2,364
Views
24
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Al2O3 nanoparticles volume fractions on microstructural and mechanical characteristics of friction stir welded nanocomposites

ORCID Icon, &
Pages 76-84 | Received 03 Jun 2019, Accepted 27 May 2020, Published online: 10 Jun 2020

References

  • Liu FC, Ma ZY. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminium alloy. Metall Mater Trans A. 2008;39(10):2378–2388.
  • He J, Ling Z, Li H. Effect of tool rotational speed on residual stress, microstructure, and tensile properties of friction stir welded 6061-T6 aluminum alloy thick plate. Int J Adv Manuf Technol. 2016;84(9–12):1953–1961.
  • Kaufman J-G. Introduction to aluminum alloys and tempers. US: ASM International; 2000, p. 242.DOI:10.1361/iaat2000p001
  • ASM Handbook: 02. US: ASM International; 2004.
  • Gay D. Composite materials: design and applications. Boca Raton (FL): CRC Press; 2014.
  • Hull D, Clyne T. An introduction to composite materials. Great Britain: Cambridge University Press; 1996.
  • Kaczmar JW, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Technol. 2000;106(1–3):58–67.
  • Rabinowicz E. Friction and wear of materials. New York: John Wiley and Sons; 1965.
  • Budinski K-G. Surface engineering for wear resistance. New Jersey: Prentice-Hall; 1988.
  • Gupta M, Mohamed FA, Lavernia EJ. Solidification behavior of Al/Li/SiCp MMCs processed using variable co-deposition of multi-phase materials. Mater Manuf Process. 1990;5(2):165–196.
  • Mabhali L, Pityana SL, Sacks N. Laser surface alloying of aluminum (AA1200) with Ni and SiC powders. Mater Manuf Process. 2010;25(12):1397–1403.
  • Chawla K-K. Composite materials: science and engineering. Heidelberg (NY): Springer Science & Business Media; 2012.
  • Hu Q, Zhao H, Li F. Effects of manufacturing processes on microstructure and properties of Al/A356–B4C composites. Mater Manuf Process. 2016;31(10):1292–1300.
  • Khaled T. An outsider looks at friction stir welding; Federal Aviation Administration, Scientific Report No. ANM-112N-05-06. 2005.
  • Lohwasser D, Chen Z. Friction stir welding from basics to applications. US: CRC; 2010.
  • Mishra R-S, Mahoney M-W. Friction stir welding and processing. US: ASM International; 2007.
  • Singh T, Tiwari SK, Shukla DK. Mechanical and microstructural characterization of friction stir welded AA6061-T6 joints reinforced with nano-sized particles. Mater Charact. 2020;159:110047.
  • Singh T, Tiwari SK, Shukla DK. Friction stir welding of AA6061-T6: the effects of Al2O3 nano-particles addition. Results Mater. 2019;1:100005.
  • Singh T, Tiwari SK, Shukla DK. Effect of nano-sized particles on grain structure and mechanical behavior of friction stir welded Al-nanocomposites. Proc Inst Mech Eng Part L: J Mater Des Appl. 2019;234(2):274–290.
  • Eftekharinia H, Amadeh AA, Khodabandeh A, et al. Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes. Rare Met. 2020;39(4):429–435.
  • Bodaghi M, Dehghani K. Friction stir welding of AA5052: the effects of SiC nano-particles addition. Int J Adv Manuf Technol. 2017;88(9–12):2651–2660.
  • Devaraju A, Kumar A. Dry sliding wear and static immersion corrosion resistance of aluminum alloy 6061-T6/SiCp metal matrix composite prepared via friction stir processing. Int J Adv Res Mech Eng. 2011;1(2):62–68.
  • Eskandari H, Taheri R, Khodabakhshi F. Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: microstructural developments and mechanical properties. Mater Sci Eng A. 2016;660:84–96.
  • Guo JF, Gougeon P, Chen XG. Characterisation of welded joints produced by FSW in AA 1100–B4C metal matrix composites. Sci Technol Weld Join. 2012;17(2):85–91.
