2,913
Views
4
CrossRef citations to date
0
Altmetric
Review

Progress and prospects of nanocomposite hydrogels in bone tissue engineering

&
Pages 102-124 | Received 28 Feb 2022, Accepted 06 May 2022, Published online: 19 May 2022

References

  • Qasim M, Chae DS, Lee NY. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine. 2019;14:4333–4351.
  • Annabi N, Tamayol A, Uquillas JA, et al. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv Mater. 2014;26(1):85–124.
  • Abdollahiyan P, Oroojalian F, Mokhtarzadeh A, et al. Hydrogel-Based 3D bioprinting for bone and cartilage tissue engineering. Biotechnol J. 2020;15(12):e2000095.
  • Niemczyk-Soczynska B, Zaszczyńska A, Zabielski K, et al. Hydrogel, electrospun and composite materials for bone/cartilage and neural tissue engineering. Mater Basel Switz. 2021;14(22):6899.
  • Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev. 2010;16(4):371–383.
  • Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271.
  • Zhao H, Liu M, Zhang Y, et al. Nanocomposite hydrogels for tissue engineering applications. Nanoscale. 2020;12(28):14976–14995.
  • Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3(3):278–314.
  • Jacob S, Nair AB, Shah J, et al. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics. 2021;13(3):357.
  • Chaudhari AA, Vig K, Baganizi DR, et al. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. IJMS. 2016;17(12):1974.
  • Han IK, Chung T, Han J, et al. Nanocomposite hydrogel actuators hybridized with various dimensional nanomaterials for stimuli responsiveness enhancement. Nano Converg. 2019;6(1):18.
  • Zhang X, Megone W, Peijs T, et al. Functionalization of electrospun PLA fibers using amphiphilic block copolymers for use in carboxy-methyl-cellulose hydrogel composites. Nanocomposites. 2020;6(3):85–98.
  • Samba I, Hernandez R, Rescignano N, et al. Nanocomposite hydrogels based on embedded PLGA nanoparticles in gelatin. Nanocomposites. 2015;1(1):46–50.
  • Chen T, Hou K, Ren Q, et al. Nanoparticle-Polymer synergies in nanocomposite hydrogels: from design to application. Macromol Rapid Commun. 2018;39(21):e1800337.
  • Caseri WR. Nanocomposites of polymers and inorganic particles: preparation, structure and properties. Mater Sci Technol. 2006;22(7):807–817.
  • Li B, Zhang L, Wang D, et al. Thermosensitive -hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. Mater Sci Eng C Mater Biol Appl. 2021;122:111878.
  • Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13–14):1803–1815.
  • Wahid F, Zhong C, Wang H-S, et al. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers. 2017;9(12):636.
  • Mehrali M, Thakur A, Pennisi CP, et al. Nanoreinforced hydrogels for tissue engineering: Biomaterials that are compatible with Load-Bearing and electroactive tissues. Adv Mater. 2017;29(8):1603612.
  • Huang Q, Zou Y, Arno MC, et al. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev. 2017;46(20):6255–6275.
  • Prasad AS, Wang Y, Li X, et al. Investigating the effect of surface modification on the dispersion process of polymer nanocomposites. Nanocomposites. 2020;6(3):111–124.
  • Sadak O. One-pot scalable synthesis of rGO/AuNPs nanocomposite and its application in enzymatic glucose biosensor. Nanocomposites. 2021;7(1):44–52.
  • Lu L, Yuan S, Wang J, et al. The formation mechanism of hydrogels. Curr Stem Cell Res Ther. 2018;13(7):490–496.
  • Oryan A, Kamali A, Moshiri A, et al. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol. 2018;107(Pt A):678–688.
  • Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41–56.
  • Zhang Y, Chen Q, Dai Z, et al. Nanocomposite adhesive hydrogels: from design to application. J Mater Chem B. 2021;9(3):585–593.
  • Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. 2014;111(3):441–453.
  • Wang Y, Li B, Xu F, et al. Tough magnetic chitosan hydrogel nanocomposites for remotely stimulated drug release. Biomacromolecules. 2018;19(8):3351–3360.
