3,049
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Green synthesis of silver nanoparticles loaded into bacterial cellulose for antimicrobial application

, , , , , & show all
Pages 34-46 | Received 10 Jan 2022, Accepted 15 Mar 2022, Published online: 28 Mar 2022

References

  • Dubey P, Bhushan B, Sachdev A, et al. Silver-nanoparticle-incorporated composite nanofibers for potential wound-dressing applications. J Appl Polym Sci. 2015;132:42473.
  • Gopiraman M, Jatoi AW, Hiromichi S, et al. Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity. Carbohydr Polym. 2016;149:51–59.
  • Ito H, Sakata M, Hongo C, et al. Cellulose nanofiber nanocomposites with aligned silver nanoparticles. Nanocomposites. 2018;4(4):167–177.
  • Zhang X, Shi X, Gautrot JE, et al. Nanoengineered electrospun fibers and their biomedical applications: a review. Nanocomposites. 2021;7(1):1–34.
  • Soemphol W, Charee P, Audtarat S, et al. Characterization of a bacterial cellulose-silica nanocomposite prepared from agricultural waste products. Mater Res Express. 2020;7(1):015085.
  • Menon MP, Selvakumar R, Kumar PS, et al. Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Adv. 2017;7(68):42750–42773.
  • Yang G, Xie J, Deng Y, et al. Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydr Polym. 2012;87(4):2482–2487.
  • Maneerung D, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym. 2008;72(1):43–51.
  • Kelly KL, Coronado E, Zhao EL, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–677.
  • Chaiyachate P, Dasri T, Chingsungnoen A. Theoretical calculation of the optical absorption property of nanoparticles composed of an Au core and Si shell embedded in silica. Mater Res Express. 2020;7(1):015072.
  • Chaiyachate P, Dasri T. Optical absorption and scattering properties of the active layer of perovskite solar cells incorporated silver nanoparticles. Orient J Chem. 2017;33(2):807–813.
  • Iravani S, Korbekandi H, Mirmohammadi SV, et al. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385–406.
  • Ahmed S, Ahmad M, Swami BL, et al. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl. 2016;9:1–7.
  • Soemphol W, Hongsachart P, Tanamool V. Production and characterization of bacterial cellulose produced from agricultural by-product by Gluconacetobacter strains. Mater Today: Proc. 2018;5(5):11159–11168.
  • Soontaranon S, Rugmai S. Small angle X-ray scattering at Siam photon laboratory. Chin J Phys. 2012;5(2):204–210.
  • Beaucage G. Approximations leading to a unified exponential/Power-Law approach to small-angle scattering. J Appl Crystallogr. 1995;28(6):717–728.
  • Breßler I, Kohlbrecher J, Thünemann AF. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions. J Appl Crystallogr. 2015;48(Pt 5):1587–1598.
  • Ali K, Ahmed B, Dwivedi S, et al. Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PloS One. 2015;10(7):e0131178.
  • Bakht Dalir SJ, Djahaniani H, Nabati F, et al. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon. 2020;6(3):e03624.
  • Roopan SM, Rohit Madhumitha G, et al. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crops Prod. 2013;43:631–635.
  • Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;134:310–315.
  • Sadeghi B, Rostami A, Momeni SS. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015;134:326–332.
  • Ulug B, Turkdemir MH, Cicek A, et al. Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochim Acta A Mol Biomol Spectrosc. 2015;135:153–161.
  • Ghosh S, Patil S, Ahire M, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine. 2012;7:483–496.
  • Arunachalam KD, Annamalai SK. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications. Int J Nanomedicine. 2013;8:2375–2384.
  • Gea S, Reynolds CT, Roohpour N, et al. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Bioresour Technol. 2011;102(19):9105–9110.
  • Tokoh C, Takabe K, Sugiyama J, et al. Cp/mas 13c nmr and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose. 2002;9(3/4):351–360.
  • Castro C, Zuluaga R, Putaux JL, et al. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym. 2011;84(1):96–102.
  • Vazquez A, Foresti ML, Cerrutti P, et al. Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ. 2013;21(2):545–554.
  • Xu Y, Li S, Yue X, et al. Review of silver nanoparticles(AgNPs)-cellulose antibacterial composites. BioRes. 2018;13(1):2150–2170.
  • Santa MLC, Santos ALC, Oliveira PC, et al. Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Mater Chem. 2009;63(9–10):797–799.
  • Agbabiaka A, Wiltfong M, Park C. Small angle X-Ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanopart. 2013;2013:1–11.
  • Moodley JS, Krishna SBN, Pillay K, et al. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci: Nanosci Nanotechnol. 2018;9(1):015011.
  • ErJaee H, Rajaian H, Nazifi S. Synthesis and characterization of novel silver nanoparticles using Chanmaemelum nobile extact for antibacterial application. Adv Nat Sci: Nanosci Nanotechnol. 2018;8(2):025004.
  • Ebrahiminezhad A, Bagheri M, Taghizadeh SM, et al. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci: Nanosci Nanotechnol. 2016;7(1):015018.
  • Shrivastava S, Bera T, Roy A, et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103.
  • Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668.
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346–2353.
  • Ahmed S, Ahmad M, Swami BL, et al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28.