOI:10.1503/cmaj.1040766
  • Watanabe M, Nagai M. Whooping cough due to Bordetella parapertussis: an unresolved problem. Expert Rev Anti Infect Ther. 2004;2(3):447–454. Accessed 10 04 2022.
  • CDC [Internet]. Photos of pertussis. Available from: https://www.cdc.gov/pertussis/about/photos.html.
  • Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev. 2005;18(2):326–382. Accessed 10 04 2022.
  • Australian Government, Department of Health [Internet]. Pertussis laboratory case definition (LCD). Available from: https://www1.health.gov.au/internet/main/publishing.nsf/Content/cda-phlncd-pertussis.htm.
  • Wood N, Mclntyre P. Pertussis: review of epidemiology, diagnosis, management and prevention. Paediatr Respir Rev. 2008;9(3):201–211. Accessed 20 07 2022.
  • Kandeil W, Atanasov P, Avramioti D, et al. The burden of pertussis in older adults: what is the role of vaccination? A systematic literature review. Expert Rev Vaccines. 2019;18(5):439–455. DOI:10.1080/14760584.2019.1588727
  • Toubiana J, Azarnoush S, Bouchez V, et al. Bordetella parapertussis bacteremia: clinical expression and bacterial genomics. US: Oxford University Press; 2019. p. ofz122. Accessed 20 07 2022.
  • Lauria AM, Zabbo CP. Pertussis. In: StatPearls. StatPearls Publishing; 2022 https://www.ncbi.nlm.nih.gov/books/NBK519008/. Acccessed 21 07 2022.
  • Decker KB, James TD, Stibitz S, et al. The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA. Microbiology. 2012;158(Pt 7):1665–1676. DOI:10.1099/mic.0.058941-0
  • Jones AM, Boucher PE, Williams CL, et al. Role of BvgA phosphorylation and DNA binding affinity in control of Bvg-mediated phenotypic phase transition in Bordetella pertussis. Mol Microbiol. 2005;58(3):700–713. DOI:10.1111/j.1365-2958.2005.04875.x
  • Cotter PA, Jones AM. Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol. 2003;11(8):367–373. Accessed 20 07 2022.
  • Cummings CA, Bootsma HJ, Relman DA, et al. Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J Bacteriol. 2006;188(5):1775–1785. DOI:10.1128/JB.188.5.1775-1785.2006
  • Bone MA, Wilk AJ, Perault AI, et al. Bordetella PlrSR regulatory system controls BvgAS acitivity and virulence in the lower respiratory tract. Proc Natl Acad Sci, USA. 2017;114(8):E1519–E1527. DOI:10.1073/pnas.1609565114
  • Dupre E, Herrou J, Lensink MF, et al. Virulence regulation with Venus flytrap domains: structure and function of the periplasmic moiety of the sensor-kinase BvgS. PLoS Pathog. 2015;11(3):e1004700. DOI:10.1371/journal.ppat.1004700
  • Herrou J, Bompard C, Wintjens R, et al. Periplasmic domain of the sensor-kinase BvgS reveals a new paradigm for the Venus flytrap mechanisms. Proc Natl Acad Sci, USA. 2010;107(40):17351–17355. DOI:10.1073/pnas.1006267107
  • Melvin JA, Scheller EV, Miller JF, et al. Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol. 2014;12(4):274–288. DOI:10.1038/nrmicro3235
  • Moon K, Bonocora RP, Kim DD, et al. The BvgAS regulon of Bordetella pertussis. Mbio. 2017;8(5):e01526. DOI:10.1128/mBio.01526-17
  • Veal-Carr WL, Stibitz S. Demonstration of differential virulence gene promoter activation in vivo in Bordetella pertussis using RIVET. Mol Microbiol. 2005;55(3):788–798. Accessed 20 07 2022.
