4,920
Views
31
CrossRef citations to date
0
Altmetric
Review

Nanoengineered electrospun fibers and their biomedical applications: a review

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-34 | Received 22 Sep 2020, Accepted 24 Nov 2020, Published online: 29 Dec 2020

References

  • Zaera F. Nanostructured materials for applications in heterogeneous catalysis. Chem Soc Rev. 2013;42(7):2746–2762.
  • Taylor R, Coulombe S, Otanicar T, et al. Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys. 2013;113(1):011301.
  • Sun T, Zhang YS, Pang B, et al. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–12364.
  • Ma TY, Ran J, Dai S, et al. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew Chem Int Ed Engl. 2015;54(15):4646–4650.
  • Berthelot J, Acimovic SS, Juan ML, et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat Nanotechnol. 2014;9(4):295–299.
  • Gujrati V, Kim S, Kim S-H, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano. 2014;8(2):1525–1537.
  • Grzelczak M, Vermant J, Furst EM, et al. Directed self-assembly of nanoparticles. ACS Nano. 2010;4(7):3591–3605.
  • Ariga K, Yamauchi Y, Rydzek G, et al. Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett. 2014;43(1):36–68.
  • Tian J, Liu Q, Asiri AM, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc. 2014;136(21):7587–7590.
  • Yang P, Ding Y, Lin Z, et al. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 2014;14(2):731–736.
  • Keshtkar M, Nofar M, Park CB, et al. Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer. 2014;55(16):4077–4090.
  • Zhang H, Liu Y, Kuwata M, et al. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fiber prepreg. Compos A: Appl Sci Manuf. 2015; 70:102–110.
  • Thenmozhi S, Dharmaraj N, Kadirvelu K, et al. Electrospun nanofibers: New generation materials for advanced applications. Mater Sci Eng B – Adv. 2017; 217:36–48.
  • Seeram Ramakrishna KF, Teo W-E, Lim T-C, et al. An introduction to electrospinning and nanofibers, Singapore: World Scientific Publishing Ltd.; 2005.
  • Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11(8):1165–1188.
  • GhavamiNejad A, Rajan Unnithan A, Ramachandra Kurup Sasikala A, et al. Mussel-Inspired Electrospun Nanofibers Functionalized with Size-Controlled Silver Nanoparticles for Wound Dressing Application. ACS Appl Mater Interfaces. 2015;7(22):12176–12183.
  • Luo Y, Shen H, Fang Y, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces. 2015;7(11):6331–6339.
  • Visser J, Melchels FP, Jeon JE, et al. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun. 2015; 6:6933
  • Han N, Johnson J, Lannutti JJ, et al. Hydrogel-electrospun fiber composite materials for hydrophilic protein release. J Control Release. 2012;158(1):165–170.
  • Keirouz A, Chung MH, Kwon J, et al. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: a review. Wires Nanomed Nanobi. 2020;12:e1626.
  • Yao J, Pantano MF, Pugno NM, et al. High-performance electrospun co-polyimide nanofibers. Polymer. 2015;76:105–112.
  • Liu S-L, Long Y-Z, Zhang Z-H, et al. Assembly of oriented ultrafine polymer fibers by centrifugal electrospinning. J Nanomater. 2013;2013:1–9.
  • Mi HY, Salick MR, Jing X, et al. Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: fiber orientation and cell migration. J Biomed Mater Res A. 2015;103(2):593–603.
  • Arras MML, Grasl C, Bergmeister H, et al. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes. Sci Technol Adv Mater. 2012;13(3):035008
  • Youm J, Kim J, Kim C, et al. Densifying and strengthening of electrospun polyacrylonitrile-based nanofibers by uniaxial two-step stretching. J Appl Polym Sci. 2016;133(37):43945(1-9).
  • De Vrieze S, Van Camp T, Nelvig A, et al. The effect of temperature and humidity on electrospinning. J Mater Sci. 2009;44(5):1357–1362.
  • Rogalski JJ, Botto L, Bastiaansen CWM, et al. A study of rheological limitations in rotary jet spinning of polymer nanofibers through modeling and experimentation. J Appl Polym Sci. 2020;137(33):48963.
  • Machado-Paula MM, Corat MAF, Lancellotti M, et al. A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization. Mat Sci Eng C–Mater. 2020;111:110706.
  • Rogalski JJ, Bastiaansen CWM, Peijs T. Rotary jet spinning review–a potential high yield future for polymer nanofibers. Nanocomposites. 2017;3(4):97–121.
  • Zhang Z, Tu W, Peijs T, et al. Fabrication and properties of poly(tetrafluoroethylene) nanofibres via sea-island spinning. Polymer. 2017;109:321–331.
  • Yu Y, Xiong SW, Huang H, et al. Fabrication and application of poly (phenylene sulfide) ultrafine fiber. React Funct Polym. 2020;150: 104539.
  • Bresee RR, Ko W-C. Fiber formation during melt blowing. Int Nonwovens J. 2003;os-12(2):1558925003os-12–209.
  • Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–1170.
  • Agarwal S, Wendorff JH, Greiner A. Progress in the field of electrospinning for tissue engineering applications. Adv Mater. 2009;21(32/33):3343–3351.
  • Peijs T. Electrospun polymer nanofibers and their composites. In: Beaumont PWR, Zweben CH, editors. Comprehensive composite materials II. Vol. 6. Oxford, UK: Elsevier; 2018. Chapter 6.7; p.162–200.
  • Yao J, Bastiaansen C, Peijs T. High strength and high modulus electrospun nanofibers. Fibers. 2014;2(2):158–186.
  • SalehHudin HS, Mohamad EN, Mahadi WNL, et al. Multiple-jet electrospinning methods for nanofiber processing: a review. Mater Manuf Process. 2018;33(5):479–498.
