314
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Staphylococcus aureus epidemiology, pathophysiology, clinical manifestations and application of nano-therapeutics as a promising approach to combat methicillin resistant Staphylococcus aureus

, ORCID Icon, , , &

References

  • Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547–569. doi: 10.1080/21505594.2021.1878688
  • Javid F, Taku A, Bhat MA, et al. Molecular typing of Staphylococcus aureus based on coagulase gene. Vet World. 2018 Apr;11(4):423–430. doi: 10.14202/vetworld.2018.423-430
  • Boswihi SS, Udo EE. Methicillin-resistant Staphylococcus aureus: an update on the epidemiology, treatment options and infection control. Curr Med Res Pract. 2018;8(1):18–24. InternetAvailable from: https://www.sciencedirect.com/science/article/pii/S2352081717301708. doi: 10.1016/j.cmrp.2018.01.001
  • Linz MS, Mattappallil A, Finkel D, et al. Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics. 2023;12(3):1–27. doi: 10.3390/antibiotics12030557
  • Kayan T. Staphylococcus aureus Secreted Toxins & Extracellular Enzymes. Physiol Behav. 2017;176(3):139–148. doi: 10.1016/j.physbeh.2017.03.040
  • Obee P, Griffith CJ, Cooper RA, et al. An evaluation of different methods for the recovery of meticillin-resistant Staphylococcus aureus from environmental surfaces. J Hosp Infect. 2007;65(1):35–41. doi: 10.1016/j.jhin.2006.09.010
  • Adhikari RP. Staphylococcal infections: host and pathogenic factors. Vol. 9. Microorganisms. Switzerland: MDPI AG; 2021. doi:10.3390/microorganisms9051080
  • Ivanova N, Gugleva V, Dobreva M, et al. We are IntechOpen, the world ’ s leading publisher of open access books built by scientists, for scientists TOP 1 %. Intech. 2016;i(tourism):13.
  • Missiakas DM, Schneewind O. Growth and laboratory maintenance of Staphylococcus aureus. CP Microbiol. 2013 Feb;28(1):Unit 9C.1. doi: 10.1002/9780471729259.mc09c01s28
  • Reddy PN, Srirama K, Dirisala VR. An update on clinical Burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infect Dis Res Treat. 2017;10:117991611770399. doi: 10.1177/1179916117703999
  • Otto M. Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol. 2010 Apr;5(2):183–195. doi: 10.1586/edm.10.6
  • Luo Z, Yue S, Chen T, et al. Reduced growth of Staphylococcus aureus under high glucose conditions is associated with decreased pentaglycine expression. Front Microbiol. 2020;11:537290. doi: 10.3389/fmicb.2020.537290
  • Guo Y, Song G, Sun M, et al. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10:107. doi: 10.3389/fcimb.2020.00107
  • Shankar P. Book review: tackling drug-resistant infections globally. Arch Pharma Pract. 2016;7(3):110. doi: 10.4103/2045-080X.186181
  • Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, et al. Antibiotic resistance: the challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022 Sep;36(9):e24655. doi: 10.1002/jcla.24655
  • Ahmad-Mansour N, Loubet P, Pouget C, et al. Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. Toxins (Basel). 2021;13(10):1–22. doi: 10.3390/toxins13100677
  • Martínez OF, Cardoso MH, Ribeiro SM, et al. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol. 2019;9(APR). doi: 10.3389/fcimb.2019.00074
  • Kim M-K. Staphylococcus aureus toxins: from their pathogenic roles to anti-virulence therapy using natural products. Biotechnol Bioprocess Eng. 2019;24(3):424–435. InternetAvailable from. doi: 10.1007/s12257-019-0059-9
  • Bennett MR, Thomsen IP. Epidemiological and clinical evidence for the role of toxins in S. aureus human disease. Toxins (Basel). 2020;12(6):1–20. doi: 10.3390/toxins12060408
  • Vlaeminck J, Raafat D, Surmann K, et al. Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins (Basel). 2020;12(11):721. doi: 10.3390/toxins12110721
  • Ford CA, Hurford IM, Cassat JE. Antivirulence strategies for the treatment of Staphylococcus aureus infections: a mini review. Front Microbiol. 2021;11(January):1–10. doi: 10.3389/fmicb.2020.632706
  • Ahmad AL-Fawares RWA O, Abdul F, Salah F, et al. Probiotic therapy: a survey of Middle eastern healthcare providers’ attitudes, ‎Beliefs, and practice patterns. J Appl Pharm Sci. 2023;13(10):1–9. doi: 10.7324/JAPS.2023.143603
  • Gnanamani A, Hariharan P, Paul-Satyaseela M. Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach. Front Staphylococcus Aureus. 2017;4. doi:10.5772/67338
  • Tong SYC, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi: 10.1128/CMR.00134-14
  • Wang H, Hou X, Shen J, et al. Alternative sigma factor B reduces biofilm formation and stress response in milk-derived Staphylococcus aureus. Lwt. 2022;162(October 2021):113515. InternetAvailable from. doi: 10.1016/j.lwt.2022.113515
