633
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electric fields and local heating in additively manufactured nanocomposite parts

, , & ORCID Icon
Pages 43-49 | Received 13 Feb 2023, Accepted 20 Jun 2023, Published online: 03 Jul 2023

References

  • Jin Z, Han Z, Chang C, et al. Review of methods for enhancing interlaminar mechanical properties of fiber-reinforced thermoplastic composites: interfacial modification, nano-filling and forming technology. Compos Sci Technol. 2022;228:109660. 10.1016/j.compscitech.2022.109660
  • Singh J, Kumar Goyal K, Kumar R. Effect of filling percentage and raster style on tensile behavior of FDM produced PLA parts at different build orientation. Mater Today: Proc. 2022;63:433–439. doi: 10.1016/j.matpr.2022.03.444.
  • Krueger L, Miles JA, Popat A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J Control Release. 2022;351:444–455. doi: 10.1016/j.jconrel.2022.09.032.
  • Das A, Chatham CA, Fallon JJ, et al. Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers. Addit Manuf. 2020;34:101218. doi: 10.1016/j.addma.2020.101218.
  • Valino AD, Dizon JRC, Espera AH, et al. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci. 2019;98:101162. doi: 10.1016/j.progpolymsci.2019.101162.
  • Mazzanti V, Malagutti L, Mollica F. FDM 3D printing of polymers containing natural fillers: a review of their mechanical properties. Polymers. 2019;11(7):1094. doi: 10.3390/polym11071094.
  • Seppala JE, Migler KD. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit Manuf. 2016;12(Pt A):71–76. doi: 10.1016/j.addma.2016.06.007.
  • Seppala JE, Hoon Han S, Hillgartner KE, et al. Weld formation during material extrusion additive manufacturing. Soft Matter. 2017;13(38):6761–6769. doi: 10.1039/c7sm00950j.
  • Ali MH, Kurokawa S, Shehab E, et al. Development of a large-scale multi-extrusion FDM printer, and its challenges. Int J Lightweight Mater Manuf. 2023;6(2):198–213. doi: 10.1016/j.ijlmm.2022.10.001.
  • Peng X, Zhang M, Guo Z, et al. Investigation of processing parameters on tensile performance for FDM-printed carbon fiber reinforced polyamide 6 composites. Compos Commun. 2020;22:100478. doi: 10.1016/j.coco.2020.100478.
  • Andreu A, Kim S, Dittus J, et al. Hybrid material extrusion 3D printing to strengthen interlayer adhesion through hot rolling. Addit Manuf. 2022;55:102773. doi: 10.1016/j.addma.2022.102773.
  • Ding S, Zou B, Wang P, et al. Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym Test. 2019;78:105948. doi: 10.1016/j.polymertesting.2019.105948.
  • Diederichs EV, Picard MC, Chang BP, et al. Strategy to improve printability of renewable resource-based engineering plastic tailored for FDM applications. ACS Omega. 2019;4(23):20297–20307. doi: 10.1021/acsomega.9b02795.
  • Wang C Y, Chen T H, Chang S C, et al. Strong carbon‐nanotube–polymer bonding by microwave irradiation. Adv Funct Mater. 2007;17(12):1979–1983. doi: 10.1002/adfm.200601011.
  • Wu T, Pan Y, Liu E, et al. Carbon nanotube/polypropylene composite particles for microwave welding. J Appl Polym Sci. 2012;126(S2):E283–E289. doi: 10.1002/app.36832.
  • Poyraz S, Zhang L, Schroder A, et al. Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Appl Mater Interfaces. 2015;7(40):22469–22477. doi: 10.1021/acsami.5b06484.
  • Sweeney CB, Moran AG, Gruener JT, et al. Radio frequency heating of carbon nanotube composite materials. ACS Appl Mater Interfaces. 2018;10(32):27252–27259. doi: 10.1021/acsami.8b06268.
  • Noeske M, Degenhardt J, Strudthoff S, et al. Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion. Int J Adhes Adhes. 2004;24(2):171–177. doi: 10.1016/j.ijadhadh.2003.09.006.
  • Narahara H, Shirahama Y, Koresawa H. Improvement and evaluation of the interlaminar bonding strength of FDM parts by atmospheric-pressure plasma. Procedia Cirp. 2016;42:754–759. doi: 10.1016/j.procir.2016.02.314.
  • Shih C-C, Burnette M, Staack D, et al. Effects of cold plasma treatment on interlayer bonding strength in FFF process. Addit Manuf. 2019;25:104–111. doi: 10.1016/j.addma.2018.11.005.
  • Sweeney CB, Burnette ML, Pospisil MJ, et al. Dielectric barrier discharge applicator for heating carbon nanotube-loaded interfaces and enhancing 3D-printed bond strength. Nano Lett. 2020;20(4):2310–2315. doi: 10.1021/acs.nanolett.9b04718.
  • Sweeney CB, et al. Three dimensional printer apparatus. US11325303B2; 2017. https://patents.google.com/patent/US11325303B2/en?oq=US11325303B2
  • Sweeney CB, et al. Three dimensional printer apparatus. US11376789B2; 2018. https://patents.google.com/patent/US11376789B2/en?oq=US11376789B2
  • Sweeney CB, et al. Atmospheric plasma conduction pathway for the application of electromagnetic energy to 3D printed parts. US11446867B2; 2018. https://patents.google.com/patent/US11446867B2/en?oq=US11446867B2
  • Roth JR. Industrial plasma engineering: volume 2: applications to nonthermal plasma processing. Boca Raton, FL: CRC press; 2001.
  • Du H, Fang C, Zhang J, et al. Segregated carbon nanotube networks in CNT-polymer nanocomposites for higher electrical conductivity and dielectric permittivity, and lower percolation threshold. Int J Eng Sci. 2022;173:103650. doi: 10.1016/j.ijengsci.2022.103650.
  • Mora A, Verma P, Kumar S. Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling. Compos Part B: Engin. 2020;183:107600. doi: 10.1016/j.compositesb.2019.107600.
  • Sweeney CB, Lackey BA, Pospisil MJ, et al. Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating. Sci Adv. 2017;3(6):e1700262. doi: 10.1126/sciadv.1700262.