1,811
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sandwich-structured electrospun all-fluoropolymer membranes with thermal shut-down function and enhanced electrochemical performance

, , , , , & ORCID Icon show all
Pages 64-73 | Received 07 Feb 2022, Accepted 21 Mar 2022, Published online: 11 Apr 2022

References

  • Tang JJ, Hou L, Hu TJ, et al. Influence of oxygen content on the electrochemical behavior of SiOx@C anodes for Li-ion battery. Compos. Commun. 2021;23:100544.
  • Zhou CY, Zong W, Zhou GY, et al. Radical-functionalized polymer nanofiber composite separator for ultra-stable dendritic-free lithium metal batteries. Compos. Commun. 2021;25:100696.
  • Chombo PV, Laoonual Y. A review of safety strategies of a Li-ion battery. J. Power Sources. 2020;478:228649.
  • Yang Z, Zhang XJ, Li Z, et al. Interlinked carbon nanocages-coated separator as an efficient trap for soluble polysulfides in a lithium–sulfur battery. Energ Fuel. 2021;35(23):19843–19848.
  • Kim K, Ma H, Park S, et al. Electrolyte-Additive-Driven interfacial engineering for High-Capacity electrodes in Lithium-Ion batteries: Promise and challenges. ACS Energy Lett. 2020;5(5):1537–1553.
  • Zhou ZH, Sun T, Cui J, et al. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. 2021.
  • Liang CL, Liu Y, Bao RY, et al. Sodium ascorbate assisted uniform distribution of Fe3O4 nanoparticles on rGO surface: improved cycling and rate performance of rGO/Fe3O4 anode material for lithium ion batteries. Nanocomposites. 2015;1(3):170–175.
  • Xie Y, Chen XY, Han K, et al. Natural halloysite nanotubes-coated polypropylene membrane as dual-function separator for highly safe Li-ion batteries with improved cycling and thermal stability. Electrochim. Acta. 2021;379:138182.,
  • Song Y-Z, Zhang Y, Yuan J-J, et al. Fast assemble of polyphenol derived coatings on polypropylene separator for high performance lithium-ion batteries. J. Electroanal. C. 2018;808:252–258.
  • Gao ZH, Wen RY, Deng H, et al. Composite membrane of poly(vinylidene fluoride) AND 2D Ni(OH)2 nanosheets for high-performance lithium-ion battery. ACS Appl Polym Mater. 2022;4:960–970.
  • Yuan M, Liu K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J. Energy Chem. 2020;43:58–70.
  • Wang LL, Liu F, Shao WL, et al. Graphite oxide dopping polyimide nanofiber membrane via electrospinning for high performance lithium-ion batteries. Compos. Commun. 2019;16:150–157.
  • Liu J, Liu YB, Yang WX, et al. Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane. J. Power Sources. 2018;396:265–275.
  • Kyeremateng NA, Gukte D, Ferch M, et al. Preparation of a self‐supported SiO2 membrane as a separator for Lithium-Ion batteries. Batteries Supercaps. 2020;3(5):456–462.
  • Yanilmaz M, Chen C, Zhang XW. Fabrication and characterization of SiO2/PVDF composite nanofiber-coated PP nonwoven separators for lithium-ion batteries. J Polym Sci Part B: Polym Phys. 2013;51(23):1719–1726.
  • Qi XT, Zhang Z, Tu CB, et al. Covalent grafting interface engineering to prepare highly efficient and stable polypropylene/mesoporous SiO2 separator for Li-ion batteries. Appl. Surf. Sci. 2021;541:148405.,
  • Rogalski JJ, Bastiaansen CWM, Peijs T. Rotary jet spinning review – a potential high yield future for polymer nanofibers. Nanocomposites. 2017;3(4):97–121.
  • Zhang X, Shi XT, Gautrot JE, et al. Nanoengineered electrospun fibers and their biomedical applications: A review. Nanocomposites. 2021;7(1):1–34.
  • Yusuf A, Avvaru VS, Dirican M, et al. Low heat yielding electrospun phosphenanthrene oxide loaded polyacrylonitrile composite separators for safer high energy density lithium-ion batteries. Appl. Mater. Today. 2020;20:100675.,
  • Chen CC, Zhang WD, Zhu H, et al. Fabrication of metal-organic framework-based nanofibrous separator via one-pot electrospinning strategy. Nano Res. 2021;14(5):1465–1470.
  • Cai M, Yuan D, Zhang X, et al. Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking. J. Power Sources. 2020;461:228123.,
  • Li ML, Sheng L, Xu R, et al. Enhanced the mechanical strength of polyimide (PI) nanofiber separator via PAALi binder for lithium ion battery. Compos. Commun. 2021;24:100607.,
  • Stojanovska E, Kurtulus M, Abdelgawad A, et al. Developing lignin-based bio-nanofibers by centrifugal spinning technique. Int J Biol Macromol. 2018;113:98–105.
  • Cai M, Zhu JM, Yang CC, et al. A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium-ion battery. Polymers. 2019;11(1):185.,