  • Haraguchi K, Ebato M, Takehisa T. Polymer–clay nanocomposites exhibiting abnormal necking phenomena accompanied by extremely large reversible elongations and excellent transparency. Adv Mater. 2006;18(17):2250–2254.
  • Zhu M, Liu Y, Sun B, et al. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromol Rapid Commun. 2006;27(13):1023–1028.
  • Adnan MM, Dalod ARM, Balci MH, et al. In situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers. 2018;10(10):1129.
  • Lü C, Yang B. High refractive index organic–inorganic nanocomposites: design, synthesis and application. J Mater Chem. 2009;19(19):2884–2901.
  • Filippi M, Dasen B, Guerrero J, et al. Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials. 2019;223:119468.
  • Liu Z, Liu J, Cui X, et al. Recent advances on magnetic sensitive hydrogels in tissue engineering. Front Chem. 2020;8:124.
  • Tong X, Zheng J, Lu Y, et al. Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels. Mater Lett. 2007;61(8–9):1704–1706.
  • Miwa Y, Zinchenko A, Lopatina LI, et al. Size control of gold nanoparticles synthesized in a DNA hydrogel. Polym Int. 2014;63(9):1566–1571.
  • Ponnamma D, Cabibihan J-J, Rajan M, et al. Synthesis, optimization and applications of ZnO/polymer nanocomposites. Mater Sci Eng C Mater Biol Appl. 2019;98:1210–1240.
  • Zhang Q, Li Q-L, Xiang S, et al. Covalent modification of graphene oxide with polynorbornene by surface-initiated ring-opening metathesis polymerization. Polymer. 2014;55(23):6044–6050.
  • Messing R, Frickel N, Belkoura L, et al. Cobalt ferrite nanoparticles as multifunctional cross-linkers in PAAm ferrohydrogels. Macromolecules. 2011;44(8):2990–2999.
  • Hu X, Nian G, Liang X, et al. Adhesive tough magnetic hydrogels with high Fe3O4 content. ACS Appl Mater Interfaces. 2019;11(10):10292–10300.
  • Ju Y, Zhang Y, Zhao H. Fabrication of polymer-protein hybrids. Macromol Rapid Commun. 2018;39(7):e1700737.
  • Chen P, Xie F, Tang F, et al. Structure and properties of thermomechanically processed silk peptide and nanoclay filled chitosan. Nanocomposites. 2020;6(3):125–136.
  • Pardo A, Gómez-Florit M, Barbosa S, et al. Magnetic nanocomposite hydrogels for tissue engineering: Design concepts and remote actuation strategies to control cell fate. ACS Nano. 2021;15(1):175–209.
  • Arias SL, Shetty A, Devorkin J, et al. Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts. Acta Biomater. 2018;77:172–181.
  • Liu K, Han L, Tang P, et al. An anisotropic hydrogel based on Mussel-Inspired conductive ferrofluid composed of electromagnetic nanohybrids. Nano Lett. 2019;19(12):8343–8356.
  • Shen X, Tong H, Zhu Z, et al. A novel approach of homogenous inorganic/organic composites through in situ precipitation in poly-acrylic acid gel. Mater Lett. 2007;61(3):629–634.
  • Caseri WR. In Situ synthesis of polymer-embedded nanostructures. Nanocomposites. John Wiley & Sons, Ltd; 2013. p. 45–72.
  • Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong S. Photocatalytic efficiency of TiO2/poly[acrylamide-co-(acrylic acid)] composite for textile dye degradation. Polym Degrad Stab. 2010;95(9):1894–1902.
  • Stoyneva V, Momekova D, Kostova B, et al. Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym. 2014;99:825–830.
  • Li X, Dong S, Yan H, et al. Fabrication and properties of PVA-TiO2 hydrogel composites. Procedia Eng. 2012;27:1488–1491.
  • Huang J, Liang Y, Jia Z, et al. Development of magnetic nanocomposite hydrogel with potential cartilage tissue engineering. ACS Omega. 2018;3(6):6182–6189.
  • Sposito G, Skipper NT, Sutton R, et al. Surface geochemistry of the clay minerals. Proc Natl Acad Sci U S A. 1999;96(7):3358–3364.
