47
Views
0
CrossRef citations to date
0
Altmetric
Research article

Distinct inflammatory markers in primary and secondary dengue infection: can cytokines CXCL5, CXCL9, and CCL17 act as surrogate markers?

, , , , , , , , , , , , & ORCID Icon show all

References

  • Kumar K, Singh PK, Tomar J, et al. Dengue: epidemiology, prevention and pressing need for vaccine development. Asian Pac J Trop Med. 2010;3(12):997–1000.
  • Wang SH, Syu WJ, Hu ST. Identification of the homotypic interaction domain of the core protein of dengue virus type 2. J Gen Virol. 2004;85(8):2307–2314.
  • Yue Y, Sun J, Liu X, et al. Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors using ordinary least squares: a case study in five districts of Guangzhou City, China, 2014. Int J Infect Dis. 2018;75:39–48.
  • Li Z, Wang J, Cheng X, et al. The worldwide seroprevalence of DENV, CHIKV and ZIKV infection: a systematic review and meta-analysis. PLOS Negl Trop Dis. 2021;15(4):e0009337.
  • Ganeshkumar P, Murhekar MV, Poornima V, et al. Dengue infection in India: a systematic review and meta-analysis. PLOS Negl Trop Dis. 2018;12(7):e0006618.
  • Jing Q, Wang M. Dengue epidemiology. Glob Health J. 2019;3(2):37–45.
  • Raheel U, Faheem M, Riaz MN, et al. Dengue fever in the Indian subcontinent: an overview. J Infect Dev Ctries. 2011;5(4):239–247.
  • Patro ARK, Mohanty S, Prusty BK, et al. Cytokine signature associated with disease severity in dengue. Viruses. 2019;11(1):34.
  • Normile D. Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science. 2013;342(6157):415.
  • Ripoll DR, Wallqvist A, Chaudhury S. Molecular simulations reveal the role of antibody fine specificity and viral maturation state on antibody-dependent enhancement of infection in dengue virus. Front Cell Infect Microbiol. 2019;9:200.
  • Hadinegoro SRS. The revised WHO dengue case classification: does the system need to be modified? Paediatr Int Child Health. 2012;32(s1)(suppl 1):33–38.
  • Saeed MA, Attia TH. Dengue and dengue hemorrhagic fever. Afro-Egypt J Infect Endem Dis. 2015;5(3):189–200.
  • Kumarasamy V, Wahab AH, Chua SK, et al. Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection. J Virol Methods. 2007;140(1–2):75–79.
  • Bäck AT, Lundkvist A. Dengue viruses – an overview. Infect Ecol Epidemiol. 2013;3(1):19839.
  • Butthep P, Chunhakan S, Yoksan S, et al. Alteration of cytokines and chemokines during febrile episodes associated with endothelial cell damage and plasma leakage in dengue hemorrhagic fever. Pediatr Infect Dis J. 2012;31(12):e232–e238.
  • Rathore APS, St John AL. Immune responses to dengue virus in the skin. Open Biol. 2018;8(8):180087.
  • Amin P, Acicbe Ö, Hidalgo J, et al. Dengue fever: report from the task force on tropical diseases by the world federation of societies of intensive and critical care medicine. J Crit Care. 2018;43:346–351.
  • Huang J, Liang W, Chen S, et al. Serum cytokine profiles in patients with dengue fever at the acute infection phase. Dis Markers. 2018;2018:8403937.
  • Strieter RM, Kunkel SL, Burdick MD, et al. The detection of a novel neutrophil-activating peptide (ENA-78) using a sensitive ELISA. Immunol Invest. 1992;21(6):589–596.
  • Williams A. CXC chemokine family. In: Encyclopedia of Respiratory Medicine. 2nd ed. Elsevier; 2022. p. 357–379. doi: 10.1016/B978-0-08-102723-3.00252-3
