2,975
Views
20
CrossRef citations to date
0
Altmetric
Original Research Paper

Effect of mixed fillers on positive temperature coefficient of conductive polymer composites

, , , , , , , , & show all
Pages 58-64 | Received 23 Apr 2016, Accepted 17 May 2016, Published online: 15 Jul 2016

References

  • E. Bilotti, R. Zhang, H. Deng, M. Baxendale and T. Peijs: ‘Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres’. J. Mater. Chem., 2010, 20, (42), 9449–9455.10.1039/c0jm01827a
  • T. Villmow, S. Pegel, P. Pötschke and G. Heinrich: ‘Polymer/carbon nanotube composites for liquid sensing: model for electrical response characteristics’. Polymer, 2011, 52, (10), 2276–2285.10.1016/j.polymer.2011.03.029
  • B. Kumar, M. Castro and J.-F. Feller: ‘Quantum resistive vapour sensors made of polymer coated carbon nanotubes random networks for biomarkers detection’. Chem. Sens., 2013, 3, (20), 1–7.
  • H. Zhang, Y. Liu, M. Kuwata, E. Bilotti and T. Peijs: ‘Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg’. Compos. Part A: Appl. Sci. Manuf., 2015, 70, 102–110.10.1016/j.compositesa.2014.11.029
  • E. T. Thostenson and T.-W. Chou: ‘Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing’. Adv. Mater., 2006, 18 (21), 2837–2841.
  • H. Zhang, E. Bilotti and T. Peijs: ‘The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review’. Nanocomposites, 2015, 1, (4), 167–184.
  • F. Mai, Y. Habibi, J. M. Raquez, P. Dubois, J. F. Feller, T. Peijs and E. Bilotti: ‘Poly(lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing’. Polymer, 2013, 54, (25), 6818–6823.10.1016/j.polymer.2013.10.035
  • K. Ohe and Y. Naito: ‘A new resistor having an anomalously large positive temperature coefficient’. Jpn. J. Appl. Phys., 1971, 10, (1), 99–108.10.1143/JJAP.10.99
  • S. J. Luo and C. P. Wong: ‘Study on effect of carbon black on behavior of conductive polymer composites with positive temperature coefficient’. IEEE Trans. Compon. Packag. Technol., 2000, 23, (1), 151–156.10.1109/6144.833054
  • Z.-M. Dang, W.-K. Li and H.-P. Xu: ‘Origin of remarkable positive temperature coefficient effect in the modified carbon black and carbon fiber cofillled polymer composites’. J. Appl. Phys., 2009, 106, (2), 024913.10.1063/1.3182818
  • J. Feng and C. M. Chan: ‘Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers’. Polymer, 2000, 41, (12), 4559–4565.10.1016/S0032-3861(99)00690-4
  • A. Kono, K. Shimizu, H. Nakano, Y. Goto, Y. Kobayashi, T. Ougizawa and H. Horibe: ‘Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites’. Polymer, 2012, 53, (8), 1760–1764.10.1016/j.polymer.2012.02.048
  • J. Meyer: ‘Stability of polymer composites as positive-temperature-coefficient resistors’. Polym. Eng. Sci., 1974, 14, (10), 706–716.
  • F. Bueche: ‘A new class of switching materials’. J. Appl. Phys., 1973, 44, (1), 532–533.10.1063/1.1661934
  • A. Rybak, G. Boiteux, F. Melis and G. Seytre: ‘Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices’. Compos. Sci. Technol., 2010, 70, (2), 410–416.10.1016/j.compscitech.2009.11.019
  • R. stru¨mpler, J. Glatz-Reichenbach, Feature article conducting polymer composites, J. Electroceram., 1999, 3, (4), 329–346.10.1023/A:1009909812823
  • C. P. Wong, S. Luo: ‘Conductive polymer composites with large positive temperature coefficients, encyclopedia of smart materials’, 2002, Wiley Online Library.