  • Stockbauer KE, Fuchslocher B, Miller JF, et al. Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. Mol Microbiol. 2001;39(1):65–78. DOI:10.1046/j.1365-2958.2001.02191.x
  • Henderson IR, Nataro JP, Portnoy DA. Virulence functions of autotransporter proteins. Infect Immun. 2001;69(3):1231–1243.
  • Locht C Molecular aspects of Bordetella pertussis pathogenesis. Int Microbiol. 1999 2(3):137–144. Accessed 08 04 2022.
  • Atakan-Ablay P, Özcengiz E. Rapid purification of Bordetella pertussis fimbria 2, 3 proteins and their immunogenicities. Microbiol Bul. 2007;41(11):11–20. Accessed 08 04 2022.
  • Locht C, Antoine R. The history of pertussis toxin. Toxins (Basel). 2021;13(9):623. Accessed 20 07 2022.
  • Knapp O, Benz R. Membrane activity and channel formation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis in lipid bilayer membranes. Toxins (Basel). 2020;12(3):169. Accessed 08 04 2022.
  • Brookes C, Freire-Martin I, Cavell B, et al. Bordetella pertussis isolates vary in their interactions with human complement components. Emerg Microbes & Infect. 2018;7(1):1–11. DOI:10.1038/s41426-018-0084-3
  • Guiso N. Bordetella pertussis and pertussis vaccines. Clin Infect Dis. 2009;49(10):1565–1569. Accessed 08 04 2022.
  • Hewlett EL, Burns DL, Cotter PA, et al. Pertussis pathogenesis—what we know and what we don’t know. J Infect Dis. 2014;209(7):982–985. DOI:10.1093/infdis/jit639
  • Guiso N, Meade BD, Wirsing von König CH. Pertussis: the first hundred years. Vaccine. 2020;38(5):1271–1276. Accessed 20 07 2022.
  • Ligon BL. Pertussis: an historical review of the research and of the development of whole-cell and acellular vaccines. Semin Pediatr Infect Dis. 1998;9(2):168–178.
  • Kulenkampff M, Schwartzman JS, Wilson J. Neurological complications of pertussis inoculation. Arch Dis Child. 1974;49(1):46–49. Accessed 11 08 2022.
  • Cherry JD. The 112-Year odyssey of pertussis and pertussis vaccines – Mistakes made and implications for the future. J Pediatric Infect Dis Soc. 2019;8(4):334–341. Accessed 20 07 2022.
  • Chitkara AJ, Ferrer MP, Forsyth K, et al. Pertussis vaccination in mixed markets: recommendations from the global pertussis initiative. Int J Infect Dis. 2020;96:482–488. Accessed 08 04 2022.
  • Sato Y, Kimura M, Fukumi H. Development of a pertussis component vaccine in Japan. Lancet. 1984;323(8369):122–126. Accessed 08 04 2022.
  • Waters V, Halperin S. Bordetella pertussis. Mandell, Douglas and bennett’s principles and practice of infectious diseases. Philadelphia: Churchill Livingstone Elsevier; 2010. Accessed 08 04 2022.
  • Edwards KM, Meade BD, Decker MD, et al. Comparison of 13 acellular pertussis vaccines: overview and serologic response. Pediatrics. 1995;96(3):548–557. DOI:10.1542/peds.96.3.548
  • Diavatopoulos DA, Edwards KM. What is wrong with pertussis vaccine immunity? Why immunological memory to pertussis is failing. Cold Spring Harb Perspect Biol. 2017;9(12):a029553. Accessed 20 07 2022.