  • Sharma S, Mohler J, Mahajan SD, et al. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms. 2023;11(6):1614. doi: 10.3390/microorganisms11061614
  • Shoaib M, Aqib AI, Muzammil I, et al. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Front Microbiol. 2023;13(January): doi: 10.3389/fmicb.2022.1067284
  • Amir N, Rossney A, Veale J, et al. Spread of community-acquired meticillin-resistant Staphylococcus aureus skin and soft-tissue infection within a family: implications for antibiotic therapy and prevention. J Med Microbiol. 2010 Apr 1;59(4):489–492. doi: 10.1099/jmm.0.015925-0
  • O’Riordan K, Lee JC. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev. 2004;17(1):218–234. doi: 10.1128/CMR.17.1.218-234.2004
  • Prosperi M, Azarian T, Johnson JA, et al. Unexpected predictors of antibiotic resistance in housekeeping genes of Staphylococcus aureus. ACM-BCB 2019 - Proc 10th ACM Int Conf Bioinformatics, Comput Biol Heal Informatics. 2019;259–268. doi: 10.1145/3307339.3342138
  • Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17(4):203–218. doi: 10.1038/s41579-018-0147-4
  • van Hal SJ, Jensen SO, Vaska VL, et al. Predictors of mortality in staphylococcus aureus bacteremia. Clin Microbiol Rev. 2012;25(2):362–386. doi: 10.1128/CMR.05022-11
  • Hindy J-R, Quintero-Martinez JA, Lee AT, et al. Incidence trends and epidemiology of Staphylococcus aureus bacteremia: a systematic review of population-based studies. Cureus. 2022;14(5): doi: 10.7759/cureus.25460
  • Tsige Y, Tadesse S, G/Eyesus T, et al. Prevalence of methicillin-resistant Staphylococcus aureus and associated risk factors among patients with wound infection at referral hospital, Northeast Ethiopia. J Pathog. 2020;2020:1–7. doi: 10.1155/2020/3168325
  • Loftus MJ, Young-Sharma TEMW, Wati S, et al. Epidemiology, antimicrobial resistance and outcomes of Staphylococcus aureus bacteraemia in a tertiary hospital in Fiji: a prospective cohort study. Lancet Reg Health West Pac InternetAvailable from. 2022;22:100438. doi: 10.1016/j.lanwpc.2022.100438
  • Tabaja H, Hindy JR, Kanj SS. EPIDEMIOLOGY OF METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS IN ARAB COUNTRIES OF THE MIDDLE EAST AND NORTH AFRICAN REGION. Mediterr J Hematol Infect Dis. 2021;13(1):e2021050. doi: 10.4084/MJHID.2021.050
  • Jarajreh D, Aqel A, Alzoubi H, et al. Prevalence of inducible clindamycin resistance in methicillin-resistant Staphylococcus aureus: the first study in Jordan. J Infect Dev Ctries. 2017;11(4):350–354. doi: 10.3855/jidc.8316
  • Moyo SJ, Aboud S, Blomberg B, et al. High nasal carriage of methicillin-resistant Staphylococcus aureus among healthy Tanzanian under-5 children. Microb Drug Resist. 2014;20(1):82–88. doi: 10.1089/mdr.2013.0016
  • Harbarth S, François P, Schrenzel J, et al. Community-associated methicillin-resistant Staphylococcus aureus , Switzerland. Emerg Infect Dis. 2005;11(6):962–965. doi: 10.3201/eid1106.041308
  • Belbase A, Pant ND, Nepal K, et al. Antibiotic resistance and biofilm production among the strains of Staphylococcus aureus isolated from pus/wound swab samples in a tertiary care hospital in Nepal. Ann Clin Microbiol Antimicrob. 2017;16(1):1–5. doi: 10.1186/s12941-017-0194-0
  • Islam SI, Moore C. Prevalence of methicillin-resistant Staphyloccocus aureus and associated risk factors on admission to a specialist care eye hospital. Ann Saudi Med. 2002;22(3–4):153–157. doi: 10.5144/0256-4947.2002.153
  • Aqel AA, Ibrahim A, Shehabi A. Rare occurrence of mupirocin resistance among clinical Staphylococcus isolates in Jordan. Acta Microbiol Immunol Hung. 2012;59(2):239–247. doi: 10.1556/amicr.59.2012.2.8
  • Hasanpour AH, Sepidarkish M, Mollalo A, et al. The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2023;12(1):4. InternetAvailable from. doi: 10.1186/s13756-023-01210-6
  • Di Gregorio S, Vielma J, Haim MS, et al. Genomic epidemiology of Staphylococcus aureus isolated from bloodstream infections in South America during 2019 supports regional surveillance. Microb Genomics. 2023;9(5): doi: 10.1099/mgen.0.001020
  • Abdolmaleki Z, Mashak Z, Safarpoor Dehkordi F. Phenotypic and genotypic characterization of antibiotic resistance in the methicillin-resistant Staphylococcus aureus strains isolated from hospital cockroaches. Antimicrob Resist Infect Control. 2019;8(1):1–14. doi: 10.1186/s13756-019-0505-7
  • Vinacke HM, Vinacke HM. International journal. Pacific Affairs. 1946;19(2):222. doi: 10.2307/2752507
  • Pal M, Berhanu G, Megersa L, et al. Epidemiology, pathogenicity, animal infections, antibiotic resistance, public health significance, and economic impact of Staphylococcus aureus: a comprehensive review. Am J Public Heal Res. 2020;8(1):14–21.
