1,713
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Crosslinked PAES-based sandwich-structured polymer nanocomposites with covalently strengthened interface towards high-temperature capacitive energy storage

, , , , & ORCID Icon
Pages 10-17 | Received 10 Jun 2022, Accepted 27 Nov 2022, Published online: 08 Feb 2023

References

  • Kum-Onsa P, Chanlek N, Thongbai P. Largely enhanced dielectric properties of TiO2-nanorods/poly(vinylidene fluoride) nanocomposites driven by enhanced interfacial areas. Nanocomposites. 2021;7(1):123–131.
  • Gong L, Chen S-H, Zhan S-P, et al. An enhancement on the dielectric performance of poly(vinylidene fluoride)-based composite with graphene oxide-BaTiO3 hybrid. Nanocomposites. 2019;5(2):61–66.
  • Tang Y, Xu W, Niu S, et al. Crosslinked dielectric materials for high-temperature capacitive energy storage. J Mater Chem A. 2021;9(16):10000–10011.
  • Li Q, Chen L, Gadinski MR, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature. 2015;523(7562):576–579.
  • Li Q, Yao F-Z, Liu Y, et al. High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Res. 2018;48(1):219–243.
  • Tanaka T. Dielectric nanocomposites with insulating properties. IEEE Trans Dielect Electr Insul. 2005;12(5):914–928.
  • Thakur VK, Gupta, RK, Prateek. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev. 2016;116(7):4260–4317.
  • Wang T, Peng R-C, Peng W, et al. 2-2 Type PVDF-based composites interlayered by epitaxial (111)-oriented BTO films for high energy storage density. Adv Funct Mater. 2022;32(10):2108496.
  • Luo B, Wang X, Tian E, et al. Interfacial electronic properties of ferroelectric nanocomposites for energy storage application. Mater Today Energy. 2019;12:136–145.
  • Zha J-W, Song H-T, Dang Z-M, et al. Mechanism analysis of improved corona-resistant characteristic in polyimide/TiO2 nanohybrid films. Appl Phys Lett. 2008;93(19):192911.
  • Mansor NS, Hamzah MS, Kamarol M, et al. A comparative study of dielectric strength between SiR/EPDM and PP/EPDM blends with various type of nanofillers. AMR. 2013;832:483–487.
  • Zha J-W, Dang Z-M, Zhou T, et al. Electrical properties of TiO2-filled polyimide nanocomposite films prepared via an in situ polymerization process. Synth Met. 2010;160(23-24):2670–2674.
  • Liang F, Zhang L, Lu W-Z, et al. Dielectric performance of polymer-based composites containing core-shell Ag@TiO2 nanoparticle fillers. Appl Phys Lett. 2016;108(7):072902.
  • Aaditya VB, Bharathesh BM, Harshitha R, et al. Study of dielectric properties of polypyrrole/titanium dioxide and polypyrrole/titanium dioxide-MWCNT nano composites. J Mater Sci Mater Electron. 2018;29(4):2848–2859.
  • Xiong X, Zhou Z, Zhang Z, et al. Facile preparation and enhanced dielectric performance of rod-like TiO2/P(VDF-TrFE-CFE) composites. J Mater Sci Mater Electron. 2018;29(16):14161–14169.
  • Kang D, Wang G, Huang Y, et al. Decorating TiO2 nanowires with BaTiO3 nanoparticles: a new approach leading to substantially enhanced energy storage capability of high-k polymer nanocomposites. ACS Appl Mater Interfaces. 2018;10(4):4077–4085.
  • Zhu Y, Zhu Y, Huang X, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv Energy Mater. 2019;9(36):1901826.
  • Shen Y, Zhang X, Li M, et al. Polymer nanocomposite dielectrics for electrical energy storage. Natl Sci Rev. 2017;4(1):23–25.
  • Ju T, Chen X, Langhe D, et al. Enhancing breakdown strength and lifetime of multilayer dielectric films by using high temperature polycarbonate skin layers. Energy Storage Mater. 2022;45:494–503.
  • Li Y, Zhou Y, Zhu Y, et al. Polymer nanocomposites with high energy density and improved charge-discharge efficiency utilizing hierarchically-structured nanofillers. J Mater Chem A. 2020;8(14):6576–6585.
  • Nan CW, Shen Y, Ma J. Physical properties of composites near percolation. Annu Rev Mater Res. 2010;40(1):131–151.
  • Uyor UO, Popoola API, Popoola OM, et al. Thermal, mechanical and dielectric properties of functionalized sandwich BN-BaTiO3-BN/polypropylene nanocomposites. J Alloys Compd. 2022;894:162405.
  • Pei J-Y, Zha J-W, Zhou W-Y, et al. Enhancement of breakdown strength of multilayer polymer film through electric field redistribution and defect modification. Appl Phys Lett. 2019;114(10):103702.
  • Wang Z, Fan J, Guo X, et al. Enhanced permittivity of negative permittivity middle-layer sandwich polymer matrix composites through conductive filling with flake MAX phase ceramics. RSC Adv. 2020;10(45):27025–27032.
  • Lin Y, Sun C, Zhan S, et al. Two-dimensional sheet-like K0.5Na0.5NbO3 platelets and sandwich structure induced ultrahigh discharge efficiency in poly (vinylidenefluoride)-based composites, compos. Sci Technol. 2020;199:108368.
  • Ru J, Min D, Lanagan M, et al. Enhanced energy storage properties of thermostable sandwich-structured BaTiO3/polyimide nanocomposites with better controlled interfaces. Mater Des. 2021;197:109270.
  • Xu W, Liu J, Chen T, et al. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small. 2019;15(28):1901582.
  • Wu HH, Zhuo F, Qiao H, et al. Polymer-/ceramic-based dielectric composites for energy storage and conversion. Energy Environ Mater. 2022;5(2):486–514.
  • Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010;5(10):722–726.
  • Zhu T, Qian C, Zheng W, et al. Modified halloysite nanotube filled polyimide composites for film capacitors: high dielectric constant, low dielectric loss and excellent heat resistance. RSC Adv. 2018;8(19):10522–10531.
  • Shen Y, Lin Y, Zhang QM. Polymer nanocomposites with high energy storage densities. MRS Bull. 2015;40(9):753–759.