  • Brummelman J, Mieszko MW, Wanda GHH, et al. Roads to the development of improved pertussis vaccines paved by immunology. Pathog Dis. 2015;73(8):ftv067. DOI:10.1093/femspd/ftv067
  • Peppoloni S, Nencioni A, Tommaso D, et al. Lymphokine secretion and cytotoxic activity of human CD4+ T-cell clones against Bordetella pertussis. Infect Immun. 1991;59(10):3768–3773. DOI:10.1128/iai.59.10.3768-3773.1991
  • Mills KH, Ross PJ, Allen AC, et al. Do we need a new vaccine to control the re-emergence of pertussis? Trends Microbiol. 2014;22(2):49–52. DOI:10.1016/j.tim.2013.11.007
  • Fedele G, Stefanelli P, Spensieri F, et al. Bordetella pertussis -infected human monocyte-derived dendritic cells undergo maturation and induce th1 polarization and interleukin-23 expression. Infect Immun. 2005;73(3):1590–1597. DOI:10.1128/IAI.73.3.1590-1597.2005
  • Warfel JM, Merkel TJ. Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates. Mucosal Immunol. 2013;6(4):787–796.
  • Wilk MM, Misiak A, McManus RM, et al. Lung CD4 tissue-resident memory T cells mediate adaptive immunity induced by previous infection of mice with Bordetella pertussis. J Immunol. 2017;199(1):233–243. DOI:10.4049/jimmunol.1602051
  • Brummelman J, Helm K, Hamstra HJ, et al. Modulation of the CD4(+) T cell response after acellular pertussis vaccination in the presence of TLR4 ligation. Vaccine. 2015;33(12):1483–1491. DOI:10.1016/j.vaccine.2015.01.063
  • Raeven RH, van der Maas L, Tilstra W, et al. Immunoproteomic profiling of Bordetella pertussis outer membrane vesicle vaccine reveals broad and balanced humoral immunogenicity. J Proteome Res. 2015;14(7):2929–2942. DOI:10.1021/acs.jproteome.5b00258
  • da Silva Antunes R, Babor M, Carpenter C, et al. Th1/th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J Clin Invest. 2018;128(9):3853–3865. DOI:10.1172/JCI121309
  • Dewan KK, Linz B, DeRocco SE, et al. Acellular pertussis vaccine components: today and tomorrow. Vaccines (Basel). 2020;8(2):217. DOI:10.3390/vaccines8020217
  • Sugai T, Mori M, Nakazawa M, et al. A CpG-containing oligodeoxynucleotide as an efficient adjuvant counterbalancing the Th1/Th2 immune response in diphtheria-tetanus-pertussis vaccine. Vaccine. 2005;23(46–47):5450–5456. DOI:10.1016/j.vaccine.2004.09.041
  • Misiak A, Leuzzi R, Allen AC, et al. Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine. 2017;35(39):5256–5263. DOI:10.1016/j.vaccine.2017.08.009
  • Boehm DT, Wolf MA, Hall JM, et al. Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from Bordetella pertussis. NPJ Vaccines. 2019;4(1):40. DOI:10.1038/s41541-019-0136-2
  • Locht C. Will we have new pertussis vaccines? Vaccine. 2018;36(6):5460–5469. Accessed 20 07 2022.
  • Vidakovics ML, Paba J, Lamberti CA, et al. Profiling the Bordetella pertussis proteome during iron starvation. J Proteome Res. 2007;6(7):2518–2528. DOI:10.1021/pr060681i
  • Tefon BE, Maass S, Ozcengiz E, et al. A comprehensive analysis of Bordetella pertussis surface proteome and identification of new immunogenic proteins. Vaccine. 2011;29(19):3583–3595. DOI:10.1016/j.vaccine.2011.02.086
  • Alvarez Hayes J, Erben E, Lamberti Y, et al. Bordetella pertussis iron regulated proteins as potential vaccine components. Vaccine. 2013;31(35):3543–3548. DOI:10.1016/j.vaccine.2013.05.072
  • De Gouw D, de Jonge MI, Hermans P, et al. Proteomics-Identified Bvg-activated autotransporters protect against Bordetella pertussis in a mouse model. PLoS One. 2014;9(8):e105011. DOI:10.1371/journal.pone.0105011
  • Yılmaz Ç, Apak A, Özcengiz E, et al. Immunogenicity and protective efficacy of recombinant iron superoxide dismutase protein from Bordetella pertussis in mice models. Microbiol Immunol. 2016;60(11):717–724. DOI:10.1111/1348-0421.12445
  • Marr N, Oliver DC, Laurent V, et al. Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model. Vaccine. 2008;26:4306–4311. Accessed 20 07 2022.