  • Zhang CL, Yu SH. Nanoparticles meet electrospinning: recent advances and future prospects. Chem Soc Rev. 2014;43(13):4423–4448.
  • Yang G, Li X, He Y, et al. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog Polym Sci. 2018; 81:80–113.
  • Bognitzki M, Czado W, Frese T, et al. Nanostructured fibers via electrospinning. Adv Mater. 2001;13(1):70–72.
  • Megelski S, Stephens JS, Chase DB, et al. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules. 2002;35(22):8456–8466.
  • Liu Z, Zhao J-h, Liu P, et al. Tunable surface morphology of electrospun PMMA fiber using binary solvent. Appl Surf Sci. 2016; 364:516–521.
  • Huang C, Thomas NL. Fabricating porous poly(lactic acid) fibers via electrospinning. Eur Polym J. 2018;99:464–476.
  • Huang C, Thomas NL. Fabrication of porous fibers via electrospinning: strategies and applications. Polym Rev. 2020;60(4):595–647.
  • Lin J, Ding B, Yang J, et al. Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale. 2012;4(1):176–182.
  • Liu W, Huang C, Jin X. Electrospinning of grooved polystyrene fibers: effect of solvent systems. Nanoscale Res Lett. 2015;10(1):237.
  • Putti M, Simonet M, Solberg R, et al. Electrospinning poly(ε-caprolactone) under controlled environmental conditions: Influence on fiber morphology and orientation. Polymer. 2015; 63:189–195.
  • Li WC, Shi L, Zhou K, et al. Facile fabrication of porous polymer fibers via cryogenic electrospinning system. J Mater Process Tech. 2019; 266:551–557.
  • Pant B, Park M, Park SJ. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics. 2019;11(7):305.
  • Moghe AK, Gupta BS. Co-axial electrospinning for nanofiber structures: Preparation and applications. Polym Rev. 2008;48(2):353–377.
  • Han D, Steckl AJ. Coaxial electrospinning formation of complex polymer fibers and their applications. Chempluschem. 2019;84(10):1453–1497.
  • Sun Z, Zussman E, Yarin AL, et al. Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater. 2003;15(22):1929–1932.
  • Forward KM, Flores A, Rutledge GC. Production of core/shell fibers by electrospinning from a free surface. Chem Eng Sci. 2013; 104:250–259.
  • Zhao Y, Cao X, Jiang L. Bio-mimic multichannel microtubes by a Facile method. J Am Chem Soc. 2007;129(4):764–765.
  • Dror Y, Salalha W, Avrahami R, et al. One-step production of polymeric microtubes by co-electrospinning. Small. 2007;3(6):1064–1073.
  • McCann JT, Marquez M, Xia Y. Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc. 2006;128(5):1436–1437.
  • Chen J-T, Chen W-L, Fan P-W. Hierarchical structures by wetting porous templates with electrospun polymer fibers. ACS Macro Lett. 2012;1(1):41–46.
  • Persano L, Camposeo A, Tekmen C, et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng. 2013;298(5):504–520.
  • Naraghi M, Chasiotis I, Kahn H, et al. Mechanical deformation and failure of electrospun polyacrylonitrile nanofibers as a function of strain rate. Appl Phys Lett. 2007;91(15):151901.
  • Tang S, Li Y, Liu WK, et al. Surface ripples of polymeric nanofibers under tension: the crucial role of Poisson’s ratio. Macromolecules. 2014;47(18):6503–6514.
  • Chen JT, Kao YH, Kuo TY, et al. Fabrication of electrospun polymer fibers with nonspherical cross-sections using a nanopressing technique. Macromol Rapid Commun. 2016;37(3):239–245.
  • Müller GFJ, Stürzel M, Mülhaupt R. Core/shell and hollow ultra high molecular weight polyethylene nanofibers and nanoporous polyethylene prepared by mesoscopic shape replication catalysis. Adv Funct Mater. 2014;24(19):2860–2864.
  • Haider A, Ozgit-Akgun C, Kayaci F, et al. Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition. Apl Mater. 2014;2(9):096109.
  • Doğan YK, Demirural A, Baykara T. Single-needle electrospinning of PVA hollow nanofibers for core–shell structures. SN Appl Sci. 2019; 1(5):415.
  • Saetia K, Schnorr JM, Mannarino MM, et al. Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv Funct Mater. 2014;24(4):492–502.
  • Jing X, Mi HY, Wang XC, et al. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering . ACS Appl Mater Interfaces. 2015;7(12):6955–6965.
  • Che H, Huo M, Peng L, et al. CO2 – responsive nanofibrous membranes with switchable oil/water wettability. Angew Chem Int Ed Engl. 2015;54(31):8934–8938.
  • Devarayan K, Kim HY, Kim BS. Facile fabrication of hierarchical cellulose nanospicules via hydrolytic hydrogenation. Carbohydr Polym. 2015; 117:408–413.
  • Zandén C, Voinova M, Gold J, et al. Surface characterization of oxygen plasma treated electrospun polyurethane fibers and their interaction with red blood cells. Eur Polym J. 2012;48(3):472–482.
  • Xue CH, Li YR, Zhang P, et al. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Appl Mater Interfaces. 2014;6(13):10153–10161.
  • Hughes-Brittain NF, Qiu L, Picot OT, et al. Surface texturing of electrospun fibers by photoembossing using pulsed laser interference holography and its effects on endothelial cell adhesion. Polymer. 2017;125:40–49. In Press.
  • Chen H, Di J, Wang N, et al. Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach. Small. 2011;7(13):1779–1783.