  • Hennekinne JA, De Buyser ML, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev. 2012;36(4):815–836. doi: 10.1111/j.1574-6976.2011.00311.x
  • Akineden O, Hassan AA, Schneider E, et al. Enterotoxigenic properties of Staphylococcus aureus isolated from goats’ milk cheese. International Journal Of Food Microbiology. 2008;124(2):211–216. doi: 10.1016/j.ijfoodmicro.2008.03.027
  • Leung AKC, Barankin B, Leong KF. Staphylococcal-scalded skin syndrome: evaluation, diagnosis, and management. World J Pediatr. 2018;14(2):116–120. doi: 10.1007/s12519-018-0150-x
  • Brazel M, Desai A, Are A, et al. Staphylococcal scalded skin syndrome and bullous impetigo. Medicina. 2021;57(11):1157. doi: 10.3390/medicina57111157
  • Handler MZ, Schwartz RA. Staphylococcal scalded skin syndrome: diagnosis and management in children and adults. J Eur Acad Dermatol Venereol. 2014;28(11):1418–1423. doi: 10.1111/jdv.12541
  • Tsujimoto M, Makiguchi T, Nakamura H, et al. Staphylococcal scalded skin syndrome caused by burn wound infection in an infant: a case report. Burns Open. 2018;2(3):139–143. doi: 10.1016/j.burnso.2018.05.003
  • Poolman JT, Anderson AS. Escherichia coli and Staphylococcus aureus: leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations. Expert Rev Vaccines. 2018;17(7):607–618. doi: 10.1080/14760584.2018.1488590
  • Nandhini P, Kumar P, Mickymaray S, et al. Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: a review. Antibiotics. 2022;11(5):1–21. doi: 10.3390/antibiotics11050606
  • Guaraná M, Nucci M, Nouér SA. EPIDEMIOLOGY, PREDISPOSING FACTORS and OUTCOME of STAPHYLOCOCCUS AUREUS BACTEREMIA in NEUTROPENIC PATIENTS. Hematol Transfus Cell Ther. 2022;44:S70–1. InternetAvailable from: https://www.sciencedirect.com/science/article/pii/S2531137922002334
  • Nappi F, Singh SSA. Molecular pathways in Staphylococcus aureus endocarditis: a systematic review. Int. J. Mol. Sci. 2023;24(13):11068 doi: 10.3390/ijms241311068
  • Liesenborghs L, Meyers S, Lox M, et al. Staphylococcus aureus endocarditis: distinct mechanisms of bacterial adhesion to damaged and inflamed heart valves. Eur Heart J. 2019;40(39):3248–3259. doi: 10.1093/eurheartj/ehz175
  • Peña-Moreno A, Torres-Soblechero L, López-Blázquez M, et al. Fatal Staphylococcus aureus endocarditis misdiagnosed as multisystem inflammatory syndrome in children. Pediatr Infect Dis J. 2022;41(2):e58–e59. doi: 10.1097/INF.0000000000003417
  • Oryan A, Alidadi S, Moshiri A, et al. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014 Mar;9(1):18. doi: 10.1186/1749-799X-9-18
  • Calhoun JH, Manring MM, Shirtliff M. Osteomyelitis of the long bones. Semin Plast Surg. 2009 May;23(2):059–072. doi: 10.1055/s-0029-1214158
  • Gillet Y, Tristan A, Rasigade JP, et al. Prognostic factors of severe community-acquired staphylococcal pneumonia in France. Eur Respir J. 2021;58(5):1–13. InternetAvailable from. doi: 10.1183/13993003.04445-2020
  • Cone S, Mistretta V, Lambert N, et al. Community-acquired Staphylococcus aureus pneumonia. Revue Medicale de Liege Belgium. 2021;76:595–597.
  • Kulkarni D, Wang X, Sharland E, et al. The global burden of hospitalisation due to pneumonia caused by Staphylococcus aureus in the under-5 years children: a systematic review and meta-analysis. EClinicalMedicine. 2022 Feb;44:101267. doi: 10.1016/j.eclinm.2021.101267
  • Vraa EP. Atypical presentation of sepsis from community-acquired Staphylococcus aureus pneumonia in a previously healthy 47-year-old male: case report. J Emerg Crit Care Med. 2021;5:1–5. doi: 10.21037/jeccm-21-1
  • Clark SB, Hicks MA. Staphylococcal Pneumonia. Treasure Island (FL). 2023.
  • Gillet Y, Issartel B, Vanhems P, et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet (London, England). 2002 Mar;359(9308):753–759. doi: 10.1016/S0140-6736(02)07877-7
  • Mandell LA, Wunderink R. Methicillin-resistant Staphylococcus aureus and community-acquired pneumonia: an evolving relationship. Clin Infect Dis. 54(8): InternetAvailable from:1134–1136. 2012 Apr 15. doi: 10.1093/cid/cis045
  • Wang Y, Sibaii F, Lee K, et al. NOTE: this preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1. medRxiv. 2021;1(165):1–13.
  • Zhou Z, Charlesworth J, Achtman M. Accurate reconstruction of bacterial pan- and core genomes with PEPPAN. Genome Res. 2020 Nov;30(11):1667–1679. doi: 10.1101/gr.260828.120
  • Seder N, Rayyan WA, Al-Fawares O, et al. Pseudomonas aeruginosa virulence factors and Antivirulence mechanisms to combat drug resistance. A Systematic Review. 2022;56(December):1–23.
  • Kläui AJ, Boss R, Graber HU, et al. Characterization and comparative analysis of the Staphylococcus aureus genomic island vSaβ: an in silico approach. J Bacteriol. 2019 Nov;201(22). doi: 10.1128/JB.00777-18
  • Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol. 2023;14:14. doi: 10.3389/fmicb.2023.1204428
  • Cervera-Alamar M, Guzmán-Markevitch K, Žiemytė M, et al. Mobilisation mechanism of pathogenicity islands by endogenous phages in Staphylococcus aureus clinical strains. Sci Rep. 2018;8(1):1–13. doi: 10.1038/s41598-018-34918-2
  • Kong C, Neoh H, Nathan S. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Vol. 8. Toxins: Multidisciplinary Digital Publishing Institute (MDPI); 2016.