  • Boehm DT, Hall J, Wong TY, et al. Evaluation of adenylate cyclase toxoid antigen in acellular pertussis vaccines by using a Bordetella pertussis challenge model in mice. Infect Immun. 2018;86(10):17–e00857. Accessed 20 07 2022.
  • Mielcarek N, Debrie AS, Raze D, et al. Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. PLoS Pathog. 2006;2(7):e65. DOI:10.1371/journal.ppat.0020065
  • Thorstensson R, Trollfors B, Al-Tawil N, et al. A phase I clinical study of a live attenuated Bordetella pertussis vaccine – BPZE1; a single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male volunteers. PLoS One. 2014;9(1):e83449. DOI:10.1371/journal.pone.0083449
  • ClinicalTrials.gov [Internet]. Gamaleya Research Institute of Epidemiology and Microbiology. Identifier: NCT04036526, a Phase 1/2 clinical trial of a GamLPV, a live intranasal Bordetella pertussis vaccine; 2019 July 29 [cited 2022 August 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT04036526?cond=NCT04036526&draw=2&rank=1.
  • Micoli F, MacLennan CA. Outer membrane vesicle vaccines. Semin Immunol. 2020;50:101433. Accessed 08 04 2022.
  • O’Ryan M, Stoddard J, Toneatto D, et al. A multi-component meningococcal serogroup B vaccine (4cmenb): the clinical development program. Drugs. 2014;74(1):15–30. DOI:10.1007/s40265-013-0155-7
  • Deatherage BL, Cookson BT, Andrews-Polymenis HL. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012;80(6):1948–1957.
  • Dorward DW, Garon CF. DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria. Appl Environ Microbiol. 1990;56(6):1960–1962. Accessed 08 04 2022.
  • Ellen AF, Albers SV, Huibers W, et al. Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles. 2009;13(1):67–79. DOI:10.1007/s00792-008-0199-x
  • Prados-Rosales R, Baena A, Martinez LR, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Investig. 2011;121(4):1471–1483. DOI:10.1172/JCI44261
  • Rivera J, Cordero RJ, Nakouzi AS, et al. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Pnas. 2010;107(44):19002–19007. DOI:10.1073/pnas.1008843107
  • McBroom AJ, Johnson AP, Vemulapalli S, et al. Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol. 2006;188(15):5385–5392. DOI:10.1128/JB.00498-06
  • Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010;74(1):81–94. Accessed 08 04 2022.
  • Bishop DG, Work E. An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Biochemic J. 1965;96(2):567–576.
  • Knox KW, Vesk M, Work E. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J Bacteriol. 1966;92(4):1206–1217.
  • Chatterjee SN, Das J. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. Microbiol. 1967;49(1):1–11. Accessed 08 04 2022.
  • Schwechheimer C, Kuehn MJ. Outer-Membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13(10):605–619. Accessed 08 04 2022.
  • Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17(1):13–24. Accessed 08 04 2022.
  • DeVoe IW, Gilchrist JE. Pili on meningococci from primary cultures of nasopharyngeal carriers and cerebrospinal fluid of patients with acute disease. J Exp Med. 1975;141(2):297–305. Accessed 08 04 2022.
  • Schooling SR, Beveridge TJ. Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol. 2006;188(16):5945–5957. Accessed 06 04 2022.
