403
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of network nanocomposite of polyaniline coating chitosan-graphene oxide-functionalized carbon nanotube and its efficacy in removing dyes from aqueous solution

ORCID Icon & ORCID Icon
Pages 183-202 | Received 01 Sep 2023, Accepted 17 Nov 2023, Published online: 18 Dec 2023

References

  • Soliman NK, Mohamed HS, Ahmed SA, et al. Cd2+ and Cu2+ removal by the waste of the marine brown macroalga hydroclathrus clathratus. Env Technol Innov. 2019;15:100365. doi: 10.1016/j.eti.2019.100365.
  • Hidayat E, Harada H, Mitoma Y, et al. Rapid removal of acid red 88 by zeolite/chitosan hydrogel in aqueous solution. Polymers. 2022;14(5):893. doi: 10.3390/polym14050893.
  • Srivastava A, Rani RM, Patle DS, et al. Emerging bioremediation technologies for the treatment of textile wastewater containing synthetic dyes: a comprehensive review. J Chem Tech Biotech. 2022;97(1):26–41. doi: 10.1002/jctb.6891.
  • Bhowmik M, Debnath A, Saha B. Fabrication of mixed phase CaFe2O4 and MnFe2O4 magnetic nanocomposite for enhanced and rapid adsorption of methyl orange dye: statistical modeling by neural network and response surface methodology. J Dispersion Sci Technol. 2020;41(13):1937–1948. doi: 10.1080/01932691.2019.1642209.
  • Katowah DF, Abdel-Fadeel MA. Ultrahigh adsorption capacity of a new metal sieve-like structure nanocomposite-based chitosan-graphene oxide nanosheet coated with poly-o-toluidine for the removal of acid red dye from the aquatic environment. Nanocomposites. 2023;9(1):80–99. doi: 10.1080/20550324.2023.2251677.
  • Mani S, Chowdhary P, Bharagava RN. Textile wastewater dyes: toxicity profile and treatment approaches. Emerging and Eco-Friendly Approaches for Waste Management. 2019;1:219–244.
  • Liu W, Kong F, Zhang J, et al. Modification of haematococcus pluvialis algal residue by ionic liquid for improved extraction of astaxanthin followed by removal of acid red dye in water. Algal Res. 2022;64:102656. doi: 10.1016/j.algal.2022.102656.
  • Rehman R, Muhammad SJ, Arshad M. Brilliant green and acid orange 74 dyes removal from water by pinus roxburghii leaves in naturally benign way: an application of green chemistry. J Chem. 2019;2019:1–10. doi: 10.1155/2019/3573704.
  • Alemu A, Kerie E. Removal of acid yellow 17 dye from aqueous solutions using activated water hyacinth (eichhornia crassipes). Water Pract Technol. 2022;17(6):1294–1304. doi: 10.2166/wpt.2022.063.
  • Chatterjee S, Guha N, Krishnan S, et al. Selective and recyclable Congo red dye adsorption by spherical Fe3O4 nanoparticles functionalized with 1, 2, 4, 5-benzenetetracarboxylic acid. Sci Rep. 2020;10(1):111. doi: 10.1038/s41598-019-57017-2.
  • Deb A, Kanmani M, Debnath A, et al. Ultrasonic assisted enhanced adsorption of methyl orange dye onto polyaniline impregnated zinc oxide nanoparticles: kinetic, isotherm and optimization of process parameters. Ultrason Sonochem. 2019;54:290–301. doi: 10.1016/j.ultsonch.2019.01.028.
  • Deb A, Debnath A, Saha B. Ultrasound‐aided rapid and enhanced adsorption of anionic dyes from binary dye matrix onto novel hematite/polyaniline nanocomposite: response surface methodology optimization. Appl Organom Chem. 2020;34(2):e5353. doi: 10.1002/aoc.5353.
  • Samadi A, Xie M, Li J, et al. Polyaniline-based adsorbents for aqueous pollutants removal: a review. Chem Eng J. 2021;418:129425. doi: 10.1016/j.cej.2021.129425.
  • Deb A, Das S, Debnath A. Fabrication and characterization of organometallic nanocomposite for efficient abatement of dye laden wastewater: CCD optimization, adsorption mechanism, co-existing ions, and cost analysis. Chem Phys Lett. 2023;830:140820. doi: 10.1016/j.cplett.2023.140820.