  • Missiakas DM, Schneewind O. Growth and laboratory maintenance of Staphylococcus aureus. Chapter 9. Curr Protoc Microbiol . 2013. p.Unit 9C.1.
  • Chen Q, Zhao G, Yang W. Investigation into the prevalence of enterotoxin genes and genetic background of Staphylococcus aureus isolates from retain foods in Hangzhou, China. BMC Microbiol. 2023;23(1):1–19. doi: 10.1186/s12866-023-03027-0
  • Bernardos A, Piacenza E, Sancenón F, et al. Mesoporous silica-based materials with bactericidal properties. Small. 2019;15(24):1–34. doi: 10.1002/smll.201900669
  • Choudhary KS, Mih N, Monk J, et al. The Staphylococcus aureus two-component system AgrAC displays four distinct genomic arrangements that delineate genomic virulence factor signatures. Front Microbiol. 2018;9:1082. doi: 10.3389/fmicb.2018.01082
  • Joo HS, Chatterjee SS, Villaruz AE, et al. Mechanism of gene regulation by a staphylococcus aureus toxin. MBio. 2016;7(5):2016–2018. doi: 10.1128/mBio.01579-16
  • Jenul C, Horswill AR, Fischetti VA, et al. Regulation of Staphylococcus aureus Virulence. Microbiol Spectr. 2019 Apr;7(2). doi: 10.1128/microbiolspec.GPP3-0031-2018
  • Abdelnour A, Arvidson S, Bremell T, et al. The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect Immun. 1993;61(9):3879–3885. doi: 10.1128/iai.61.9.3879-3885.1993
  • Cheung GYC, Wang R, Khan BA, et al. Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun. 2011;79(5):1927–1935. doi: 10.1128/IAI.00046-11
  • Al AA, Alsulami J, Aubee JI, et al. Staphylococcus aureus SigS induces expression of a regulatory protein pair that modulate its mRNA stability J. Bacteriol. 2022;205:e00392–22 doi: 10.1128/jb.00392-22
  • Cheung AL, Schmidt K, Bateman B, et al. SarS, a SarA homolog repressible by agr, is an activator of protein a synthesis in Staphylococcus aureus. Infect Immun. 2001 Apr;69(4):2448–2455. doi: 10.1128/IAI.69.4.2448-2455.2001
  • Tiwari N, López-Redondo M, Miguel-Romero L, et al. The SrrAB two-component system regulates Staphylococcus aureus pathogenicity through redox sensitive cysteines. Proc Natl Acad Sci. 2020;117(20):10989–10999. doi: 10.1073/pnas.1921307117
  • Balasubramanian D, Harper L, Shopsin B, et al. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis. 2017 Feb 1;75(1): ftx005. InternetAvailable from. 10.1093/femspd/ftx005.
  • Johnson M, Sengupta M, Purves J, et al. Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus. Int J Med Microbiol. 2011 Jan 31;301(1):44–52. doi: 10.1016/j.ijmm.2010.05.003
  • Kinkel TL, Roux CM, Dunman PM, et al. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. MBio. 2013;4(6):1–9. doi: 10.1128/mBio.00696-13
  • Gruber TM, Gross CA. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol. 2003;57(1):441–466. doi: 10.1146/annurev.micro.57.030502.090913
  • Shaw LN, Lindholm C, Prajsnar TK, et al. Identification and characterization of σS, a novel component of the Staphylococcus aureus stress and virulence responses. PLoS One. 2008 Dec 3;3(12): e3844. InternetAvailable from. 10.1371/journal.pone.0003844.
  • Bischoff M, Dunman P, Kormanec J, et al. Microarray-based analysis of the Staphylococcus aureus σB regulon. J Bacteriol. 2004;186(13):4085–4099. doi: 10.1128/JB.186.13.4085-4099.2004
  • Sinha D, Sinha D, Dutta A, et al. Alternative sigma factor of Staphylococcus aureus interacts with the cognate antisigma factor primarily using its domain 3. Biochemistry. 2021;60(2):135–151. doi: 10.1021/acs.biochem.0c00881
  • Wójcik-Bojek U, Różalska B, Sadowska B. Staphylococcus aureus—A known opponent against host defense mechanisms and vaccine development—do we still have a chance to win? Int J Mol Sci. 2022;23(2):948. doi: 10.3390/ijms23020948
  • Flannagan RS, Heit B, Heinrichs DE. Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens. 2015;4(4):826–868. InternetAvailable from. doi: 10.3390/pathogens4040826
  • Shettigar K, Murali TS. Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. InternetAvailable from Eur J Clin Microbiol Infect Dis. 2020;39(12):2235–2246. doi: 10.1007/s10096-020-03984-8
  • Al-Bakri AG, Al-Hadithi H, Kasabri V, et al. The epidemiology and molecular characterization of methicillin-resistant staphylococci sampled from a healthy Jordanian population. Epidemiol Infect. 2013;141(11):2384–2391. doi: 10.1017/S0950268813000010
  • Mansour Albalbaki1 M. O’la AL-Fawares1*, Walid Aburayyan1, Nesrin Seder2 OMA-S, Lamya AL-Tahrawe3 MNS. The correlation of gene mutation of coagulopathy cascade with elevated D-dimer levels in COVID-19 patients. J Appl Pharm Sci. 2024;14(1).
  • Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, et al. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci. 2022;23(15):8088. doi: 10.3390/ijms23158088
  • Durand G, Bes M, Meugnier H, et al. Erratum: detection of new methicillin-resistant Staphylococcus aureus clones containing the toxic shock syndrome toxin 1 gene responsible for hospital- and community-acquired infections in France (journal of clinical Microbiology (2006) 44, 3 (847-853)). J Clin Microbiol. 2006;44(8):3053. doi: 10.1128/JCM.00871-06
  • Silversides JA, Lappin E, Ferguson AJ. Staphylococcal toxic shock syndrome: mechanisms and management. Curr Infect Dis Rep. 2010;12(5):392–400. doi: 10.1007/s11908-010-0119-y
  • Mitevska E, Wong B, Surewaard BGJ, et al. The prevalence, risk, and management of methicillin-resistant Staphylococcus aureus infection in diverse populations across Canada: a systematic review. Pathogens. 2021;10(4):393. doi: 10.3390/pathogens10040393
  • AL-Fawares1* O, Al-Khresieh1 RO. Walid Aburayyan1, Nesrin Seder2, Hala I al-Daghistani3, Nasser El-Banna1 and EMA-T. Comparison of preservation enrichment media for long storage duration of Campylobacter jejuni §. Korean J Microbiol. 2023;59(3):192–196.
  • Al-Khreshieh RO, Al-Fawares O, Em A. Campylobacter jejuni infections: epidemiology, pathophysiology, clinical manifestations and management. J Biomed Res Environ Sci. 2023;4(2):258–269. InternetAvailable from. doi: 10.37871/jbres1670
  • Brawley DN, Sauer DB, Li J, et al. Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus. Nat Chem Biol. 2022;18(7):706–712. doi: 10.1038/s41589-022-00994-9
  • Lade H, Joo HS, Kim JS. Molecular Basis of Non-β-Lactam Antibiotics Resistance in Staphylococcus aureus. Antibiotics. 2022;11(10):1–28. doi: 10.3390/antibiotics11101378
  • Bitrus AA, Zunita Z, Bejo SK, et al. In vitro transfer of methicillin resistance determinants mecA from methicillin resistant Staphylococcus aureus (MRSA) to methicillin susceptible Staphylococcus aureus (MSSA). BMC Microbiol. 2017;17(1):1–10. doi: 10.1186/s12866-017-0994-6
  • de Smalen AW, Ghorab H, Abd El Ghany M, et al. Refugees and antimicrobial resistance: a systematic review. Travel Med Infect Dis. 2017;15:23–28. doi: 10.1016/j.tmaid.2016.12.001
  • Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci. 2010 Sep;67(18):3057–3071. doi: 10.1007/s00018-010-0389-4
  • Jian Z, Zeng L, Xu T, et al. Antibiotic resistance genes in bacteria: occurrence, spread, and control. J Basic Microbiol. 2021;61(12):1049–1070. doi: 10.1002/jobm.202100201
  • Rasheed NA, Hussein NR. Staphylococcus aureus: An overview of discovery, characteristics, epidemiology, virulence factors and antimicrobial sensitivity. Eur J Mol Clin Med. 2021;8(03):1160–1183.
  • Conly JM, Johnston BL. VISA, hetero-VISA and VRSA: the end of the vancomycin era? Can J Infect Dis. 2002;13(5):282–284. doi: 10.1155/2002/245109
  • Shariati A, Dadashi M, Moghadam MT, et al. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep. 2020;10(1):1–16. InternetAvailable from. doi: 10.1038/s41598-020-69058-z
  • Gomez-Lus ML, Aguilar L, Martin M, et al. Intracellular and extracellular killing of a penicillin-resistant, serotype-9 strain of streptococcus pneumoniae by polymorphonuclear leucocytes in the presence of sub-inhibitory concentrations of clavulanic acid. J Antimicrob Chemother. 1997;40(1):142–144. doi: 10.1093/jac/40.1.142
  • Goldrick B. First reported case of VRSA in the United States: an alarming development in microbial resistance. AJN Am J Nurs. 2002;102(11):17. doi: 10.1097/00000446-200211000-00015
  • Crespo-Piazuelo D, Lawlor PG. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation. Ir Vet J. 2021;74(1):1–12. doi: 10.1186/s13620-021-00200-7
  • Khairullah AR, Ramandinianto SC, Effendi MH. A review of Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) on Bovine Mastitis. Syst Rev Pharm. 2020;11(7):172–183.
  • Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clinical Microbiology Reviews. 2018;31(4):1–103. doi: 10.1128/CMR.00020-18
  • Tu J, PM G. Evolutionary GEM: the evolution of methicillin-resistant Staphylococcus aureus. WURJ: HNS. 2017;8(1):8–10. doi: 10.5206/wurjhns.2017-18.22
  • Elnasser ZA, Obeidat HM, Bani-Salem ME, et al. Is methicillin-resistant Staphylococcus aureus a common pathogen in ventilation-associated pneumonia?: the experience of a tertiary teaching hospital in Jordan. Med (United States). 2021;100(20):E26069. doi: 10.1097/MD.0000000000026069
  • Hulla JE, Sahu SC, AW H. Nanotechnology: history and future. Hum Exp Toxicol. 2015;34(12):1318–1321. doi: 10.1177/0960327115603588
  • Singh S, Numan A, Somaily HH, et al. Nano-enabled strategies to combat methicillin-resistant Staphylococcus aureus. Mater Sci Eng C. 2021;129(August):112384. doi: 10.1016/j.msec.2021.112384
  • Berk DR, Bayliss SJ. MRSA, staphylococcal scalded skin syndrome, and other cutaneous bacterial emergencies. Pediatr Ann. 2010;39(10):627–633. doi: 10.3928/00904481-20100922-02
  • Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. InternetAvailable from J Nanobiotechnology. 2022;20(1):262. doi: 10.1186/s12951-022-01477-8
  • Miller S. Nanoparticles: properties and applications. ChemXpress. 2021;13(3):143.