  • Wang X, Yuan Y, Huang X, et al. Controlled release of protein from core-shell nanofibers prepared by emulsion electrospinning based on green chemical. J Appl Polym Sci. 2015;132(16):n/a–n/a.
  • Huang ZX, Wu JW, Wong SC, et al. The technique of electrospinning for manufacturing core-shell nanofibers. Mater Manuf Process. 2018;33(2):202–219.
  • Zhang C, Feng FQ, Zhang H. Emulsion electrospinning: fundamentals, food applications and prospects. Trends Food Sci Tech. 2018; 80:175–186.
  • Ma L, Shi XJ, Zhang XX, et al. Electrospinning of polycaprolacton/chitosan core-shell nanofibers by a stable emulsion system. Colloid Surface A. 2019; 583: 123956.
  • Gupta A, Eral HB, Hatton TA, et al. Nanoemulsions: formation, properties and applications. Soft Matter. 2016;12(11):2826–2841.
  • Wang M, Fang D, Wang N, et al. Preparation of PVDF/PVP core–shell nanofibers mats via homogeneous electrospinning. Polymer. 2014;55(9):2188–2196.
  • Katsogiannis KAG, Vladisavljević GT, Georgiadou S. Porous electrospun polycaprolactone (PCL) fibers by phase separation. Eur Polym J. 2015; 69:284–295.
  • Nayani K, Katepalli H, Sharma CS, et al. Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind Eng Chem Res. 2012;51(4):1761–1766.
  • Zhang WW, Mele E. Phase separation events induce the coexistence of distinct nanofeatures in electrospun fibers of poly(ethyl cyanoacrylate) and polycaprolactone. Mater Today Commun. 2018; 16:135–141.
  • Chen G, Guo J, Nie J, et al. Preparation, characterization, and application of PEO/HA core shell nanofibers based on electric field induced phase separation during electrospinning. Polymer. 2016; 83:12–19.
  • Tang K, Yu Y, Mu X, et al. Multichannel hollow TiO2 nanofibers fabricated by single-nozzle electrospinning and their application for fast lithium storage. Electrochem Commun. 2013; 28:54–57.
  • Darling SB. Directing the self-assembly of block copolymers. Prog Polym Sci. 2007;32(10):1152–1204.
  • Bates FS, Fredrickson GH. Block copolymers—designer soft materials. Phys Today. 1999;52(2):32–38.
  • Mai Y, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev. 2012;41(18):5969–5985.
  • Sing CE, Zwanikken JW, Olvera de la Cruz M. Electrostatic control of block copolymer morphology. Nat Mater. 2014;13(7):694–698.
  • Kennemur JG, Yao L, Bates FS, et al. Sub-5 nm domains in ordered poly(cyclohexylethylene)-block-poly(methyl methacrylate) block polymers for lithography. Macromolecules. 2014;47(4):1411–1418.
  • Radjabian M, Abetz V. Tailored pore sizes in integral asymmetric membranes formed by blends of block copolymers. Adv Mater. 2015;27(2):352–355.
  • Sprouse D, Jiang Y, Laaser JE, et al. Tuning cationic block copolymer micelle size by pH and ionic strength. Biomacromolecules. 2016;17(9):2849–2859.
  • Qiu H, Hudson ZM, Winnik MA, et al. Micelle assembly. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles . Science. 2015;347(6228):1329–1332.
  • Brosnan SM, Schlaad H, Antonietti M. Aqueous self-assembly of purely hydrophilic block copolymers into giant vesicles. Angew Chem Int Ed. 2015;54(33):9715–9718.
  • Zhang WJ, Hong CY, Pan CY. Formation of hexagonally packed hollow hoops and morphology transition in RAFT ethanol dispersion polymerization. Macromol Rapid Commun. 2015;36(15):1428–1436.
  • Lin W, Zheng C, Wan X, et al. Transition of large compound micelles into cylinders in dilute solution: kinetic study. Macromolecules. 2010;43(12):5405–5410.
  • Cheng X, Jin Y, Fan B, et al. Self-assembly of polyurethane phosphate ester with phospholipid-like structures: spherical, worm-like micelles, vesicles, and large compound vesicles. ACS Macro Lett. 2016;5(2):238–243.
  • Chen L, Wang S, Yu QQ, et al. A comprehensive review of electrospinning block copolymers. Soft Matter. 2019;15(12):2490–2510.
  • Kapllani A, Tran C, Kalra V. Self-assembly of fully conjugated rod–rod diblock copolymers within nanofibers. Soft Matter. 2013;9(46):11014.
  • Kalra V, Mendez S, Lee JH, et al. Confined assembly in coaxially electrospun block copolymer fibers. Adv Mater. 2006;18(24):3299–3303.
  • Ma M, Krikorian V, Yu JH, et al. Electrospun polymer nanofibers with internal periodic structure obtained by microphase separation of cylindrically confined block copolymers. Nano Lett. 2006;6(12):2969–2972.
  • Zhao H, Gu W, Thielke MW, et al. Functionalized nanoporous thin films and fibers from photocleavable block copolymers featuring activated esters. Macromolecules. 2013;46(13):5195–5201.
  • Zhai F-Y, Huang W, Wu G, et al. Nanofibers with very fine core-shell morphology from anisotropic micelle of amphiphilic crystalline-coil block copolymer . ACS Nano. 2013;7(6):4892–4901.
  • Zhang X, Megone W, Peijs T, et al. Functionalization of electrospun PLA fibers using amphiphilic block copolymers for use in carboxy-methyl-cellulose hydrogel composites. Nanocomposites. 2020;6(3):85–98.
  • Zhang X, Geven MA, Grijpma DW, et al. Polymer-polymer composites for the design of strong and tough degradable biomaterials. Mater Today Commun. 2016; 8:53–63.