  • Palsdottir H, Remis JP, Schaudinn C, et al. Three-Dimensional macromolecular organization of cryofixed Myxococcus xanthus biofilms as revealed by electron microscopic tomography. J Bacteriol. 2009;191(7):2077–2082. DOI:10.1128/JB.01333-08
  • Kadurugamuwa JL, Beveridge TJ. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacterial. 1995;177(14):3998–4008. Accessed 08 04 2022.
  • Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(7):3084–3090. DOI:10.1128/AAC.00929-10
  • Fulsundar S, Harms K, Flaten GE, et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl Environ Microbiol. 2014;80(11):3469–3483. DOI:10.1128/AEM.04248-13
  • McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gram‐negative bacteria is a novel envelope stress response. Mol Microbiol. 2007;63(2):545–558. Accessed 20 07 2022.
  • van de Waterbeemd B, Zomer G, van den Ijssel J, et al. Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development. PLoS One. 2013;8(1):e54314. DOI:10.1371/journal.pone.0054314
  • Balhuizen MD, Veldhuizen EJ, Haagsman HP. Outer membrane vesicle induction and isolation for vaccine development. Front Microbiol. 2021;12:79. Accessed 20 07 2022.
  • Soltani MS, Eftekhar F, Noofeli M, et al. Comparison of two different methods for the extraction of outer membrane vesicles from the Bordetella pertussis as a vaccine candidate. Arch Razi Inst. 2021;76(3):411. DOI:10.22092/ARI.2020.342861.1487
  • Lane AG. Appearance of mouse-lethal toxin in liquid cultures of Bordetella pertussis. Appl Microbiol. 1968;16(9):1400–1405. Accessed 08 04 2022.
  • Morse JH, Morse SI. Studies on the ultrastructure of Bordetella pertussis: i. Morphology, origin, and biological activity of structures present in the extracellular fluid of liquid cultures of Bordetella pertussis. J Exp Med. 1970;131(6):1342. Accessed 20 07 2022.
  • Poolman J, Hamstra HJ, Barlow A, et al. Outer membrane vesicles of Bordetella pertussis are protective antigens in the mouse intracerebral challenge model. Proceedings of the Sixth International Symposium on Pertussis 26-28 September 1990 Bethesda, Maryland, USA. 1990:148–156. Accessed 11 08 2022.
  • Hozbor D, Rodriguez ME, Fernandez J, et al. Release of outer membrane vesicles from Bordetella pertussis. Curr Microbiol. 1999;38(5):273–278. DOI:10.1007/PL00006801
  • Donato GM, Goldsmith CS, Paddock CD, et al. Delivery of Bordetella pertussis adenylate cyclase toxin to target cells via outer membrane vesicles. FEBS Lett. 2012;586(4):459–465. DOI:10.1016/j.febslet.2012.01.032
  • Gasperini G, Arato V, Pizza M, et al. Physiopathological roles of spontaneously released outer membrane vesicles of Bordetella pertussis. Future Microbiol. 2017;12(14):1247–1259. DOI:10.2217/fmb-2017-0064
  • Fiocca R, Necchi V, Sommi P, et al. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol. 1999;188(2):220–226. DOI:10.1002/(SICI)1096-9896(199906)188:2<220:AID-PATH307>3.0.CO;2-C
  • Kesty NC, Mason KM, Reedy M, et al. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. J Embo. 2004;23(23):4538–4549. DOI:10.1038/sj.emboj.7600471
  • Chatterjee D, Chaudhuri K. Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells. FEBS Lett. 2011;585(9):1357–1362. Accessed 28 06 2022.
  • Roberts R, Moreno G, Bottero D, et al. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine. 2008;26(36):4639–4646. DOI:10.1016/j.vaccine.2008.07.004
  • Gasperini G, Biagini M, Arato V, et al. Outer membrane vesicles (OMV)-based and proteomics-driven antigen selection identifies novel factors contributing to Bordetella pertussis adhesion to epithelial cells. Mol Cell Proteomics. 2018 2; 17(2): 205–215. 10.1074/mcp.RA117.000045.