  • S. Isaji, Y. Bin and M. Matsuo: ‘Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films’. Polymer, 2009, 50, (4), 1046–1053.10.1016/j.polymer.2008.12.033
  • C. Lu, X. N. Hu, Y. X. He, X. Huang, J. C. Liu and Y. Q. Zhang: ‘Triple percolation behavior and positive temperature coefficient effect of conductive polymer composites with especial interface morphology’. Polym. Bull., 2012, 68, (7), 2071–2087.10.1007/s00289-012-0723-0
  • C. Lu, R. Wang, X.-N. Hu, Q.-Q. Cao, X.-H. Huang, Y.-X. He and Y.-Q. Zhang: ‘Influence of morphology on PTC effect for poly (ethylene-co-butyl acrylate)/nylon6 blends with multiwall carbon nanotubes dispersed at interface and in matrix’. Polym. Bull., 2014, 71, (3), 545–561.10.1007/s00289-013-1076-z
  • S. A. H. Pour, B. Pourabbas and M. S. Hosseini: ‘Electrical and rheological properties of PMMA/LDPE blends filled with carbon black’. Mater. Chem. Phys., 2014, 143, (2), 830–837.10.1016/j.matchemphys.2013.10.021
  • F. Gubbels, R. Jerome, P. Teyssie, E. Vanlathem, R. Deltour, A. Calderone, V. Parente and J. L. Bredas: ‘Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites’. Macromolecules, 1994, 27, (7), 1972–1974.10.1021/ma00085a049
  • G. Droval, J. F. Feller, P. Salagnac and P. Glouannec: ‘Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching’. Smart Mater. Struct., 2008, 17, (2), 025011.
  • Y. Bao, L. Xu, H. Pang, D. X. Yan, C. Chen, W. Q. Zhang, J. H. Tang and Z. M. Li: ‘Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures’. J. Mater. Sci., 2013, 48, (14), 4892–4898.10.1007/s10853-013-7269-x
  • S. Isaji, Y. Bin and M. Matsuo: ‘Electrical and self-heating properties of UHMWPE-EMMA-NiCF composite films’. J. Polym. Sci. Part B: Polym. Phys., 2009, 47, (13), 1253–1266.10.1002/polb.v47:13
  • K. Nagata, M. Inaba, N. Toge, K. Takahashi and Y. Aoki: ‘Localization of carbon black particles in polypropylene/polyethylene polymer blend and its electrical resistivity’. Kobunshi Ronbunshu, 2002, 59, (11), 694–701.10.1295/koron.59.694
  • H. Pang, Q. Y. Chen, Y. Bao, D. X. Yan, Y. C. Zhang, J. B. Chen and Z. M. Li: ‘Temperature resistivity behaviour in carbon nanotube/ultrahigh molecular weight polyethylene composites with segregated and double percolated structure’. Plast. Rubber Compos., 2013, 42, (2), 59–65.10.1179/1743289812Y.0000000031
  • H. Pang, L. Xu, D.-X. Yan and Z.-M. Li: ‘Conductive polymer composites with segregated structures’. Prog. Polym. Sci., 2014, 39, (11), 1908–1933.10.1016/j.progpolymsci.2014.07.007
  • Y. Wei, Z. Li, X. Liu, K. Dai, G. Zheng, C. Liu, J. Chen and C. Shen: ‘Temperature-resistivity characteristics of a segregated conductive CB/PP/UHMWPE composite’. Colloid Polym. Sci., 2014, 292, (11), 2891–2898.10.1007/s00396-014-3334-5
  • M. Wen, X. Sun, L. Su, J. Shen, J. Li, S. Guo: ‘The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion’. Polymer, 2012, 53, 1602–1610.
  • Y. Fang, J. Zhao, J. W. Zha, D. R. Wang and Z. M. Dang: ‘Improved stability of volume resistivity in carbon black/ethylene-vinyl acetate copolymer composites by employing multi-walled carbon nanotubes as second filler’. Polymer, 2012, 53, (21), 4871–4878.10.1016/j.polymer.2012.08.035
  • P. Kar, S. Maiti, N. K. Shrivastava, S. Dhibar and B. B. Khatua: ‘Positive temperature coefficient to resistively characteristics of polystyrene/nickel powder/multiwall carbon nanotubes composites’. Polym. Compos., 2012, 33, (11), 1977–1986.10.1002/pc.v33.11
  • J. H. Lee, S. K. Kim and N. H. Kim: ‘Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites’. Scr. Mater., 2006, 55, (12), 1119–1122.10.1016/j.scriptamat.2006.08.051
  • M.-K. Seo, K.-Y. Rhee and S.-J. Park: ‘Influence of electro-beam irradiation on PTC/NTC behaviors of carbon blacks/HDPE conducting polymer composites’. Curr. Appl. Phys., 2011, 11, (3), 428–433.10.1016/j.cap.2010.08.013
  • K.-Y. Tsao, C.-S. Tsai and C.-Y. Huang: ‘Effect of argon plasma treatment on the PTC and NTC behaviors of HDPE/carbon black/aluminum hydroxide nanocomposites for over-voltage resistance positive temperature coefficient (PTC)’. Surf. Coat. Technol., 2010, 205, Supplement 1(0), S279–S285.