  • Faradonbeh AM, Shamanian M, Edris H, et al. Friction stir welding of Al-B4C composite fabricated by accumulative roll bonding: evaluation of microstructure and mechanical behavior. J Mater Eng Perform. 2018;27(2):835–846.
  • Karakizis P-N, Pantelis D-I, Fourlaris G, et al. Effect of SiC and TiC nanoparticle reinforcement on the microstructure, microhardness, and tensile performance of AA6082-T6 friction stir welds. Int J Adv Manuf Technol. 2018;95(9–12):3823–3837.
  • Prakash VK. Microstructure and hardness distribution in friction stir welded Al6061-TiB2 in-situ metal matrix composite. Proceedings of 09th IRF International Conference; 2014 July 27; Bengaluru, India; p. 100–103. ISBN: 978-93-84209-40-7.
  • Keneshloo M, Paidar M, Taheri M. Role of SiC ceramic particles on the physical and mechanical properties of Al-4%Cu metal matrix composite fabricated via mechanical alloying. J Compos Mater. 2017;51(9):1285–1298.
  • Paidar M, Ojob OO, Ezatpourd HR, et al. Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB). Surf Coat Technol. 2019;361:159–169.
  • Mirjavadi S-S, Alipour M, Emamian S, et al. Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance properties and wear resistance. J Alloys Comp. 2017;712:795–803.
  • Paidar M, Asgari A, Ojob OO, et al. Mechanical properties and wear behavior of AA5182/WC nanocomposite fabricated by friction stir welding at different tool traverse speeds. J Mater Eng Perform. 2018;27:1714–1724.
  • Tjong S-C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater. 2007;9(8):639–652.
  • Paidar M, Rasouli M, Keneshloo M, et al. Effect of sic particles on structure-property and wear resistance of AA6061/sic surface composite Fabricated via friction stir processing. Powder Metall Met Ceram. 2019;57(11–12):631–639.
  • Nikoo M-F, Azizi H, Parvin N, et al. The influence of heat treatment on microstructure and wear properties of friction stir welded AA6061-T6/Al2O3 nanocomposite joint at four different traveling speeds. J Manuf Process. 2016;22:90–98.
  • Jayabalakrishnan D, Balasubramanian M. Eccentric-weave friction stir welding between Cu and AA6061-T6 with reinforced graphene nanoparticles. Mater Manuf Process. 2018;33(3):333–342.
  • Baghchesara M-A, Production A-H. Microstructural investigation of A356 aluminum alloy based magnesium oxide particles reinforced metal-matrix nanocomposites. J Ceram Process Res. 2014;15:418–423.
  • Cioffi F, Fernández R, Gesto D, et al. Friction stir welding of thick plates of aluminum alloy matrix composite with a high volume fraction of ceramic reinforcement. Compos A: Appl Sci Manuf. 2013;54:117–123.
  • Suresh S, Chawla K-K. In: Suresh S, Mortensen A, Needleman A. Fundamentals of metal matrix composites. Chapter-4 Processing, Stoneham (MA): Butterworth-Heinemann; 1993. p. 119.
  • Mummery P-M, Derby B, Buttle D-J, et al. In: Clyne TW, Withers PJ. Proceedings of 2nd Euromat 91. Advanced Materials and Processes, Vt: Institute of Materials, 1991 July 22–24, Vol. 2. Cambridge, UK; 1991. p. 441–447.
  • Barmouz M, Givi MKB. Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: evaluation of microstructural, porosity, mechanical, and electrical behavior. Compos Part A. 2011;42:1445–1453.
  • Prakash T, Sivasankaran S, Sasikumar P. Mechanical and tribological behaviour of friction-stir-processed Al 6061 aluminium sheet metal reinforced with Al2O3/0.5Gr Al2O3/0.5Gr hybrid surface nanocomposite. Int J Adv Manuf Technol. 2015;80(9–12):1919–1926.
  • Minak G, Ceschini L, Boromei I, et al. Fatigue properties of friction stir welded particulate reinforced aluminum matrix composites. Int J Fatigue. 2010;32(1):218–226.