  • Kotal M, Thakur AK, Bhowmick AK. Polyaniline-carbon nanofiber composite by a chemical grafting approach and its supercapacitor application. ACS Appl Mater Interfaces. 2013;5(17):8374–8386.
  • Mihaila SM, Gaharwar AK, Reis RL, et al. The osteogenic differentiation of SSEA-4 Sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials. 2014;35(33):9087–9099.
  • Xavier JR, Thakur T, Desai P, et al. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano. 2015;9(3):3109–3118.
  • Bitinis N, Hernandez M, Verdejo R, et al. Recent advances in clay/polymer nanocomposites. Adv Mater. 2011;23(44):5229–5236.
  • Paul A, Manoharan V, Krafft D, et al. Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B. 2016;4(20):3544–3554.
  • Gaharwar AK, Mihaila SM, Swami A, et al. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2013;25(24):3329–3336.
  • Mohanty RP, Joshi YM. Chemical stability phase diagram of aqueous laponite dispersions. Appl Clay Sci. 2016;119:243–248.
  • Jatav S, Joshi YM. Chemical stability of laponite in aqueous media. Appl Clay Sci. 2014;97–98:72–77.
  • Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014;10(6):2834–2842.
  • Dawson JI, Kanczler JM, Yang XB, et al. Clay gels for the delivery of regenerative microenvironments. Adv Mater. 2011;23(29):3304–3308.
  • Gaharwar AK, Schexnailder PJ, Kline BP, et al. Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater. 2011;7(2):568–577.
  • Gaharwar AK, Mukundan S, Karaca E, et al. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A. 2014;20(15–16):2088–2101.
  • Ambre AH, Katti DR, Katti KS. Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds. J Biomed Mater Res A. 2013;101(9):2644–2660.
  • Mousa M, Evans ND, Oreffo ROC, et al. Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials. 2018;159:204–214.
  • Vergaro V, Abdullayev E, Lvov YM, et al. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules. 2010;11(3):820–826.
  • Biddeci G, Spinelli G, Massaro M, et al. Study of uptake mechanisms of halloysite nanotubes in different cell lines. Int J Nanomedicine. 2021;16:4755–4768.
  • Xu Y, Wu Q, Sun Y, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano. 2010;4(12):7358–7362.
  • Basu S, Pacelli S, Feng Y, et al. Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano. 2018;12(10):9866–9880.
  • Su D, Jiang L, Chen X, et al. Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS Appl Mater Interfaces. 2016;8(15):9619–9628.
  • Thakur A, Jaiswal MK, Peak CW, et al. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery. Nanoscale. 2016;8(24):12362–12372.
  • Waters R, Pacelli S, Maloney R, et al. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. Nanoscale. 2016;8(14):7371–7376.
  • Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/De-swelling properties. Adv Mater. 2002;14(16):1120–1124.
  • Haraguchi K, Li H-J. Mechanical properties and structure of polymer − clay nanocomposite gels with high clay content. Macromolecules. 2006;39(5):1898–1905.
  • Bouville F, Maire E, Meille S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater. 2014;13(5):508–514.
  • Juhasz JA, Best SM, Bonfield W. Preparation of novel bioactive nano-calcium phosphate-hydrogel composites. Sci Technol Adv Mater. 2010;11(1):014103.
  • Gibbs DMR, Black CRM, Dawson JI, et al. A review of hydrogel use in fracture healing and bone regeneration. J Tissue Eng Regen Med. 2016;10(3):187–198.
  • Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015;94:53–62.
  • Ebrahimi M, Botelho M, Lu W, et al. Synthesis and characterization of biomimetic bioceramic nanoparticles with optimized physicochemical properties for bone tissue engineering. J Biomed Mater Res A. 2019;107(8):1654–1666.
  • Liu F-H. Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J Sol-Gel Sci Technol. 2012;64: 704–710. doi:10.1007/s10971-012-2905-5
  • Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–8045.
  • Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. Chemphyschem. 2012;13(10):2495–2506.
  • Swetha M, Sahithi K, Moorthi A, et al. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol. 2010;47(1):1–4.