  • Tokunaga R, Zhang WU, Naseem M, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – a target for novel cancer therapy. Cancer Treat Rev. 2018;63:40–47.
  • Fulkerson PC, Rothenberg ME. Chemokines, CXC, CXCL9 (MIG). Encyclopedia of Respiratory Medicine. Academic Press; 2006. p. 398–402. doi: 10.1016/B0-12-370879-6/00471-3
  • Lacy P. Eosinophil cytokines in allergy. In: Cytokine effector functions in tissues. Academic Press; 2017. p. 173–218. doi: 10.1016/B978-0-12-804214-4.00011-7
  • Mustafa Z, Khan HM, Azam M, et al. Insight into the seroepidemiology and dynamics of circulating serotypes of dengue virus over a 4 year period in western Uttar Pradesh, India. Access Microbiol. 2023;5(6):acmi000567. doi: 10.1099/acmi.0.000567.v4
  • World Health Organization. Comprehensive guideline for prevention and control of dengue and dengue haemorrhagic fever; 2011.
  • Shu PY, Chen LK, Chang SF, et al. Comparison of capture immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections. Clin Diagn Lab Immunol. 2003;10(4):622–630. doi: 10.1128/cdli.10.4.622-630.2003
  • Soe HJ, Manikam R, Raju CS, et al. Correlation of host inflammatory cytokines and immune-related metabolites, but not viral NS1 protein, with disease severity of dengue virus infection. PLOS ONE. 2020;15(8):e0237141. doi: 10.1371/journal.pone.0237141
  • Chang MS, McNinch J, Basu R, et al. Cloning and characterization of the human neutrophil-activating peptide (ENA-78) gene. J Biol Chem. 1994;269(41):25277–25282. doi: 10.1016/S0021-9258(18)47243-2
  • Liu Y, Mei J, Gonzales L, et al. IL-17A and TNF-α exert synergistic effects on expression of CXCL5 by alveolar type II cells in vivo and in vitro. J Immunol. 2011;186(5):3197–3205. doi: 10.4049/jimmunol.1002016
  • Shen F, Ruddy MJ, Plamondon P, et al. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin‐17‐and TNF-α‐induced genes in bone cells. J Leukoc Biol. 2005;77(3):388–399. doi: 10.1189/jlb.0904490
  • Chakravarti A, Kumaria R. Circulating levels of tumour necrosis factor-alpha & interferon-gamma in patients with dengue & dengue haemorrhagic fever during an outbreak. Indian J Med Res. 2006;123(1):25–30.
  • Meena AA, Murugesan A, Sopnajothi S, et al. Increase of plasma TNF-α is associated with decreased levels of blood platelets in clinical dengue infection. Viral Immunol. 2020;33(1):54–60. doi: 10.1089/vim.2019.0100
  • Schnyder‐Candrian S, Strieter RM, Kunkel SL, et al. Interferon‐α and interferon‐γ down‐regulate the production of interleukin‐8 and ENA‐78 in human monocytes. J Leukoc Biol. 1995;57(6):929–935. doi: 10.1002/jlb.57.6.929
  • Priyadarshini D, Gadia RR, Tripathy A, et al. Clinical findings and pro-inflammatory cytokines in dengue patients in Western India: a facility-based study. PLOS ONE. 2010;5(1):e8709. doi: 10.1371/journal.pone.0008709
  • Cruz Hernández SI, Puerta-Guardo HN, Flores Aguilar H, et al. Primary dengue virus infections induce differential cytokine production in Mexican patients. Mem Inst Oswaldo Cruz. 2016;111(3):161–167. doi: 10.1590/0074-02760150359
  • Gowri Sankar S, Mowna Sundari T, Alwin Prem Anand A. Emergence of dengue 4 as dominant serotype during 2017 outbreak in South India and associated cytokine expression profile. Front Cell Infect Microbiol. 2021;11:681937. doi: 10.3389/fcimb.2021.681937
  • Patra G, Mallik S, Saha B, et al. Assessment of chemokine and cytokine signatures in patients with dengue infection: a hospital-based study in Kolkata, India. Acta Trop. 2019;190:73–79. doi: 10.1016/j.actatropica.2018.10.017