  • Wang LY, Deng NP, Ju JG, et al. A novel core-shell structured poly-m-phenyleneisophthalamide@polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable electrochemical performance. Electrochim. Acta. 2019;300:263–273.
  • Zhou Y-T, Yang J, Liang H-Q, et al. Sandwich-structured composite separators with an anisotropic pore architecture for highly safe Li-ion batteries. Compos. Commun. 2018;8:46–51.
  • Liang T, Liang W-H, Cao J-H, et al. Enhanced performance of high energy density lithium metal battery with PVDF-HFP/LAGP composite separator. ACS Appl Energy Mater. 2021;4(3):2578–2585.
  • Shi C, Dai JH, Huang SH, et al. A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J. Membr. Sci. 2016;518:168–177.
  • Men SL, Gao ZH, Wen RY, et al. Effects of annealing time on physical and mechanical properties of PVDF microporous membranes by a melt extrusion-stretching process. Polym Adv Technol. 2021;32(6):2397–2408.
  • Pornsawan KO, Narong C, Prasit T, et al. Largely enhanced dielectric properties of TiO2- nanorods/poly(vinylidene fluoride) nanocomposites driven by enhanced interfacial areas. Nanocomposites. 2021;7(1):123–131.
  • Kim I, Kim BS, Nam S, et al. Cross-Linked poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) gel polymer electrolyte for flexible Li-Ion battery integrated with organic light emitting diode (OLED). Mater. 2018;11(4):543.,
  • Khalifa M, Janakiraman S, Ghosh S, et al. PVDF/halloysite nanocomposite-based non-wovens as gel polymer electrolyte for high safety lithium ion battery. Polym Compos. 2019;40(6):2320–2334.
  • Wu DZ, Shi C, Huang SH, et al. Electrospun nanofibers for sandwiched polyimide/poly (vinylidene fluoride)/polyimide separators with the thermal shutdown function. Electrochim. Acta. 2015;176:727–734.
  • Pan J-L, Zhang Z, Zhang H, et al. Ultrathin and strong electrospun porous fiber separator. ACS Appl Energy Mater. 2018;1(9):4794–4803.
  • Jiang GJ, Wu H, Guo SY. Reinforcement of adhesion and development of morphology at polymer-polymer interface via reactive compatibilization: a review. Polym Eng Sci. 2010;50(12):2273–2286.
  • Xia Y, Li JJ, Wang HJ, et al. Synthesis and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries. J Solid State Electrochem. 2018;23(2):519–527.
  • Cao JH, Zhu BK, Xu YY. Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J. Membr. Sci. 2006;281(1–2):446–453.
  • Zhang F, Ma XL, Cao CB, et al. Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries. J. Power Sources. 2014;251:423–431.
  • Zhang JM, Cortés-Ballesteros B, Peijs T. All-aramid composites by partial fiber dissolution in mixed solvents. Polym Compos. 2018;39(9):3013–3021.
  • Alcock B, Cabrera NO, Barkoula NM, et al. The mechanical properties of unidirectional all-polypropylene composites. Compos. Part A. 2006;37(5):716–726.
  • Zhang JM, Mousavi Z, Soykeabkaew N, et al. Effects of surface-dissolution process multivariables on the morphology, mechanical properties, and crystallization of all-aramid composites. Polym Compos. 2018;39(9):3307–3316.
  • Nattakan S, Takashi N, Peijs T. All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos. Part A. 2009;40:321–328.
  • Cabrera N, Alcock B, Loos J, et al. Processing of all-polypropylene composites for ultimate recyclability. P I Mech Eng L. 2004;218(L2):145–155.
  • Alcock B, Cabrera NO, Barkoula NM, et al. Interfacial properties of highly oriented coextruded polypropylene tapes for the creation of recyclable all-polypropylene composites. J Appl Polym Sci. 2007;104(1):118–129.
  • Somord K, Suwantong O, Tawichai N, et al. Self-reinforced poly(lactic acid) nanocomposites of high toughness. Polymer. 2016;103:347–352.
  • Somord K, Somord K, Suwantong O, et al. Self-reinforced poly(lactic acid) nanocomposites with integrated bacterial cellulose and its surface modification. Nanocomposites. 2018;4(3):102–111.
  • Alcock B, Peijs T. Technology and development of self-reinforced polymer composites. Adv Polym Sci. 2011;251:1–76.
  • Zhang JM, Peijs T. Self-reinforced poly(ethylene terephthalate) composites by hot consolidation of Bi-component PET yarns. Compos. Part A. 2010;41(8):964–972.
  • Barbosa JC, Dias JP, Lanceros-Mendez S, et al. Recent advances in poly(vinylidene fluoride) and its copolymers for Lithium-Ion battery separators. Membranes. 2018;8(3):45.,
  • Gören A, Mendes J, Rodrigues H, et al. High performance screen-printed electrodes prepared by a green solvent approach for lithium-ion batteries. J. Power Sources. 2016;334:65–77.
  • Shi C, Zhang P, Huang SH, et al. Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J Power Sources. 2015;298:158–165.