647
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanical properties of boron nitride nanotube reinforced PEEK composite: a molecular dynamics study

, ORCID Icon, , &
Pages 148-158 | Received 10 Dec 2022, Accepted 02 Oct 2023, Published online: 27 Oct 2023

References

  • Díez-Pascual AM, Naffakh M, Marco C, et al. High-performance nanocomposites based on polyetherketones. Prog Mater Sci. 2012;57(7):1106–1190. doi: 10.1016/j.pmatsci.2012.03.003.
  • Audoit J, Riviere L, Dandurand J, et al. Thermal, mechanical and dielectric behaviour of poly(aryl ether ketone) with low melting temperature. J Therm Anal Calorim. 2019;135(4):2147–2157. doi: 10.1007/s10973-018-7292-x.
  • Garcia-Gonzalez D, Rusinek A, Jankowiak T, et al. Mechanical impact behavior of polyether-ether-ketone (PEEK). Compos Struct. 2015;124:88–99. doi: 10.1016/j.compstruct.2014.12.061.
  • Zhang Y, Tao W, Zhang Y, et al. Continuous carbon fiber/crosslinkable poly(ether ether ketone) laminated composites with outstanding mechanical properties, robust solvent resistance and excellent thermal stability. Compos Sci Technol. 2018;165:148–153. doi: 10.1016/j.compscitech.2018.06.020.
  • Cogswell FN. Components of a thermoplastic structural composite. In: Cogswell FN, editor. Thermoplastic aromatic polymer composites. Oxford (UK): Butterworth-Heinemann; 1992. p. 11–50. doi: 10.1016/B978-0-7506-1086-5.50008-2.
  • Zhi C, Bando Y, Tang C, et al. Boron nitride nanotubes/polystyrene composites. J. Mater. Res. 2006;21(11):2794–2800. doi: 10.1557/jmr.2006.0340.
  • Attwood TE, Dawson PC, Freeman JL, et al. Synthesis and properties of polyaryletherketones. Polymer. 1981;22(8):1096–1103. doi: 10.1016/0032-3861(81)90299-8.
  • Lovinger AJ, Hudson SD, Davis DD. High-temperature crystallization and morphology of poly(aryl ether ether ketone). Macromolecules. 1992;25(6):1752–1758. doi: 10.1021/ma00032a020.
  • Yurchenko ME, Huang JJ, Robisson A, et al. Synthesis, mechanical properties and chemical/solvent resistance of crosslinked poly(aryl-ether-ether-ketones) at high temperatures. Polymer. 2010;51(9):1914–1920. doi: 10.1016/j.polymer.2010.01.056.
  • Ivanov SG, Beyens D, Gorbatikh L, et al. Damage development in woven carbon fibre thermoplastic laminates with PPS and PEEK matrices: a comparative study. J Compos Mater. 2017;51(5):637–647. doi: 10.1177/0021998316653460.
  • Ma C-CM, Lee C-L, Chang M-J, et al. Effect of physical aging on the toughness of carbon fiber-reinforced poly(ether ether ketone) and poly(phenylene sulfide) composites. Polym. Compos. 1992;13(6):441–447. doi: 10.1002/pc.750130607.
  • Karsli NG, Demirkol S, Yilmaz T. Thermal aging and reinforcement type effects on the tribological, thermal, thermomechanical, physical and morphological properties of poly(ether ether ketone) composites. Composites Part B. 2016;88:253–263. doi: 10.1016/j.compositesb.2015.11.013.
  • Su YN, Zhang SC, Zhang XH, et al. Preparation and properties of graphene/carbon fiber/poly(ether ether ketone) composites. New Carbon Mater. 2017;32(2):152–159. doi: 10.19869/j.ncm.1007-8827.2017.02.005.
  • Cao S, Tao Y, Li H, et al. Multiscale hybrid CNT and CF reinforced PEEK composites with enhanced EMI properties. Nanocomposites. 2022;8(1):184–193. doi: 10.1080/20550324.2022.2100683.
  • Wang B, Zhang K, Zhou CH, et al. Engineering the mechanical properties of CNT/PEEK nanocomposites. RSC Adv. 2019;9(23):12836–12845. doi: 10.1039/c9ra01212e.
  • Arif MF, Alhashmi H, Varadarajan KM, et al. Multifunctional performance of carbon nanotubes and graphene nanoplatelets reinforced PEEK composites enabled via FFF additive manufacturing. Composites Part B. 2020;184:107625. doi: 10.1016/j.compositesb.2019.107625.
  • Chopra NG, Luyken RJ, Cherrey K, et al. Boron nitride nanotubes. Science. 1995;269(5226):966–967. doi: 10.1126/science.269.5226.966.
  • Golberg D, Bando Y, Tang CC, et al. Boron nitride nanotubes. Adv Mater. 2007;19(18):2413–2432. doi: 10.1002/adma.200700179.