  • De Jonge EF, Balhuizen MD, Van Boxtel R, et al. Heat shock enhances outer-membrane vesicle release in Bordetella spp. Crmicr. 2021;2:100009. Accessed 28 06 2022.
  • Raeven RH, Rockx-Brouwer D, Kanojia G, et al. Intranasal immunization with outer membrane vesicle pertussis vaccine confers broad protection through mucosal IgA and Th17 responses. Sci Rep. 2020;10(1):1–11. DOI:10.1038/s41598-020-63998-2
  • Kanojia G, Raeven RH, van der Maas L, et al. Development of a thermostable spray-dried outer membrane vesicle pertussis vaccine for pulmonary immunization. J Control Release. 2018;286:167–178. Accessed 28 04 2022.
  • Loscher C, Donnely S, McBennett S, et al. Proinflammatory cytokines in the adverse systemic and neurologic effects associated with parenteral injection of a whole cell pertussis vaccine. Ann N Y Acad Sci. 1998;856(1 MOLECULAR MEC):274–277. DOI:10.1111/j.1749-6632.1998.tb08337.x
  • Geurtsen J, Vandebriel RJ, Gremmer ER, et al. Consequences of the expression of lipopolysaccharide-modifying enzymes for the efficacy and reactogenicity of whole-cell pertussis vaccines. Microbes Infect. 2007;9(9):1096–1103. DOI:10.1016/j.micinf.2007.04.015
  • Asensio CJ, Gaillard ME, Moreno G, et al. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid a deacylase PagL as a novel acellular vaccine candidate. Vaccine. 2011;29(8):1649–1656. DOI:10.1016/j.vaccine.2010.12.068
  • Gaillard ME, Bottero D, Errea A, et al. Acellular pertussis vaccine based on outer membrane vesicles capable of conferring both long-lasting immunity and protection against different strain genotypes. Vaccine. 2014;32(8):931–937. DOI:10.1016/j.vaccine.2013.12.048
  • Ormazábal M, Bartel E, Gaillard ME, et al. Characterization of the key antigenic components of pertussis vaccine based on outer membrane vesicles. Vaccine. 2014;32(46):6084–6090. DOI:10.1016/j.vaccine.2014.08.084
  • Raeven RH, van Vlies N, Salverda ML, et al. The role of virulence proteins in protection conferred by Bordetella pertussis outer membrane vesicle vaccines. Vaccines (Basel). 2020;8(3):429. DOI:10.3390/vaccines8030429
  • Zurita ME, Wilk MM, Carriquiriborde F, et al. A pertussis outer membrane vesicle-based vaccine induces lung-resident memory CD4 T cells and protection against Bordetella pertussis, including pertactin deficient strains. Front Cell Infect Microbiol. 2019;9:125. Accessed 11 08 2022.
  • Carriquiriborde F, Martin Aispuro P, Ambrosis N, et al. Pertussis vaccine candidate based on outer membrane vesicles derived from biofilm culture. Front Immunol. 2021;12:3740. DOI:10.3389/fimmu.2021.730434
  • Bottero D, Gaillard ME, Zurita ME, et al. Characterization of the immune response induced by pertussis OMVs-based vaccine. Vaccine. 2016;34(28):303–3309. DOI:10.1016/j.vaccine.2016.04.079
  • Raeven RH, Brummelman J, Pennings JL, et al. Bordetella pertussis outer membrane vesicle vaccine confers equal efficacy in mice with milder inflammatory responses compared to a whole-cell vaccine. Sci Rep. 2016;6(1):1–15. DOI:10.1038/srep38240
  • Elizagaray ML, Gomes MTR, Guimaraes ES, et al. Canonical and non-canonical inflammasome activation by outer membrane vesicles derived from Bordetella pertussis. Front Immunol. 2020;11:1879. DOI:10.3389/fimmu.2020.01879

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.