  • Y. Luo, G. Wang, B. Zhang and Z. Zhang: ‘The influence of crystalline and aggregate structure on PTC characteristic of conductive polyethylene/carbon black composite’. Eur. Polym. J., 1998, 34, (8), 1221–1227.10.1016/S0014-3057(98)00099-8
  • S. J. Luo, C. P. Wong: ‘Conductive polymer composites with positive temperature coefficient’. Proceedings of IEEE, International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 1999, 311–316.
  • W. Bauhofer and J. Z. Kovacs: ‘A review and analysis of electrical percolation in carbon nanotube polymer composites’. Compos. Sci. Technol., 2009, 69, (10), 1486–1498.10.1016/j.compscitech.2008.06.018
  • E. Asare, J. Evans, M. Newton, T. Peijs and E. Bilotti: ‘Effect of particle size and shape on positive temperature coefficient (PTC) of conductive polymer composites (CPC) — a model study’. Mater. Des., 2016, 97, 459–463.
  • L. Karásek, B. Meissner, S. Asai and M. Sumita: ‘Percolation concept: polymer-filler gel formation, electrical conductivity and dynamic electrical properties of carbon-black-filled rubbers’. Polym. J., 1996, 28, (2), 121–126.10.1295/polymj.28.121
  • X. Jing, W. Zhao and L. Lan: ‘The effect of particle size on electric conducting percolation threshold in polymer/conducting particle composites’. J. Mater. Sci. Lett., 2000, 19, (5), 377–379.10.1023/A:1006774318019
  • P. Banerjee and B. M. Mandal: ‘Blends of HCl-doped polyaniline nanoparticles and poly(vinyl chloride) with extremely low percolation threshold - a morphology study’. Synth. Met., 1995, 74, (3), 257–261.10.1016/0379-6779(95)03370-Y
  • T. Ota, M. Fukushima, Y. Ishigure, H. Unuma, M. Takahashi, Y. Hikichi and H. Suzuki: ‘Control of percolation curve by filler particle shape in Cu-SBR composites’. J. Mater. Sci. Lett., 1997, 16, (14), 1182–1183.
  • M. O. Lisunova, Y. P. Mamunya, N. I. Lebovka and A. V. Melezhyk: ‘Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites’. Eur. Polym. J., 2007, 43, (3), 949–958.10.1016/j.eurpolymj.2006.12.015
  • Q. Li, Siddaramaiah, N. H. Kim, G. H. Yoo, J. H. Lee: ‘Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites’. Compos. Part B: Eng., 2009, 40, (3), 218–224.10.1016/j.compositesb.2008.11.002
  • R. Socher, B. Krause, S. Hermasch, R. Wursche and P. Pötschke: ‘Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black’. Compos. Sci. Technol., 2011, 71, (8), 1053–1059.10.1016/j.compscitech.2011.03.004
  • J. W. Zha, W. K. Li, R. J. Liao, J. B. Bai and Z. M. Dang: ‘High performance hybrid carbon fillers/binary-polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance’. J. Mater. Chem. A, 2013, 1, (3), 843–851.10.1039/C2TA00429A
  • A. Nuzzo, E. Bilotti, T. Peijs, D. Acierno and G. Filippone: ‘Nanoparticle-induced co-continuity in immiscible polymer blends – A comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes’. Polymer (Guilford), 2014, 55, (19), 4908–4919.10.1016/j.polymer.2014.07.036
  • J. Sumfleth, X. C. Adroher and K. Schulte: ‘Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black’. J. Mater. Sci., 2009, 44, (12), 3241–3247.10.1007/s10853-009-3434-7
  • E. Bilotti, H. Zhang, H. Deng, R. Zhang, Q. Fu and T. Peijs: ‘Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour’. Compos. Sci. Technol., 2013, 74, 85–90.10.1016/j.compscitech.2012.10.008