  • Chang CW, Fennimore AM, Afanasiev A, et al. Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys Rev Lett. 2006;97(8):085901. doi: 10.1103/PhysRevLett.97.085901.
  • Genchi GG, Ciofani G. Bioapplications of boron nitride nanotubes. Nanomedicine. 2015;10(22):3315–3319. doi: 10.2217/nnm.15.148.
  • Armaković S, Armaković SJ, Pelemiš SS, et al. Optoelectronic and charge carrier hopping properties of ultra-thin boron nitride nanotubes. Superlattices Microstruct. 2015;79:79–85. doi: 10.1016/j.spmi.2014.12.010.
  • Talla JA. Stability and electronic properties of hybrid coaxial carbon nanotubes—boron nitride nanotubes under the influence of electric field. Appl Phys A. 2021;127(8):628. doi: 10.1007/s00339-021-04751-y.
  • Jaffrennou P, Barjon J, Lauret JS, et al. Optical properties of multiwall boron nitride nanotubes. Phys Status Solidi B. 2007;244(11):4147–4151. doi: 10.1002/pssb.200776109.
  • Azamat J, Sardroodi JJ, Rastkar A. Molecular dynamics simulation of ion separation and water transport through boron nitride nanotubes. Desalin Water Treat. 2015;56(4):1090–1098. doi: 10.1080/19443994.2014.944571.
  • Nikkar A, Rouhi S, Ansari R. On the buckling properties of concentric carbon/boron-nitride multi-walled nanotubes: a finite element investigation. Mech Adv Mater Struct. 2019;26(9):816–824. doi: 10.1080/15376494.2018.1430259.
  • Guan J, Ashrafi B, Martinez-Rubi Y, et al. Epoxy resin nanocomposites with hydroxyl (OH) and amino (NH2) functionalized boron nitride nanotubes. Nanocomposites. 2018;4(1):10–17. doi: 10.1080/20550324.2018.1457764.
  • Yang J-E, Hong YT, Lee J-S. Synthesis and characterization of polystyrene-poly(arylene ether sulfone)-polystyrene triblock copolymer for proton exchange membrane applications. J Nanosci Nanotechnol. 2006;6(11):3594–3598. doi: 10.1166/jnn.2006.17989.
  • Ishigami M, Sau JD, Aloni S, et al. Symmetry breaking in boron nitride nanotubes. Phys Rev Lett. 2006;97(17):176804. doi: 10.1103/PhysRevLett.97.176804.
  • Song J, Wu J, Huang Y, et al. Continuum modeling of boron nitride nanotubes. Nanotechnology. 2008;19(44):445705. doi: 10.1088/0957-4484/19/44/445705.
  • Kang JW, Hwang HJ. Atomistic study of III-nitride nanotubes. Comput Mater Sci. 2004;31(3–4):237–246. doi: 10.1016/j.commatsci.2004.03.004.
  • Wei X, Wang M-S, Bando Y, et al. Tensile tests on individual multi-walled boron nitride nanotubes. Adv Mater. 2010;22(43):4895–4899. doi: 10.1002/adma.201001829.
  • Li L, Chen Y, Stachurski ZH. Boron nitride nanotube reinforced polyurethane composites. Prog Nat Sci Mater Int. 2013;23(2):170–173. doi: 10.1016/j.pnsc.2013.03.004.
  • Lu X, Nautiyal P, Bustillos J, et al. Hydroxylated boron nitride nanotube-reinforced polyvinyl alcohol nanocomposite films with simultaneous improvement of mechanical and thermal properties. Polym Compos. 2020;41(12):5182–5194. doi: 10.1002/pc.25785.
  • Goutianos S, Peijs T. On the low reinforcing efficiency of carbon nanotubes in high-performance polymer fibres. Nanocomposites. 2021;7(1):53–69. doi: 10.1080/20550324.2021.1917815.
  • Zhang K, Du J, Ren M, et al. Computational design for the damping characteristics of poly(ether ether ketone). J Phys Chem B. 2021;125(33):9588–9600. doi: 10.1021/acs.jpcb.1c03649.
  • Wang B, Mao Z, Li D, et al. Multiscale insights into the stretching behavior of kevlar fiber. Comput Mater Sci. 2020;185:109957. doi: 10.1016/j.commatsci.2020.109957.
  • Mao Z, Li T, Zhang K, et al. Carbon nanotube reinforced poly-p-phenylene terephthalamide fibers for toughness improvement: a molecular dynamics study. Advcd Theory and Sims. 2020;3(10):2000135. doi: 10.1002/adts.202000135.
  • Li Z, Li T, Zhang K, et al. Dynamics responses of graphene nanoplatelets-reinforced polydimethylsiloxane nanocomposites: a molecular dynamics study. Macromol Theory Simul. 2023:2300021. doi: 10.1002/mats.202300021.