  • Kiio TM, Park S. Physical properties of nanoparticles do matter. J Pharm Investig. 2021;51(1):35–51. InternetAvailable from. doi: 10.1007/s40005-020-00504-w
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–931. InternetAvailable from. doi: 10.1016/j.arabjc.2017.05.011
  • Oake A, Bhatt P, Pathak Y. Understanding surface characteristics of nanoparticles. In. 2019;1–17.
  • Gisbert-Garzarán M, Vallet-Regí M. Nanoparticles for bio-medical applications. Nanomaterials. 2022;12(7):10–12. doi: 10.3390/nano12071189
  • Patil MD, Dhas SD, Moholkar AV. Green synthesis of nanocomposites. IGI Global; 2021. p. 77–100. doi: 10.4018/978-1-7998-8936-6.ch004
  • Khan I, Saeed K, Khan I, et al. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12(7):908–931. doi: 10.1016/j.arabjc.2017.05.011
  • Kanwal A, Bhutta ZA, Ashar A, et al. Antimicrobial applications of nanoparticles. In: Garg R, Garg R, and Eddy N, editors. Handbook of research on green synthesis and applications of nanomaterials. IGI Global. 2022;269–288.
  • Hoque Apu E, Nafiujjaman M, Sandeep S, et al. Biomedical applications of multifunctional magnetoelectric nanoparticles. Mater Chem Front. 2022;6(11):1368–1390. doi: 10.1039/D2QM00093H InternetAvailable from.
  • Arcos D. Nanomaterials in Biomedicine 2022. IJMS. 2023;24(10):9026. Switzerland. doi: 10.3390/ijms24109026
  • Schneider-Futschik EK, Reyes-Ortega F. Advantages and disadvantages of using magnetic nanoparticles for the treatment of complicated ocular disorders. Pharmaceutics. 2021;13(8):1–16. doi: 10.3390/pharmaceutics13081157
  • Joseph TM, Kar Mahapatra D, Esmaeili A, et al. Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials. 2023 Jan;13(3):574. doi: 10.3390/nano13030574
  • Tedla N, Ruiz J, Mody V. Synthesis, Pharmacokinetics, and Toxicity of Nano-Drug Carriers. In: Shah N, editor. Nanocarriers: Drug Delivery System. Singapore: Springer; 2021. doi: 10.1007/978-981-33-4497-6_3
  • Shukla AK. Nanoparticles in Medicine. Nanoparticles Med. 2019;10(8):1–220.
  • Martínez-Carmona M, Gun’ko YK, Vallet-Regí M. Mesoporous silica materials as drug delivery: “the nightmare” of bacterial infection. Pharmaceutics. 2018;10(4):1–29. doi: 10.3390/pharmaceutics10040279
  • Baazaoui N, Sghaier-Hammami B, Hammami S, et al. A handbook guide to better use of nanoparticles in plants. Commun Soil Sci Plant Anal. 2021 Jan 7;52(4):287–321. doi: 10.1080/00103624.2020.1836198
  • Maity D, Sahoo SR, Saha S. Synthesis and characterization of nanomaterials for electrochemical sensors. ACS Symp Ser. 2023;1437:193–222.
  • Pawar S, Takke A. Regulatory aspects, types and bioapplications of metallic nanoparticles: a review. Curr Drug Deliv. 2023;20(7):857–883. doi: 10.2174/1567201819666220817110025
  • Haroon Anwar S. A brief review on nanoparticles: types of platforms, biological synthesis and applications. Res Rev J Mat Sci. 2018;6(02):109–116. doi: 10.4172/2321-6212.1000222
  • Akbarzadeh H, Mehrjouei E, Abbaspour M, et al. Thermal behavior of different types of Au–pt–pd nanoparticles: dumbbell-like, three-shell, core-shell, and random-alloy. Mater Chem Phys. 2023 Oct 1;294:126955. doi: 10.1016/j.matchemphys.2022.126955
  • Naskar A, Kim KS. Nanomaterials as delivery vehicles and components of new strategies to combat bacterial infections: advantages and limitations. Microorganisms. 2019;7(9):356. doi: 10.3390/microorganisms7090356
  • Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. Exploration. 2023;3(1):20210117. doi: 10.1002/EXP.20210117
  • Natsheh IY, Elkhader MT, Al-Bakheit AA, et al. Inhibition of Acinetobacterbaumannii biofilm formation using different treatments of silica nanoparticles. Antibiotics. 2023;12(9):1365. doi: 10.3390/antibiotics12091365
  • Zhang Q, Ma X, Zhao X. Hybrid bacteria system with nanomaterials for tumor therapy. Adv NanoBiomed Res. 2023;3(7):2300003. doi: 10.1002/anbr.202300003
  • Liu H, Jiang Y, Wang Z, et al. Nanomaterials as carriers to improve the photodynamic antibacterial therapy. Front Chem. 2022;10(November):1–8. doi: 10.3389/fchem.2022.1044627
  • Vasilev K. Antibacterial applications of nanomaterials. Nanomaterials. 2023;13(9):1530. InternetAvailable from. doi: 10.3390/nano13091530
  • Bai X, Yang Y, Zheng W, et al. Synergistic photothermal antibacterial therapy enabled by multifunctional nanomaterials: progress and perspectives. Mater Chem Front. 2023;7(3):355–380. doi: 10.1039/D2QM01141G InternetAvailable from.