  • Jiang S, Duan G, Schöbel J, et al. Short electrospun polymeric nanofibers reinforced polyimide nanocomposites. Compos Sci Technol. 2013; 88:57–61.
  • Kriha O, Becker M, Lehmann M, et al. Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers—a route to magnetic micromanipulators. Adv Mater. 2007;19(18):2483–2485.
  • Thieme M, Agarwal S, Wendorff JH, et al. Electrospinning and cutting of ultrafine bioerodible poly(lactide-co-ethylene oxide) tri- and multiblock copolymer fibers for inhalation applications. Polym Adv Technol. 2011;22(9):1335–1344.
  • Duan G, Jiang S, Jérôme V, et al. Ultralight, soft polymer sponges by self-assembly of short electrospun fibers in colloidal dispersions. Adv Funct Mater. 2015;25(19):2850–2856.
  • Xu W, Feng Y, Ding Y, et al. Short electrospun carbon nanofiber reinforced polyimide composite with high dielectric permittivity. Mater Lett. 2015; 161:431–434.
  • Ren Y, Wang S, Liu R, et al. A novel route toward well-dispersed short nanofibers and nanoparticles via electrospinning. RSC Adv. 2016;6(36):30139–30147.
  • Langner M, Greiner A. Wet-laid meets electrospinning: nonwovens for filtration applications from short electrospun polymer nanofiber dispersions. Macromol Rapid Commun. 2016;37(4):351–355.
  • Mulky E, Yazgan G, Maniura-Weber K, et al. Fabrication of biopolymer-based staple electrospun fibers for nanocomposite applications by particle-assisted low temperature ultrasonication. Mater Sci Eng C Mater Biol Appl. 2014; 45:277–286.
  • Sawawi M, Wang TY, Nisbet DR, et al. Scission of electrospun polymer fibers by ultrasonication. Polymer. 2013;54(16):4237–4252.
  • Stoiljkovic A, Agarwal S. Short electrospun fibers by UV cutting method. Macromol Mater Eng. 2008;293(11):895–899.
  • Kim TG, Park TG. Biodegradable polymer nanocylinders fabricated by transverse fragmentation of electrospun nanofibers through aminolysis. Macromol Rapid Commun. 2008;29(14):1231–1236.
  • Fathona IW, Yabuki A. Mapping the influence of electrospinning parameters on the morphology transition of short and continuous nanofibers. Fibers Polym. 2016;17(8):1238–1244.
  • Yao J, Jin J, Lepore E, et al. Electrospinning ofp-aramid fibers. Macromol Mater Eng. 2015;300(12):1238–1245.
  • Regev O, Reddy CS, Nseir N, et al. Hydrogel reinforced by short albumin fibers: mechanical characterization and assessment of biocompatibility. Macromol Mater Eng. 2013;298(3):283–291.
  • Fathona IW, Yabuki A. Short electrospun composite nanofibers: Effects of nanoparticle concentration and surface charge on fiber length. Curr Appl Phys. 2014;14(5):761–767.
  • Fathona IW, Yabuki A. One-step fabrication of short electrospun fibers using an electric spark. J Mater Process Tech. 2013;213(11):1894–1899.
  • Wang Z, Qian Y, Li L, et al. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing. J Biomater Appl. 2016;30(6):686–698.
  • Yang C, Yu DG, Pan D, et al. Electrospun pH-sensitive core-shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater. 2016; 35:77–86.
  • Ma C, Li Y, Shi J, et al. High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching. Chem Eng J. 2014; 249:216–225.
  • Shaohui L, Jiwei Z, Jinwen W, et al. Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl Mater Interfaces. 2014;6(3):1533–1540.
  • Bahramzadeh A, Zahedi P, Abdouss M. Acrylamide-plasma treated electrospun polystyrene nanofibrous adsorbents for cadmium and nickel ions removal from aqueous solutions. J Appl Polym Sci. 2016;133(5):42944.
  • Cheng Q, Lee BL, Komvopoulos K, et al. Plasma surface chemical treatment of electrospun poly(L-lactide) microfibrous scaffolds for enhanced cell adhesion, growth, and infiltration. Tissue Eng Part A. 2013;19(9-10):1188–1198.
  • Ali MA, Mondal K, Singh C, et al. Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale. 2015;7(16):7234–7245.
  • Ivanova AA, Syromotina DS, Shkarina S, et al. Effect of low-temperature plasma treatment of electrospun polycaprolactone fibrous scaffolds on calcium carbonate mineralization. RSC Adv. 2018;8(68):39106–39114.
  • Molnar K, Jozsa B, Barczikai D, et al. Plasma treatment as an effective tool for crosslinking of electrospun fibers. J Mol Liq. 2020; 303: 112628.
  • Thielke MW, Bruckner EP, Wong DL, et al. Thiol-ene modification of electrospun polybutadiene fibers crosslinked by UV irradiation. Polymer. 2014;55(22):5596–5599.
  • Arslan O, Aytac Z, Uyar T. Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification. ACS Appl Mater Interfaces. 2016;8(30):19747–19754.
  • Fischer T, Moller M, Singh S. Approach to obtain electrospun hydrophilic fibers and prevent fiber necking. Macromol Mater Eng. 2019;304(12):1900565.
  • Kangwansupamonkon W, Tiewtrakoonwat W, Supaphol P, et al. Surface modification of electrospun chitosan nanofibrous mats for antibacterial activity. J Appl Polym Sci. 2014;131(21):40981(1-9).
  • Viswanathan P, Themistou E, Ngamkham K, et al. Controlling surface topology and functionality of electrospun fibers on the nanoscale using amphiphilic block copolymers to direct mesenchymal progenitor cell adhesion. Biomacromolecules. 2015;16(1):66–75.