  • Fares-Gusmao R, Rocha BC, Sippert E, et al. Differential pattern of soluble immune markers in asymptomatic dengue, west Nile and Zika virus infections. Sci Rep. 2019;9(1):17172. doi: 10.1038/s41598-019-53645-w
  • Teo TH, Howland SW, Claser C, et al. Co‐infection with Chikungunya virus alters trafficking of pathogenic CD8+ T cells into the brain and prevents Plasmodium-induced neuropathology. EMBO Mol Med. 2018;10(1):121–138. doi: 10.15252/emmm.201707885
  • Dalrymple NA, Mackow ER. Endothelial cells elicit immune-enhancing responses to dengue virus infection. J Virol. 2012;86(12):6408–6415. doi: 10.1128/JVI.00213-12
  • De Zutter A, Crijns H, Berghmans N, et al. The chemokine-based peptide, CXCL9(74-103), inhibits angiogenesis by blocking heparan sulfate proteoglycan-mediated signaling of multiple endothelial growth factors. Cancers (Basel). 2021;13(20):5090. doi: 10.3390/cancers13205090
  • Whiting D, Hsieh G, Yun JJ, et al. Chemokine monokine induced by IFN-γ/CXC chemokine ligand 9 stimulates T lymphocyte proliferation and effector cytokine production. J Immunol. 2004;172(12):7417–7424. doi: 10.4049/jimmunol.172.12.7417
  • Guabiraba R, Marques RE, Besnard AG, et al. Role of the chemokine receptors CCR1, CCR2 and CCR4 in the pathogenesis of experimental dengue infection in mice. PLOS ONE. 2010;5(12):e15680. doi: 10.1371/journal.pone.0015680
  • Sumiyoshi K, Nakao A, Setoguchi Y, et al. TGF-β/Smad signaling inhibits IFN-γ and TNF-α-induced TARC (CCL17) production in HaCaT cells. J Dermatol Sci. 2003;31(1):53–58. doi: 10.1016/s0923-1811(02)00141-x
  • Shibata S, Maeda S, Kondo N, et al. Identification of the signaling pathway of TNF-α-induced CCL17/TARC transcription in a canine keratinocyte cell line. Vet Immunol Immunopathol. 2011;139(2–4):90–98. doi: 10.1016/j.vetimm.2010.08.008
  • Ahrens B, Schulz G, Bellach J, et al. Chemokine levels in serum of children with atopic dermatitis with regard to severity and sensitization status. Pediatr Allergy Immunol. 2015;26(7):634–640. doi: 10.1111/pai.12431
  • Feng Y, Yin H, Mai G, et al. Elevated serum levels of CCL17 correlate with increased peripheral blood platelet count in patients with active tuberculosis in China. Clin Vaccine Immunol. 2011;18(4):629–632. doi: 10.1128/CVI.00493-10
  • Wang L, Fan Y, Dou X. Specific chemokines CCL2 and CCL17 are correlated with hepatic necro-inflammation in chronic hepatitis B patients with normal/mildly elevated alanine aminotransaminase levels. Int J Clin Exp Med. 2018;11(9):9371–9379.
  • Riezu-Boj JI, Larrea E, Aldabe R, et al. Hepatitis C virus induces the expression of CCL17 and CCL22 chemokines that attract regulatory T cells to the site of infection. J Hepatol. 2011;54(3):422–431. doi: 10.1016/j.jhep.2010.07.014
  • Lee KM, Prasad V, Achuthan A, et al. Targeting GM-CSF for collagenase-induced osteoarthritis pain and disease in mice. Osteoarthritis Cartilage. 2020;28(4):486–491. doi: 10.1016/j.joca.2020.01.012
  • OhAinle M, Balmaseda A, Macalalad AR, et al. Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med. 2011;3(114):114ra128–114ra128. doi: 10.1126/scitranslmed.3003084
  • Rico-Hesse R, Harrison LM, Salas RA, et al. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology. 1997;230(2):244–251. doi: 10.1006/viro.1997.8504

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.