  • Haghighi S, Ansari R, Ajori S. Interfacial properties of 3D metallic carbon nanostructures (T6 and T14)-reinforced polymer nanocomposites: a molecular dynamics study. J Mol Graph Model. 2019;92:341–356. doi: 10.1016/j.jmgm.2019.08.010.
  • Haghighi S, Ansari R, Ajori S. A molecular dynamics study on the interfacial properties of carbene-functionalized graphene/polymer nanocomposites. Int J Mech Mater Des. 2020;16(2):387–400. doi: 10.1007/s10999-019-09472-y.
  • Maiti TK, Singh J, Dixit P, et al. Enhancing mechanical and interfacial properties of PEEK/epoxy/SWCNT composites employing aromatic hydroxyl and amine-functionalized SWCNTs. Chem Eng J Adv. 2022;10:100274. doi: 10.1016/j.ceja.2022.100274.
  • Cui J, Zeng F, Yuan B. A comparative study on the interfacial characteristics and tensile behaviors of natural rubber composites reinforced by carbon and boron nitride nanotubes. Polym Compos. 2022;43(9):6624–6636. doi: 10.1002/pc.26977.
  • Song Z, Li Y, Yang B. The interfacial load-transfer enhancement mechanism of amino-functionalised carbon nanotube reinforced epoxy matrix composites: a molecular dynamics study. Compos Sci Technol. 2021;209:108790. doi: 10.1016/j.compscitech.2021.108790.
  • Nasrabadi AT, Foroutan M. Interactions between polymers and single-walled boron nitride nanotubes: a molecular dynamics simulation approach. J Phys Chem B. 2010;114(47):15429–15436. doi: 10.1021/jp106330c.
  • Yang S. A thermomechanical comparative study on carbon and boron nitride nanotube-reinforced polymer composites. Mech Adv Mater Struct. 2022;29(24):3556–3569. doi: 10.1080/15376494.2021.1905916.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–38. doi: 10.1016/0263-7855(96)00018-5.
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435–447. doi: 10.1021/ct700301q.
  • Schmid N, Eichenberger AP, Choutko A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J. 2011;40(7):843–856. doi: 10.1007/s00249-011-0700-9.
  • Koziara KB, Stroet M, Malde AK, et al. Testing and validation of the automated topology builder (ATB) version 2.0: prediction of hydration free enthalpies. J Comput Aided Mol Des. 2014;28(3):221–233. doi: 10.1007/s10822-014-9713-7.
  • Bamane SS, Jakubinek MB, Kanhaiya K, et al. Boron nitride nanotubes: force field parameterization, epoxy interactions, and comparison with carbon nanotubes for high-performance composite materials. ACS Appl Nano Mater. 2023;6(5):3513–3524. doi: 10.1021/acsanm.2c05285.
  • Li Y, Wang S, Wang Q, et al. A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Composites Part B. 2018;133:35–41. doi: 10.1016/j.compositesb.2017.09.024.
  • Posch HA, Hoover WG, Vesely FJ. Canonical dynamics of the nose oscillator: stability, order, and chaos. Phys Rev A Gen Phys. 1986;33(6):4253–4265. doi: 10.1103/PhysRevA.33.4253.
  • Jin K, Feng X, Xu Z. Mechanical properties of chitin–protein interfaces: a molecular dynamics study. BioNanoSci. 2013;3(3):312–320. doi: 10.1007/s12668-013-0097-2.
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–7190. doi: 10.1063/1.328693.
  • Zhang K, Yuan X, Li D, et al. Mechanical properties of solution-blended graphene nanoplatelets/polyether-ether-ketone nanocomposites. J Phys Chem B. 2021;125(37):10597–10609. doi: 10.1021/acs.jpcb.1c04609.
  • Tang M, Li T, Pickering E, et al. Steered molecular dynamics characterization of the elastic modulus and deformation mechanisms of single natural tropocollagen molecules. J Mech Behav Biomed Mater. 2018;86:359–367. doi: 10.1016/j.jmbbm.2018.07.009.
  • Wu X, An W, Zeng XC. Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups. J Am Chem Soc. 2006;128(36):12001–12006. doi: 10.1021/ja063653+.
  • Zhi CY, Bando Y, Tang CC, et al. Boron nitride nanotubes: functionalization and composites. J. Mater. Chem. 2008;18(33):3900–3908. doi: 10.1039/b804575e.
  • Sharma K, Sen Kaushalyayan K, Shukla M. Pull-out simulations of interfacial properties of amine functionalized multi-walled carbon nanotube epoxy composites. Comput Mater Sci. 2015;99:232–241. doi: 10.1016/j.commatsci.2014.12.023.
  • Vogler TJ, Kyriakides S. Inelastic behavior of an AS4/PEEK composite under combined transverse compression and shear. Part I: experiments. Int J Plast. 1999;15(8):783–806. doi: 10.1016/S0749-6419(99)00011-X.