  • Liu S, Zhai J. Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J Mater Chem A. 2015;3(4):1511–1517.
  • Li L, Zhou G, Wang Y, et al. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials. 2015;37:218–229.
  • Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release: Off J Control Release Soc. 2015; 220:584–591.
  • Lee JH, Park JH, El-Fiqi A, et al. Biointerface control of electrospun fiber scaffolds for bone regeneration: engineered protein link to mineralized surface. Acta Biomater. 2014;10(6):2750–2761.
  • Esfahani H, Prabhakaran MP, Salahi E, et al. Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: kinetics and isotherm. J Colloid Interface Sci. 2015; 443:143–152.
  • Shafiq M, Jung Y, Kim SH. Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration. J Biomed Mater Res A. 2016;104(6):1352–1371.
  • Cao Z, Wang D, Lyu L, et al. Fabrication and characterization of PCL/CaCO3electrospun composite membrane for bone repair. RSC Adv. 2016;6(13):10641–10649.
  • Luoh R, Hahn HT. Electrospun nanocomposite fiber mats as gas sensors. Compos Sci Technol. 2006;66(14):2436–2441.
  • Li Y, Porwal H, Huang Z, et al. Enhanced thermal and electrical properties of polystyrene-graphene nanofibers via electrospinning. J Nanomater. 2016; 2016:1–8.
  • Koosha M, Mirzadeh H, Shokrgozar MA, et al. Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Adv. 2015;5(14):10479–10487.
  • Baji A, Mai Y-W, Abtahi M, et al. Microstructure development in electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence on tensile strength and dielectric permittivity. Compos Sci Technol. 2013; 88:1–8.
  • Dong Y, Marshall J, Haroosh HJ, et al. Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: influence of HNT content and modification. Compos A: Appl Sci Manuf. 2015; 76:28–36.
  • Sun H, Xu Y, Zhou Y, et al. Preparation of superhydrophobic nanocomposite fiber membranesby electrospinning poly(vinylidene fluoride)/silane coupling agentmodified SiO2 nanoparticles. J Appl Polym Sci. 2017;134(13):44501(1-8).
  • Yao J, Picot OT, Hughes-Brittain NF, et al. Electrospinning of reactive mesogens. Eur Polym J. 2016; 84:642–651.
  • Zhang Y, Venugopal JR, El-Turki A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29(32):4314–4322.
  • Wang W, Ciselli P, Kuznetsov E, et al. Effective reinforcement in carbon nanotube-polymer composites, philosophical transactions. Series A, Math, Phys Eng Sci. 2008; 366:1613–1626.
  • Zhang C, Salick MR, Cordie TM, et al. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering, materials science & engineering. Mater Sci Eng C: Mater Biol Appl. 2015; 49:463–471.
  • Zhou C, Shi Q, Guo W, et al. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces. 2013;5(9):3847–3854.
  • Changsarn S, Mendez JD, Shanmuganathan K, et al. Biologically inspired hierarchical design of nanocomposites based on poly(ethylene oxide) and cellulose nanofibers. Macromol Rapid Commun. 2011;32(17):1367–1372.
  • Navarro-Pardo F, Martinez-Hernandez AL, Velasco-Santos C. Carbon nanotube and graphene based polyamide electrospun nanocomposites: a review. J Nanomater. 2016;2016:1–16.
  • Stachewicz U, Modaresifar F, Bailey RJ, et al. Manufacture of void-free electrospun polymer nanofiber composites with optimized mechanical properties. ACS Appl Mater Interfaces. 2012;4(5):2577–2582.
  • Kausar A. Polyacrylonitrile-based nanocomposite fibers: a review of current developments. J Plast Film Sheet. 2019;35(3):295–316.
  • Gao XZ, Han SY, Zhang RH, et al. Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. J Mater Chem B. 2019;7(45):7075–7089.
  • Zuidema JM, Hyzinski-Garcia MC, Van Vlasselaer K, et al. Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-L-lactic acid fibers. Biomaterials. 2014;35(5):1439–1449.
  • Huang L, Arena JT, McCutcheon JR. Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis. J Membr Sci. 2016; 499:352–360.
  • Huang MH, Meng LJ, Li BB, et al. Fabrication of innovative forward osmosis membranes via multilayered interfacial polymerization on electrospun nanofibers. J Appl Polym Sci. 2019;136(12):47247.
  • He L, Tang S, Prabhakaran MP, et al. Surface modification of PLLA nano-scaffolds with laminin multilayer by LbL assembly for enhancing neurite outgrowth. Macromol Biosci. 2013;13(11):1601–1609.
  • Shangguan JH, Bai L, Li Y, et al. Layer-by-layer decoration of MOFs on electrospun nanofibers. RSC Adv. 2018;8(19):10509–10515.
  • Kayaci F, Vempati S, Ozgit-Akgun C, et al. Enhanced photocatalytic activity of homoassembled ZnO nanostructures on electrospun polymeric nanofibers: A combination of atomic layer deposition and hydrothermal growth. Appl Catal, B. 2014; 156-157:173–183.
  • Keri O, Kocsis E, Nagy ZK, et al. Preparation of Al(2)O(3) coated Pva and Pvp nanofibers and Al(2)O(3) nanotubes by electrospinning and atomic layer deposition. Rev Roum Chim. 2018; 63:401–406.
  • Lee J, Kim IS, Hwang MH, et al. Atomic layer deposition and electrospinning as membrane surface engineering methods for water treatment: a short review. Environ Sci: Water Res Technol. 2020;6(7):1765–1785.
  • Xie J, Liu W, MacEwan MR, et al. Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano. 2014;8(2):1878–1885.
