1,848
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermally activated shape memory behavior of copolymers based on ethylene reinforced with silica nanoparticles

, , , &
Pages 19-35 | Received 06 Mar 2018, Accepted 23 Apr 2018, Published online: 18 Jun 2018

References

  • Arrieta MP, Sessini V, Peponi L. Biodegradable poly(ester-urethane) incorporated with catechin with shape memory and antioxidant activity for food packaging. Eur Polym J. 2017;94:111–124.
  • Peponi L, Navarro-Baena I, Sonseca A, et al. Synthesis and characterization of PCL-PLLA polyurethane with shape memory behavior. Eur Polym J. 2013;49(4):893–903.
  • Rousseau IA. Challenges of shape memory polymers: A review of the progress toward overcoming SMP's limitations. Polym Eng Sci. 2008;48(11):2075–2089.
  • Sessini V, Arrieta MP, Fernández-Torres A, et al. Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohyd Polym. 2018;179:93–99.
  • Wang CC, Huang WM, Ding Z, et al. Cooling-/water-responsive shape memory hybrids. Compos Sci Technol. 2012;72(10):1178–1182.
  • Lee YM, Kim SH, Cho CS. Synthesis and swelling characteristics of pH and thermoresponsive interpenetrating polymer network hydrogel composed of poly (vinyl alcohol) and poly (acrylic acid). J Appl Polym Sci. 1996;62(2):301–311.
  • Lendlein A, Jiang H, Jünger O, et al. Light-induced shape-memory polymers. Nature. 2005;434(7035):879–882.
  • Liu Y, Lv H, Lan X, et al. Review of electro-active shape-memory polymer composite. Compos Sci Technol. 2009;69(13):2064–2068.
  • Peponi L, Navarro-Baena I, Kenny J. Shape memory polymers: properties, synthesis and applications. In: Aguilar MR, De Armas JSR, editor. Smart polymers and their applications. Oxford: Elsevier; 2014. p. 204–236.
  • Sessini V, Raquez JM, Lourdin D, et al. Humidity-activated shape memory effects on thermoplastic starch/EVA blends and their compatibilized Nanocomposites. Macromol Chem Phys. 2017;218(24):1700388.
  • Meng Q, Hu J. A review of shape memory polymer composites and blends. Compos Part A-Appl S. 2009;40(11):1661–1672.
  • Peponi L, Arrieta MP, Mujica-Garcia A, et al. Smart polymers. In: Jasso-Gastinel CF, Kenny JM, editors, Modification of Polymer Properties. Chadds Ford (PA); 2016. p. 131–154.
  • Behl M, Lendlein A. Triple-shape polymers. J Mater Chem. 2010;20(17):3335–3345.
  • Bellin I, Kelch S, Lendlein A. Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J Mater Chem. 2007;17(28):2885–2891.
  • Bellin I, Kelch S, Langer R, et al. Polymeric triple-shape materials. Proc Natl Acad Sci USA. 2006;103(48):18043–18047.
  • Sessini V, Raquez J-M, Lo Re G, et al. Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch. ACS Appl Mater Int. 2016;8(30):19197–19201.
  • Navarro-Baena I, Kenny J, Peponi L. Thermally-activated shape memory behaviour of bionanocomposites reinforced with cellulose nanocrystals. Cellulose. 2014;21(6):4231–4246.
  • Lendlein A, Kelch S. Shape-memory polymers. Angew Chem Int Ed. 2002;41(12):2034–2057.
  • Zhang L, Brostowitz NR, Cavicchi KA, et al. Perspective: ionomer research and applications. Macromol React Eng. 2014;8(2):81–99.
  • Cavicchi KA, Pantoja M, Cakmak M. Shape memory ionomers. J Polym Sci Pol Phys. 2016;54(14):1389–1396.
  • Dolog R, Weiss R. Shape memory behavior of a polyethylene-based carboxylate ionomer. Macromolecules. 2013;46(19):7845–7852.
  • Varley RJ, Shen S, van der Zwaag S. The effect of cluster plasticisation on the self healing behaviour of ionomers. Polymer. 2010;51(3):679–686.
  • Varley RJ, van der Zwaag S. Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater. 2008;56(19):5737–5750.
  • Francesconi A, Giacomuzzo C, Grande A, et al. Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts. Adv Space Res. 2013;51(5):930–940.
  • Dolog R, Weiss R. Properties and shape-memory behavior of compounds of a poly (ethylene-co-methacrylic acid) ionomer and zinc stearate. Polymer. 2017;128:128–134.
  • Zhao Z, Peng F, Cavicchi KA, et al. Three-Dimensional Printed Shape Memory Objects Based on an Olefin Ionomer of Zinc-Neutralized Poly (ethylene-co-methacrylic acid). ACS Appl Mater. Inter. 2017;9(32):27239–27249.
  • Lu L, Li G. One-way multishape-memory effect and tunable two-way shape memory effect of ionomer poly (ethylene-co-methacrylic acid). ACS Appl Mater Int. 2016;8(23):14812–14823.
  • Pilate F, Toncheva A, Dubois P, et al. Shape-memory polymers for multiple applications in the materials world. Eur Polym J. 2016;80:268–294.