  • Pathi SP, Lin DDW, Dorvee JR, et al. Hydroxyapatite nanoparticle-containing scaffolds for the study of breast cancer bone metastasis. Biomaterials. 2011;32(22):5112–5122.
  • Giordano C, Causa F, Silvio LD, et al. Chemical-physical and preliminary biological properties of poly (2-hydroxyethylmethacrylate)/poly-(epsilon-caprolactone)/hydroxyapa- tite composite. J Mater Sci Mater Med. 2007;18(4):653–660.
  • Li Z, Mi W, Wang H, et al. Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties. Colloids Surf B Biointerfaces. 2014;123:959–964.
  • Hu K, Zhou N, Li Y, et al. Sliced magnetic polyacrylamide hydrogel with Cell-Adhesive microarray interface: a novel multicellular spheroid culturing platform. ACS Appl Mater Interfaces. 2016;8(24):15113–15119.
  • Thakur T, Xavier JR, Cross L, et al. Photocrosslinkable and elastomeric hydrogels for bone regeneration. J Biomed Mater Res A. 2016;104(4):879–888.
  • Shi D, Xu X, Ye Y, et al. Photo-cross-linked scaffold with Kartogenin-encapsulated nanoparticles for cartilage regeneration. ACS Nano. 2016;10(1):1292–1299.
  • Moon HJ, Patel M, Chung H, et al. Nanocomposite versus mesocomposite for osteogenic differentiation of Tonsil-Derived mesenchymal stem cells. Adv Healthc Mater. 2016;5(3):353–363.
  • Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials. 2020;239:119833.
  • Song Y, Wu H, Gao Y, et al. Zinc silicate/nano-hydroxyapatite/collagen scaffolds promote angiogenesis and bone regeneration via the p38 MAPK pathway in activated monocytes. ACS Appl Mater Interfaces. 2020;12(14):16058–16075.
  • Yang C, Zhao C, Wang X, et al. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. Nanoscale. 2019;11(38):17699–17708.
  • Chen Y, Kawazoe N, Chen G. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Acta Biomater. 2018;67:341–353.
  • Yu S, Shi J, Liu Y, et al. A mechanically robust and flexible PEGylated poly(glycerol sebacate)/β-TCP nanoparticle composite membrane for guided bone regeneration. J Mater Chem B. 2019;7(20):3279–3290.
  • Tohma Y, Tanaka Y, Ohgushi H, et al. Early bone in-growth ability of alumina ceramic implants loaded with tissue-engineered bone. J Orthop Res. 2006;24(4):595–603.
  • Chen J, Li M, Yang C, et al. Macrophage phenotype switch by sequential action of immunomodulatory cytokines from hydrogel layers on titania nanotubes. Colloids Surf B Biointerfaces. 2018;163:336–345.
  • Mota J, Yu N, Caridade SG, et al. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater. 2012;8(11):4173–4180.
  • Luz GM, Mano JF. Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomed Mater. 2012;7(5):054104.
  • El-Rashidy AA, Roether JA, Harhaus L, et al. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1–28.
  • Multanen V, Bhushan B. Bioinspired self-healing, superliquiphobic and self-cleaning hydrogel-coated surfaces with high durability. Philos Trans A Math Phys Eng Sci. 2019;377(2150):20190117.
  • Chaudhari NS, Pandey AP, Patil PO, et al. Graphene oxide based magnetic nanocomposites for efficient treatment of breast cancer. Mater Sci Eng C Mater Biol Appl. 2014;37:278–285.
  • Lamichhane N, Sharma S, null P, et al. Iron oxide-based magneto-optical nanocomposites for in vivo biomedical applications. Biomedicines. 2021;9:288.
  • Pan W-Y, Huang C-C, Lin T-T, et al. Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomedicine. 2016;12(2):431–438.
  • Bock N, Riminucci A, Dionigi C, et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 2010;6(3):786–796.
  • D'Amora U, Russo T, Gloria A, et al. 3D additive-manufactured nanocomposite magnetic scaffolds: Effect of the application mode of a time-dependent magnetic field on hMSCs behavior. Bioact Mater. 2017;2(3):138–145.