  • Vaquette C, Ivanovski S, Hamlet SM, et al. Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials. 2013;34(22):5538–5551.
  • Huang L, Arena JT, Manickam SS, et al. Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification. J Membr Sci. 2014;460:241–249.
  • Cho HJ, Perikamana SK, Lee JH, et al. Effective immobilization of BMP-2 mediated by polydopamine coating on biodegradable nanofibers for enhanced in vivo bone formation. ACS Appl Mater Interfaces. 2014;6(14):11225–11235.
  • Amokrane G, Humblot V, Jubeli E, et al. Electrospun poly(ε-caprolactone) fiber scaffolds functionalized by the covalent grafting of a bioactive polymer: surface characterization and influence on in vitro biological response. Acs Omega. 2019;4(17):17194–17208.
  • Ameringer T, Ercole F, Tsang KM, et al. Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions. Biointerphases. 2013;8(1):16.
  • Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev. 2009;61(12):1033–1042.
  • Celebioglu A, Demirci S, Uyar T. Cyclodextrin-grafted electrospun cellulose acetate nanofibers via “Click” reaction for removal of phenanthrene. Appl Surf Sci. 2014; 305:581–588.
  • Harrison RH, Steele JA, Chapman R, et al. Modular and versatile spatial functionalization of tissue engineering scaffolds through fiber-initiated controlled radical polymerization. Adv Funct Mater. 2015;25(36):5748–5757.
  • Higaki Y, Kabayama H, Tao D, et al. Surface functionalization of electrospun poly(butylene terephthalate) fibers by surface-initiated radical polymerization. Macromol Chem Phys. 2015;216(10):1103–1108.
  • Wang X, Fu Q, Wang X, et al. In situ cross-linked and highly carboxylated poly(vinyl alcohol) nanofibrous membranes for efficient adsorption of proteins. J Mater Chem B. 2015;3(36):7281–7290.
  • Huang Z-M, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–2253.
  • Lee MW, An S, Jo HS, et al. Self-healing nanofiber-reinforced polymer composites. 1. Tensile testing and recovery of mechanical properties. ACS Appl Mater Interfaces. 2015;7(35):19546–19554.
  • Chalco-Sandoval W, Fabra M, Lopez-Rubio A, et al. Development of an encapsulated phase change material via emulsion and coaxial electrospinning. J Appl Polym Sci. 2016;133(36):43903(1-9).
  • Cheng L, Ma SY, Li XB, et al. Highly sensitive acetone sensors based on Y-doped SnO2 prismatic hollow nanofibers synthesized by electrospinning. Sens Actuat, B. 2014; 200:181–190.
  • Liu Q, Chen ZW, Pei XY, et al. Review: applications, effects and the prospects for electrospun nanofibrous mats in membrane separation. J Mater Sci. 2020;55(3):893–924.
  • Kaur S, Sundarrajan S, Rana D, et al. Review: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci. 2014;49(18):6143–6159.
  • Ghaffour N, Bundschuh J, Mahmoudi H, et al. Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination. 2015; 356:94–114.
  • Ge Y, Chen R-p, Li H, et al. Fiber membrane with orthogonal aligned surface for guided tissue regeneration. Mater Lett. 2018; 228:301–304.
  • Xin Y, Reneker DH. Garland formation process in electrospinning. Polymer. 2012;53(16):3629–3635.
  • Gorji M, Jeddi AAA, Gharehaghaji AA. Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. J Appl Polym Sci. 2012;125(5):4135–4141.
  • Katta P, Alessandro M, Ramsier R, et al. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett. 2004;4(11):2215–2218.
  • Wang N, Burugapalli K, Song W, et al. Electrospun fibro-porous polyurethane coatings for implantable glucose biosensors. Biomaterials. 2013;34(4):888–901.
  • Criscenti G, Vasilevich A, Longoni A, et al. 3D screening device for the evaluation of cell response to different electrospun microtopographies. Acta Biomater. 2017; 55:310–322.
  • Hejazi F, Mirzadeh H, Contessi N, et al. Novel class of collector in electrospinning device for the fabrication of 3D nanofibrous structure for large defect load-bearing tissue engineering application. J Biomed Mater Res A. 2017;105(5):1535–1548.
  • Su C, Lu C, Cao H, et al. Fabrication of a novel nanofibers-covered hollow fiber membrane via continuous electrospinning with non-rotational collectors. Mater Lett. 2017; 204:8–11.
  • Lu W, Sun J, Jiang X. Recent advances in electrospinning technology and biomedical applications of electrospun fibers. J Mater Chem B. 2014;2(17):2369–2380.
  • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12(5):1197–1211.
  • Pazhanimala SK, Vllasaliu D, Bt R-A. Electrospun nanometer to micrometer scale biomimetic synthetic membrane scaffolds in drug delivery and tissue engineering: a review. Appl Sci-Basel. 2019; 9(5):910.
  • Kishan AP, Cosgriff-Hernandez EM. Recent advancements in electrospinning design for tissue engineering applications: a review. J Biomed Mater Res A. 2017;105(10):2892–2905.
  • Khorshidi S, Solouk A, Mirzadeh H, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med. 2016;10(9):715–738.
  • Bao M, Lou X, Zhou Q, et al. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl Mater Interfaces. 2014;6(4):2611–2621.
  • Yao YT, Xu YC, Wang B, et al. Recent development in electrospun polymer fiber and their composites with shape memory property: a review. PRT. 2018;47(1):47–54.
  • Jin Y, Wang N, Yuan B, et al. Stress-induced self-assembly of complex three dimensional structures by elastic membranes. Small. 2013;9(14):2410–2414.
  • Song JQ, Zhu GL, Wang L, et al. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair. Biofabrication. 2017;9(1):015018.