  • Vallet-Regí M, Schüth F, Lozano D, et al. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev. 2022;51(13):5365–5451. doi: 10.1039/D1CS00659B
  • Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv. 2019;16(3):219–237. doi: 10.1080/17425247.2019.1575806
  • Yuan J, Wu S, Duan N, et al. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta. 2014;127:163–168. doi: 10.1016/j.talanta.2014.04.013
  • Karaman DŞ, Pamukçu A, Karakaplan MB, et al. Recent advances in the use of mesoporous silica nanoparticles for the diagnosis of bacterial infections. Int J Nanomedicine. 2021;16:6575–6591. doi: 10.2147/IJN.S273062
  • Miramoth NS, Di Meo C, Zouhiri F, et al. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano. 2012;6(5):3820–3831. doi: 10.1021/nn204928v
  • Sahli C, Moya SE, Lomas JS, et al. Recent advances in nanotechnology for eradicating bacterial biofilm. Theranostics. 2022;12(5):2383–2405. doi: 10.7150/thno.67296
  • Cheow WS, Chang MW, Hadinoto K. Antibacterial efficacy of inhalable antibiotic-encapsulated biodegradable polymeric nanoparticles against E. coli biofilm cells. J Biomed Nanotechnol. 2010;6(4):391–403. doi: 10.1166/jbn.2010.1116
  • Ye L, Cao Z, Liu X, et al. Noble metal-based nanomaterials as antibacterial agents. J Alloys Compd InternetAvailable from: https://www.sciencedirect.com/science/article/pii/S0925838822004820. 2022;904:164091. doi: 10.1016/j.jallcom.2022.164091
  • Awad M, Thomas N, Barnes TJ, et al. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release Off J Control Release Soc. 2022 Jun;346:300–316.
  • Chen Y, Gao Y, Chen Y, et al. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release Off J Control Release Soc. 2020 Dec;328:251–262.
  • Edrisi F, Baheiraei N, Razavi M, et al. Potential of graphene-based nanomaterials for cardiac tissue engineering. J Mater Chem B. 2023;11(31):7280–7299. InternetAvailable from. doi: 10.1039/D3TB00654A
  • Gungordu Er S, Edirisinghe M, Tabish TA. Graphene-based nanocomposites as antibacterial, antiviral and antifungal agents. Adv Healthc Mater. 2023;12(6):1–20. doi: 10.1002/adhm.202201523
  • Chidre P, Chavan A, Mallikarjunaiah HN, et al. Nanomaterials: Potential Broad Spectrum Antimicrobial Agents [Internet]. CNM. 2023;8(4):319–327. Available from: http://www.eurekaselect.com/article/128256
  • Wang Y, Li J, Li X, et al. Graphene-based nanomaterials for cancer therapy and anti-infections. Bioact Mater. 2022;14:335–349. InternetAvailable from: https://www.sciencedirect.com/science/article/pii/S2452199X22000597
  • Zhou H, Zou F, Koh K, et al. Antibacterial activity of graphene-based nanomaterials. Adv Exp Med Biol. 2022;1351:233–250.
  • Marković ZM, Kepić DP, Matijašević DM, et al. Ambient light induced antibacterial action of curcumin/graphene nanomesh hybrids. RSC Adv. 2017;7(57):36081–36092. doi: 10.1039/C7RA05027E
  • Zhou X, Hao Y, Yaxin L, et al. MXenes: An emergent materials for packaging platforms and looking beyond. Nano Select. 2022;3(7):1123–1147. doi: 10.1002/nano.202200023
  • Yaragalla S, Bhavitha KB, Athanassiou A. A review on graphene based materials and their antimicrobial properties. Coatings. 2021;11(10):1–18. doi: 10.3390/coatings11101197
  • Dwivedi N, Dhand C, Kumar P, et al. Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics. Mater Adv. 2021;2(9):2892–2905. doi: 10.1039/D1MA00003A
  • Amara U, Hussain I, Ahmad M, et al. 2D MXene‐Based Biosensing: A Review. Small. 2022;19(2). Nov 1. doi: 10.1002/smll.202205249
  • Rizi KS. Mxene nanosheets as a novel nanomaterial with antimicrobial applications: a literature review. J Mol Struct. 2022;1262:132958. InternetAvailable from: https://www.sciencedirect.com/science/article/pii/S0022286022006275
  • Li H, Fan R, Zou B, et al. Roles of MXenes in biomedical applications: recent developments and prospects. J Nanobiotechnology. 2023;21(1):1–39. InternetAvailable from. doi: 10.1186/s12951-023-01809-2
  • Xu Z, Zhang Y, Liu M, et al. Two-dimensional titanium carbide MXene produced by ternary cations intercalation via structural control with angstrom-level precision. iScience. 2022;25(12):105562. InternetAvailable from: https://www.sciencedirect.com/science/article/pii/S258900422201834X
  • Rosenkranz A, Righi MC, Sumant AV, et al. Perspectives of 2D MXene tribology. Adv Mater. 2023;35(5). doi: 10.1002/adma.202207757
  • Ramezani Farani M, Nourmohammadi Khiarak B, Tao R, et al. 2D MXene nanocomposites: electrochemical and biomedical applications. Environ Sci Nano. 2022 Jan 1;9(11):4038–4068. doi: 10.1039/D2EN00527A
  • Marchwiany ME, Birowska M, Popielski M, et al. Surface-related features responsible for cytotoxic behavior of mxenes layered materials predicted with machine learning approach. Materials. 2020;13(14):1–17. doi: 10.3390/ma13143083
  • Lim GP, Soon CF, Ma NL, et al. Cytotoxicity of MXene-based nanomaterials for biomedical applications: a mini review. Environ Res InternetAvailable from. 2021;201:111592. doi: 10.1016/j.envres.2021.111592