  • Noriega-Luna B, Sabanero M, Sosa M, et al. Influence of pulsed magnetic fields on the morphology of bone cells in early stages of growth. Micron. 2011;42(6):600–607.
  • Ba X, Hadjiargyrou M, DiMasi E, et al. The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films. Biomaterials. 2011;32(31):7831–7838.
  • Ross SM. Combined DC and ELF magnetic fields can alter cell proliferation. Bioelectromagnetics. 1990;11(1):27–36.
  • Hashimoto Y, Kawasumi M, Saito M. Effect of static magnetic field on cell migration. Elect Eng Jpn. 2007;160(2):46–52.
  • Kotani H, Kawaguchi H, Shimoaka T, et al. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J Bone Miner Res. 2002;17(10):1814–1821.
  • Chen Z, Yin J-J, Zhou Y-T, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012;6(5):4001–4012.
  • Huang D-M, Hsiao J-K, Chen Y-C, et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials. 2009;30(22):3645–3651.
  • Jaiswal MK, Xavier JR, Carrow JK, et al. Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano. 2016;10(1):246–256.
  • Wong SHD, Wong WKR, Lai CHN, et al. Soft polymeric matrix as a macroscopic cage for magnetically modulating reversible nanoscale ligand presentation. Nano Lett. 2020;20(5):3207–3216.
  • Choi JR, Yong KW, Choi JY, et al. Black phosphorus and its biomedical applications. Theranostics. 2018;8(4):1005–1026.
  • Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int. 2013;24(8):2153–2166.
  • Matsuoka K, Park K-A, Ito M, et al. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Miner Res. 2014;29(7):1522–1530.
  • Gaharwar AK, Cross LM, Peak CW, et al. 2D nanoclay for biomedical applications: Regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater. 2019;31(23):e1900332.
  • Huang K, Wu J, Gu Z. Black phosphorus hydrogel scaffolds enhance bone regeneration via a sustained supply of Calcium-Free phosphorus. ACS Appl Mater Interfaces. 2019;11(3):2908–2916.
  • Gao D, Guo X, Zhang X, et al. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio. 2020;5:100035.
  • Chen W, Ouyang J, Liu H, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv Mater Deerfield Beach Fla. 2017;29.
  • Sun Z, Xie H, Tang S, et al. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew Chem Int Ed Engl. 2015;54(39):11526–11530.
  • Shui C, Scutt A. Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro. J Bone Miner Res. 2001;16(4):731–741.
  • Nørgaard R, Kassem M, Rattan SIS. Heat shock-induced enhancement of osteoblastic differentiation of hTERT-immortalized mesenchymal stem cells. Ann N Y Acad Sci. 2006;1067:443–447.
  • Pan W, Dai C, Li Y, et al. PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis. Biomaterials. 2020;239:119851.
  • Singh MN, Hemant KSY, Ram M, et al. Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci. 2010;5(2):65–77.
  • Wang X, Shao J, Abd El Raouf M, et al. Near-infrared light-triggered drug delivery system based on black phosphorus for in vivo bone regeneration. Biomaterials. 2018;179:164–174.
  • Cha C, Shin SR, Annabi N, et al. Carbon-Based nanomaterials: multifunctional materials for biomedical engineering . ACS Nano. 2013;7(4):2891–2897.
  • Shin SR, Bae H, Cha JM, et al. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano. 2012;6(1):362–372.
  • Motealleh A, Kehr NS. Nanocomposite hydrogels and their applications in tissue engineering. Adv Healthcare Mater. 2017;6(1):1600938.
  • Samuel ELG, Duong MT, Bitner BR, et al. Hydrophilic carbon clusters as therapeutic, high-capacity antioxidants. Trends Biotechnol. 2014;32(10):501–505.
  • Yang S-T, Luo J, Zhou Q, et al. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics. 2012;2(3):271–282.
  • Firme CP, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine. 2010;6(2):245–256.
  • Cheng X, Wan Q, Pei X. Graphene family materials in bone tissue regeneration: Perspectives and challenges. Nanoscale Res Lett. 2018;13(1):289.