  • Peponi L, Puglia D, Torre L, et al. Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater Sci Eng R Rep. 2014;85(1):1–46.
  • Schadler L, Giannaris SA, Ajayan P. Load transfer in carbon nanotube epoxy composites. Appl Phys Lett. 1998;73(26):3842–3844.
  • Yao Z, Kane CL, Dekker C. High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett. 2000;84(13):2941.
  • Lu H, Liu Y, Gou J, et al. Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer. Smart Mater Struct. 2010;19(7):075021.
  • Yu K, Liu Y, Leng J. Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv. 2014;4(6):2961–2968.
  • Wang L, Wang W, Di S, et al. Silver-coordination polymer network combining antibacterial action and shape memory capabilities. RSC Adv. 2014;4(61):32276–32282.
  • Zhang H, Zhao Y. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles. ACS Appl Mater Int. 2013;5(24):13069–13075.
  • Mohr R, Kratz K, Weigel T, et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci USA. 2006;103(10):3540–3545.
  • Zheng X, Zhou S, Xiao Y, et al. Shape memory effect of poly (d, l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloid Surface B. 2009;71(1):67–72.
  • Odent Jrm, Raquez J-M, Samuel CD, et al. Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids. Macromolecules. 2017;50(7):2896–2905.
  • Kwon D-J, Shin P-S, Kim J-H, et al. Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles. Compos Part B-Eng. 2017;130:46–53.
  • Jia X, Li G, Liu B, et al. Multiscale reinforcement and interfacial strengthening on epoxy-based composites by silica nanoparticle-multiwalled carbon nanotube complex. Compos Part A-Appl S. 2013;48:101–109.
  • Odent J, Raquez J-M, Thomassin J-M, et al. Mechanistic insights on nanosilica self-networking inducing ultra-toughness of rubber-modified polylactide-based materials. Nanocomposites. 2015;1(3):113–125.
  • Salgado C, Arrieta MP, Peponi L, et al. Silica-nanocomposites of photo-crosslinkable poly (urethane) s based on poly (ε-caprolactone) and coumarin. Eur Polym J. 2017;93:21–32.
  • Wunderlich B. Molecular physics, Volume 3: crystal melting. New York (NY): Academic Press; 1980.
  • Longworth R, Vaughan DJ. Physical structure of ionomers. Nature. 1968;218:85–87.
  • Loo Y-L, Wakabayashi K, Huang YE, et al. Thin crystal melting produces the low-temperature endotherm in ethylene/methacrylic acid ionomers. Polymer. 2005;46(14):5118–5124.
  • Marx CL, Cooper SL. The crystallinity of ionomers. J Macromol Sci B. 1974;9(1):19–33.
  • Kuwabara K, Horii F. Solid-state NMR analyses of the crystalline–noncrystalline structure and its thermal changes for ethylene ionomers. J Polym Sci Pol Phys. 2002;40(11):1142–1153.
  • Tsujita Y, Shibayama K, Takizawa A, et al. Thermal properties of ethylene ionomers. J Appl Polym Sci. 1987;33(4):1307–1314.
  • Hirasawa E, Yamamoto Y, Tadano K, et al. Formation of ionic crystallites and its effect on the modulus of ethylene ionomers. Macromolecules. 1989;22(6):2776–2780.
  • Ray A. Effects of chemical constituents on crystalline properties of ethylene ionomers. J Therm Anal Calorim. 1996;46(6):1527–1539.
  • Tachino H, Hara H, Hirasawa E, et al. Dynamic mechanical relaxations of ethylene ionomers. Macromolecules. 1993;26(4):752–757.
  • Tadano K, Hirasawa E, Yamamoto H, et al. Order-disorder transition of ionic clusters in ionomers. Macromolecules. 1989;22(1):226–233.
  • Dong J, Weiss RA. Shape memory behavior of zinc oleate-filled elastomeric ionomers. Macromolecules. 2011;44(22):8871–8879.
  • Siuzdak DA, Start PR, Mauritz KA. Surlyn®/silicate hybrid materials. I. Polymer in situ sol–gel process and structure characterization. J Appl Polym Sci. 2000;77(13):2832–2844.
  • Kutsumizu S, Nagao N, Tadano K, et al. Effects of water sorption on the structure and properties of ethylene ionomers. Macromolecules. 1992;25(25):6829–6835.
  • Eisenberg A, Navratil M. Ion clustering and viscoelastic relaxation in styrene-based ionomers. IV. X-ray and dynamic mechanical studies. Macromolecules. 1974;7(1):90–94.
  • Wakabayashi K, Register RA. Morphological origin of the multistep relaxation behavior in semicrystalline ethylene/methacrylic acid ionomers. Macromolecules. 2006;39(3):1079–1086.
  • Kumar UN, Kratz K, Behl M, et al. Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments. Express Polym Lett. 2012;6(1):26–40.
  • Kratz K, Madbouly SA, Wagermaier W, et al. Temperature-memory polymer networks with crystallizable controlling units. Adv Mater. 2011;23(35):4058–4062.