  • Iravani S, Varma RS. Smart MXene quantum dot-based nanosystems for biomedical applications. Nanomaterials. 2022;12(7):1–16. doi: 10.3390/nano12071200
  • Cheah YJ, Buyong MR, Mohd Yunus MH. Wound healing with electrical stimulation technologies: a review. Polymers. 2021;13(21):1–21. doi: 10.3390/polym13213790
  • Jang JH, Lee EJ. Influence of MXene particles with a stacked-lamellar structure on osteogenic differentiation of human mesenchymal stem cells. Materials. 2021;14(16):4453. doi: 10.3390/ma14164453
  • Qiang M, Wu J, Zhang H, et al. Ag/cu-chitosan composite improves laundry hygiene and reduces silver emission in washing machines. Polymers. 2023;15(3):695. doi: 10.3390/polym15030695
  • Li Q, Wang S, Jin X, et al. The application of polysaccharides and their derivatives in pigment, barrier, and functional paper coatings. Polymers. 2020;12(8):1837. doi: 10.3390/polym12081837
  • Hadidi N, Mohebbi M. Anti-infective and toxicity properties of carbon based materials: graphene and functionalized carbon nanotubes. Microorganisms. 2022;10(12):2439. doi: 10.3390/microorganisms10122439
  • Smirnova VV, Chausov DN, Serov DA, et al. A novel biodegradable composite polymer material based on plga and silver oxide nanoparticles with unique physicochemical properties and biocompatibility with mammalian cells. Materials. 2021;14(22):6915. doi: 10.3390/ma14226915
  • Mizwari Z, Oladipo A, Yilmaz E. Chitosan/Metal oxide nanocomposites: synthesis, characterization, and antibacterial activity. Int J Polym Mater. 2021 Feb 22;70(6):383–391. doi: 10.1080/00914037.2020.1725753
  • Cai J, Liu R. Introduction to antibacterial biomaterials. Biomater Sci. 2020;8(24):6812–6813. InternetAvailable from. doi: 10.1039/D0BM90100H
  • Shahbazi Y, Shavisi N. Current advancements in applications of chitosan based nano-metal oxides as food preservative materials. Nanomed Res J. 2019;4(3):122–129. doi:10.22034/NMRJ.2019.03.001
  • Shahbazi Y, Shavisi N. Current advancements in applications of chitosan based nano-metal oxides as food preservative materials. Nanomedicine Res J. 2019;4(3):122–129. InternetAvailable from. http://www.nanomedicine-rj.com/article_36898.html
  • Lu MM, Wang QJ, Chang ZM, et al. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles. Int J Nanomedicine. 2017;12:3577–3589. doi: 10.2147/IJN.S133846
  • Narayan R, Nayak UY, Raichur AM, et al. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3):1–49. doi: 10.3390/pharmaceutics10030118
  • Colilla M, Vallet-Regí M. Targeted stimuli-responsive mesoporous silica nanoparticles for bacterial infection treatment. Int J Mol Sci. 2020;21(22):8605–8632. doi: 10.3390/ijms21228605
  • Borodina T, Kostyushev D, Zamyatnin AA, et al. Nanomedicine for treating diabetic retinopathy vascular degeneration. IJTM. 2021;1(3):306–322. doi: 10.3390/ijtm1030018
  • Grunberger JW, Ghandehari H. Layer-by-layer Hollow Mesoporous silica nanoparticles with tunable degradation profile. Pharmaceutics. 2023;15(3):832. doi: 10.3390/pharmaceutics15030832
  • Sharma SK, Sharma AR, Pamidimarri SDVN, et al. Bacterial compatibility/toxicity of biogenic silica (B-SiO2) nanoparticles synthesized from biomass rice husk ash. Nanomaterials. 2019;9(10):1–10. doi: 10.3390/nano9101440
  • Kang SH, Lee YK, Park IS, et al. Biomimetic gold nanoshell-loaded macrophage for photothermal biomedicine. Bio Med Res Int. 2020;2020:1–14. doi: 10.1155/2020/5869235
  • Danylenko S, Marynchenko L, Bortnyk V, et al. Use of highly dispersed silica in biotechnology of complex probiotic product based on bifidobacteria. Innov Biosyst Bioeng [Internet]. 2022; Available from: http://ibb.kpi.ua/article/view/256179
  • Zakiyyah SN, Rakhmawaty Eddy D, Firdaus M, et al. Application of gold silica nanocomposites in electrochemical biosensors: a review. pendipa jurnal pendik sains. 2021;5(2):122–132. doi: 10.33369/pendipa.5.2.122-132
  • Sprenger S. Nanosilica-toughened epoxy resins. Switzerland: MDPI AG; 2020.
  • Antimicrobial E, Activities P, Al-Askar AA, et al. Green biosynthesis of zinc oxide nanoparticles using pluchea. Molecules. 2023;28:4679. doi:10.3390/molecules28124679
  • Mohamed MBED, Abo El-Ela FI, Mahmoud RK, et al. Cefotax-magnetic nanoparticles as an alternative approach to control methicillin-resistant Staphylococcus aureus (MRSA) from different sources. Sci Rep. 2022;12(1):1–10. doi: 10.1038/s41598-021-04160-4
  • Fan F, Saha S, Hanjaya-Putra D. Biomimetic hydrogels to promote wound healing. Front Bioeng Biotechnol. 2021;9(September):1–24. doi: 10.3389/fbioe.2021.718377
  • Singh B, Vuddanda PR, V MR, et al. Cefuroxime axetil loaded solid lipid nanoparticles for enhanced activity against S. aureus biofilm. Colloids Surf B Biointerfaces. 2014;121:92–98. doi: 10.1016/j.colsurfb.2014.03.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.