  • Nayak TR, Andersen H, Makam VS, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011;5(6):4670–4678.
  • Dong R, Zhao X, Guo B, et al. Self-Healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl Mater Interfaces. 2016;8(27):17138–17150.
  • Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4(10):5731–5736.
  • Li J, Wang G, Zhu H, et al. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci Rep. 2014;4:4359.
  • Han L, Sun H, Tang P, et al. Mussel-inspired graphene oxide nanosheet-enwrapped Ti scaffolds with drug-encapsulated gelatin microspheres for bone regeneration. Biomater Sci. 2018;6(3):538–549.
  • Choe G, Oh S, Seok JM, et al. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Nanoscale. 2019;11(48):23275–23285.
  • Shen H, Lin H, Sun AX, et al. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels. Acta Biomater. 2020;105:44–55.
  • Qi C, Deng Y, Xu L, et al. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Theranostics. 2020;10(2):741–756.
  • Rui-Hong X, Peng-Gang R, Jian H, et al. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydr Polym. 2016;138:222–228.
  • Christy PN, Basha SK, Kumari VS, et al. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – a review. J Drug Deliv Sci Technol. 2020;55:101452.
  • Jodati H, Yılmaz B, Evis Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceram Int. 2020;46(10):15725–15739.
  • Barradas AMC, Yuan H, van Blitterswijk CA, et al. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater. 2011;21:407–429; discussion 429.
  • Wubneh A, Tsekoura EK, Ayranci C, et al. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater. 2018;80:1–30.
  • Schinagl RM, Gurskis D, Chen AC, et al. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res. 1997;15(4):499–506.
  • Yang J, Gao H, Zhang D, et al. Static compressive behavior and material failure mechanism of trabecular tantalum scaffolds fabricated by laser powder bed fusion-based additive manufacturing. Int J Bioprint. 2022;8(1):438.
  • Chimene D, Lennox KK, Kaunas RR, et al. Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng. 2016;44(6):2090–2102.
  • Jin Y, Liu C, Chai W, et al. Self-Supporting nanoclay as internal scaffold material for direct printing of soft hydrogel composite structures in air. ACS Appl Mater Interfaces. 2017;9(20):17456–17465.
  • Ahlfeld T, Cidonio G, Kilian D, et al. Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication. 2017;9(3):034103.
  • Byambaa B, Annabi N, Yue K, et al. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthcare Mater. 2017;6(16):1700015.
  • Gao F, Xu Z, Liang Q, et al. Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv Funct Mater. 2018;28(13):1706644.
  • Barros J, Ferraz MP, Azeredo J, et al. Alginate-nanohydroxyapatite hydrogel system: Optimizing the formulation for enhanced bone regeneration. Mater Sci Eng C Mater Biol Appl. 2019;105:109985.
  • Roohaniesfahani I, Wang J, No YJ, et al. Modulatory effect of simultaneously released magnesium, strontium, and silicon ions on injectable silk hydrogels for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2019;94:976–987.
  • Kwon S, Lee SS, Sivashanmugam A, et al. Bioglass-Incorporated methacrylated gelatin cryogel for regeneration of bone defects. Polymers. 2018;10(8):914.
  • Mahdavinia GR, Etemadi H, Soleymani F. Magnetic/pH-responsive beads based on caboxymethyl chitosan and κ-carrageenan and controlled drug release. Carbohydr Polym. 2015;128:112–121.
  • Madani SZM, Reisch A, Roxbury D, et al. A magnetically responsive hydrogel system for controlling the timing of bone progenitor recruitment and differentiation factor deliveries. ACS Biomater Sci Eng. 2020;6(3):1522–1534.
  • Huang J, Jia Z, Liang Y, et al. Pulse electromagnetic fields enhance the repair of rabbit articular cartilage defects with magnetic nano-hydrogel. RSC Adv. 2019;10(1):541–550.
  • Yang G, Wan X, Gu Z, et al. Near infrared photothermal-responsive poly(vinyl alcohol)/black phosphorus composite hydrogels with excellent on-demand drug release capacity. J Mater Chem B. 2018;6(11):1622–1632.