  • Song JQ, Zhu GL, Gao HC, et al. Origami meets electrospinning: a new strategy for 3D nanofiber scaffolds. Bio-Des Manuf. 2018;1(4):254–264.
  • Kang Y, Wang CL, Qiao YB, et al. Tissue-engineered trachea consisting of electrospun patterned sc-PLA/GO- g-IL fibrous membranes with antibacterial property and 3D-printed skeletons with elasticity. Biomacromolecules. 2019;20(4):1765–1776.
  • Zong XH, Bien H, Chung CY, et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials. 2005;26(26):5330–5338.
  • Ibrahim DM, Kakarougkas A, Allam NK. Recent advances on electrospun scaffolds as matrices for tissue-engineered heart valves. Mater Today Chem. 2017; 5:11–13.
  • Kitsara M, Agbulut O, Kontziampasis D, et al. Fibers for hearts: a critical review on electrospinning for cardiac tissue engineering. Acta Biomater. 2017; 48:20–40.
  • Salifu AA, Lekakou C, Labeed F. Multilayer cellular stacks of gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. J Biomed Mater Res Part A. 2016;105(3):779–789.
  • Bhattarai DP, Aguilar LE, Park CH, et al. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes-Basel. 2018;8(3):62.
  • Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed. 2019;30(14):1308–1355.
  • Rayatpisheh S, Heath DE, Shakouri A, et al. Combining cell sheet technology and electrospun scaffolding for engineered tubular, aligned, and contractile blood vessels. Biomaterials. 2014;35(9):2713–2719.
  • Ercolani E, Del Gaudio C, Bianco A. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med. 2015;9(8):861–888.
  • Awad NK, Niu HT, Ali U, et al. Electrospun fibrous scaffolds for small-diameter blood vessels: a review. Membranes-Basel. 2018;8(1):15.
  • Baiguera S, Del Gaudio C, Lucatelli E, et al. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials. 2014;35(4):1205–1214.
  • Heidari M, Bahrami SH, Ranjbar-Mohammadi M, et al. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mat Sci Eng C-Mater. 2019; 103: 109768.
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29(34):4532–4539.
  • Sadeghi D, Karbasi S, Razavi S, et al. Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. J Appl Polym Sci. 2016;133(47):44171(1-9).
  • Zhang YB, Liu XC, Zeng LD, et al. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater. 2019;29(36):1970246.
  • Yilmaz EN, Zeugolis DI. Electrospun polymers in cartilage engineering-state of play. Front Bioeng Biotech. 2020;8: 77.
  • Ashworth JC, Best SM, Cameron RE. Quantitative architectural description of tissue engineering scaffolds. Mater Technol. 2014;29(5):281–295.
  • Duan N, Geng X, Ye L, et al. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation. Biomed Mater. 2016;11(3):035007
  • Liu C, Wong H, Yeung K, et al. Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility. Polymers. 2016;8(8):287.
  • Ji Y, Liang K, Shen X, et al. Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydr Polym. 2014; 101:68–74.
  • Cai N, Dai Q, Wang Z, et al. Toughening of electrospun poly(l-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. J Mater Sci. 2015;50(3):1435–1445.
  • Liu M, Zhang Y, Wu C, et al. Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int J Biol Macromol. 2012;51(4):566–575.
  • Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7(7):2769–2781.
  • Song JQ, Gao HC, Zhu GL, et al. The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon. 2015; 95:1039–1050.
  • Venugopal J, Prabhakaran MP, Zhang YZ, et al. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Trans A Math Phys Eng Sci. 2010;368(1917):2065–2081.
  • Bao M, Wang X, Yuan H, et al. HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing. J Mater Chem B. 2016;4(31):5308–5320.
  • Dhand C, Ong ST, Dwivedi N, et al. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials. 2016; 104:323–338.
  • Chen W, Sun B, Zhu T, et al. Groove Fibers based porous scaffold for cartilage tissue engineering application. Mater Lett. 2017;192:44–47.
  • Simonet M, Schneider OD, Neuenschwander P, et al. Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polym Eng Sci. 2007;47(12):2020–2026.
  • Cai S, Xu H, Jiang Q, et al. Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: fabrication and mechanism study. Langmuir. 2013; 29:2311–2318.
  • Wang J, Valmikinathan CM, Liu W, et al. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. J Biomed Mater Res A. 2010; 93:753–762.
  • Ju YM, Choi JS, Atala A, et al. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials. 2010; 31:4313–4321.
  • Uhrich KE, Cannizzaro SM, Langer RS, et al. Polymeric systems for controlled drug release. Chem Rev. 1999; 99:3181–3198.
  • Pillay V, Dott C, Choonara YE, et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater. 2013;2013:1–22.
  • Ghafoor B, Aleem A, Ali MN, et al. Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems. J Drug Deliv Sci Tec. 2018; 48:82–87.
  • Langer R. Drug delivery and targeting. Nature. 1998; 392(6679 Suppl):5–10.
  • Zeng J, Xu X, Chen X, et al. Biodegradable electrospun fibers for drug delivery. J Control Release. 2003;92:227–231.
  • Zhang X, Geven MA, Wang XL, et al. A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules. Int J Nanomedicine. 2018;13:5701–5718.
  • Cheng L, Sun X, Zhao X, et al. Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials. 2016; 83:169–181.
  • Spano F, Quarta A, Martelli C, et al. Fibrous scaffolds fabricated by emulsion electrospinning: from hosting capacity to in vivo biocompatibility. Nanoscale. 2016;8:9293–9303.
  • Wu S, Wu J, Yue J, et al. Poly (d,l-lactic acid) electrospun fibers with tunable surface nanotopography for modulating drug release profiles. Mater Lett. 2015;161:716–719.
  • Zheng F, Wang S, Wen S, et al. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials. 2013;34:1402–1412.
  • Ma J, Meng J, Simonet M, et al. Biodegradable fiber scaffolds incorporating water-soluble drugs and proteins. J Mater Sci Mater Med. 2015; 26:205.
  • Luo D, Zhang X, Shahid S, et al. Electrospun poly(lactic acid) fibers containing novel chlorhexidine particles with sustained antibacterial activity. Biomater Sci. 2016;5:111–119.
  • Xue J, Niu Y, Gong M, et al. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano. 2015;9:1600–1612.
  • Qi RL, Guo R, Shen MW, et al. Electrospun poly(lactic-co-glycolicacid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release. J Mater Chem. 2010;20(47):10622–10629.
  • Kim HS, Yoo HS. MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation. J Control Release. 2010; 145:264–271.
  • Xie S, Tai S, Song H, et al. Genetically engineering of Escherichia coli and immobilization on electrospun fibers for drug delivery purposes. J Mater Chem B. 2016;4(42):6820–6829.
  • Zahedi P, Rezaeian I, Ranaei-Siadat SO, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol. 2010;21(2):77–95.
  • Miguel SP, Figueira DR, Simoes D, et al. Electrospun polymeric nanofibres as wound dressings: A review. Colloids Surf B Biointerfaces. 2018; 169:60–71.
  • Abrigo M, McArthur SL, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci. 2014; 14:772–792.
  • Rujitanaroj PO, Pimpha N, Supaphol P. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer. 2008;49(21):4723–4732.
  • Nhi TT, Minh HH, Nam TMP, et al. Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Mat Sci Eng C–Mater. 2018; 91:318–329.
  • Lowe A, Bills J, Verma R, et al. Electrospun nitric oxide releasing bandage with enhanced wound healing. Acta Biomater. 2015; 13:121–130.
  • Spasova M, Manolova N, Paneva D, et al. Polylactide stereocomplex-based electrospun materials possessing surface with antibacterial and hemostatic properties. Biomacromolecules. 2010;11(1):151–159.
  • Kataria K, Gupta A, Rath G, et al. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm. 2014;469(1):102–110.
  • He T, Wang JN, Huang PL, et al. Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing. Colloids Surf B Biointerfaces. 2015; 130:278–286.
  • Lai HJ, Kuan CH, Wu HC, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 2014;10(10):4156–4166.
  • Dwivedi C, Pandey H, Pandey AC, et al. In vivo biocompatibility of electrospun biodegradable dual carrier (antibiotic plus growth factor) in a mouse modelimplications for rapid wound healing. Pharmaceutics. 2019;11(4):180.
  • Li Y, Chen F, Nie J, et al. Electrospun poly(lactic acid)/chitosan core-shell structure nanofibers from homogeneous solution. Carbohydr Polym. 2012;90:1445–1451.
  • Wei Q, Xu F, Xu X, et al. The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning. Front Mater Sci. 2016;10(2):113–121.
  • Jin G, Prabhakaran MP, Ramakrishna S. Photosensitive and biomimetic core-shell nanofibrous scaffolds as wound dressing. Photochem Photobiol. 2014;90:673–681.
  • Naseri N, Algan C, Jacobs V, et al. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym. 2014; 109:7–15.
  • Varesano A, Carletto RA, Mazzuchetti G. Experimental investigations on the multi-jet electrospinning process. J Mater Process Tech. 2009;209(11):5178–5185.
  • Lukas D, Sarkar A, Pokorny P. Self-organization of jets in electrospinning from free liquid surface: a generalized approach. J Appl Phys. 2008;103(8):084309.
  • Jiang SH, Chen YM, Duan GG, et al. Electrospun nanofiber reinforced composites: a review. Polym Chem. 2018;9(20):2685–2720.
  • Bergshoef MM, Vancso GJ. Transparent nanocomposites with ultrathin,electrospun nylon-4,6 fiber reinforcement. Adv Mater. 1999;11(16):1362–1365.
  • Bosworth LA, Turner LA, Cartmell SH. State of the art composites comprising electrospun fibers coupled with hydrogels: a review. Nanomedicine. 2013;9(3):322–335.
  • Zhang X, Geven MA, Grijpma DW, et al. Tunable and processable shape memory composites based on degradable polymers. Polymer. 2017;122:323–331.
  • Somord K, Suwantong O, Tawichai N, et al. Self-reinforced poly(lactic acid) nanocomposites of high toughness. Polymer. 2016;103:347–352.
  • Lin S, Cai Q, Ji J, et al. Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation. Compos Sci Technol. 2008;68(15/16):3322–3329.
  • Meng F, Zhao R, Zhan Y, et al. Design of thorn-like micro/nanofibers: fabrication and controlled morphology for engineered composite materials applications. J Mater Chem. 2011;21(41):16385.
  • Butcher AL, Offeddu GS, Oyen ML. Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends Biotechnol. 2014;32(11):564–570.
  • Hong Y, Huber A, Takanari K, et al. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Biomaterials. 2011;32(13):3387–3394.
  • Seyyed Monfared Zanjani J, Saner Okan B, Yilmaz C, et al. Monitoring the interface and bulk self-healing capability of tri-axial electrospun fibers in glass fiber reinforced epoxy composites. Compos A: Appl Sci Manuf. 2017; 99:221–232.
  • Neppalli R, Causin V, Benetti EM, et al. Polystyrene/TiO2 composite electrospun fibers as fillers for poly(butylene succinate-co-adipate): structure, morphology and properties. Eur Polym J. 2014; 50:78–86.
  • Ekaputra AK, Prestwich GD, Cool SM, et al. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules. 2008;9(8):2097–2103.