  • Lefatle MC, Madikizela LM, Pakade VE, et al. Magnetic chitosan-zeolite composite as an adsorbent in ultrasound-assisted magnetic solid phase extraction of tetracyclines in water samples. J Anal Sci Technol. 2023;14(1):28. doi: 10.1186/s40543-023-00394-1.
  • Abo Elsoud MM, El Kady E. Current trends in fungal biosynthesis of chitin and chitosan. Bull Natl Res Cent. 2019;43(1):1–12. doi: 10.1186/s42269-019-0105-y.
  • Kumar S, Bera R, Das N, et al. Chitosan-based zeolite-Y and ZSM-5 porous biocomposites for H2 and CO2 storage. Carbohydr Polym. 2020;232:115808. doi: 10.1016/j.carbpol.2019.115808.
  • Wu M, Chen W, Mao Q, et al. Facile synthesis of chitosan/gelatin filled with graphene bead adsorbent for orange II removal. Chem Eng Res Des. 2019;144:35–46. doi: 10.1016/j.cherd.2019.01.027.
  • Noreen S, Tahira M, Ghamkhar M, et al. Treatment of textile wastewater containing acid dye using novel polymeric graphene oxide nanocomposites (GO/PAN, GO/PPy, GO/PSty). J Mater Res Technol. 2021;14:25–35. doi: 10.1016/j.jmrt.2021.06.007.
  • Yang J, Shojaei S, Shojaei S. Removal of drug and dye from aqueous solutions by graphene oxide: adsorption studies and chemometrics methods. Npj Clean Water. 2022;5(1):5. doi: 10.1038/s41545-022-00148-3.
  • Mao B, Sidhureddy B, Thiruppathi AR, et al. Efficient dye removal and separation based on graphene oxide nanomaterials. New J Chem. 2020;44(11):4519–4528. doi: 10.1039/C9NJ05895H.
  • Minisy I, Salahuddin N, Ayad M. Chitosan/polyaniline hybrid for the removal of cationic and anionic dyes from aqueous solutions. J Appl Polymer Sci. 2019;136(6):47056. doi: 10.1002/app.47056.
  • Bryan MYK, Chai PV, Law JY, et al. Graphene oxide-chitosan composite material as adsorbent in removing methylene blue dye from synthetic wastewater. Mater Today: Proc. 2022;64:1587–1596. doi: 10.1016/j.matpr.2022.03.092.
  • Wang Y, Pan C, Chu W, et al. Environmental remediation applications of carbon nanotubes and graphene oxide: adsorption and catalysis. Nanomaterials. 2019;9(3):439. doi: 10.3390/nano9030439.
  • Mashkoor F, Nasar A. I. Carbon nanotube-based adsorbents for the removal of dyes from waters: a review. Environ Chem Lett. 2020;18:605–629. doi: 10.1007/s10311-020-00970-6.
  • Katowah DF, Saleh SM, Mohammed GI, et al. Ultra-efficient hybrid material-based cross-linked PANI@ Cs-GO-OXS/CuO for the photocatalytic degradation of Rhodamine-B. J Phys Chem Solids. 2021;157:110208. doi: 10.1016/j.jpcs.2021.110208.
  • Katowah DF, Hussein MA, Alam MM, et al. Poly (pyrrole-co-o-toluidine) wrapped CoFe 2 O 4/R (GO–OXSWCNTs) ternary composite material for Ga 3+ sensing ability. RSC Adv. 2019;9(57):33052–33070. doi: 10.1039/C9RA03593A.
  • Katowah DF, Saleh SM, Alqarni SA, et al. Network structure-based decorated CPA@ CuO hybrid nanocomposite for methyl orange environmental remediation. Sci Rep. 2021;11(1):5056. doi: 10.1038/s41598-021-99791-y.
  • Katowah DF, Mohammed GI, Al‐Eryani DA, et al. Fabrication of conductive cross‐linked polyaniline/G‐MWCNTS core‐shell nanocomposite: a selective sensor for trace determination of chlorophenol in water samples. Polym Adv Tech. 2020;31(11):2615–2631. doi: 10.1002/pat.4988.
  • Katowah DF, Mohammed GI, Adeosun WA, et al. Impact of CuO nanoparticles on the performance of ternary conductive C-PANI/(OXSWCNTs-GO-CS)/CuO network as a selective chlorophenol sensor. Polym Plast Technol Mater. 2021;60(13):1–17. doi: 10.1080/25740881.2021.1904986.
  • Gorduk O, Gencten M, Gorduk S, et al. Electrochemical fabrication and supercapacitor performances of metallo phthalocyanine/functionalized-multiwalled carbon nanotube/polyaniline modified hybrid electrode materials. J Storage Mater. 2021;33:102049. doi: 10.1016/j.est.2020.102049.
  • Ibrahim NI, Wasfi AS. A comparative study of polyaniline/MWCNT with polyaniline/SWCNT nanocomposite films synthesized by microwave plasma polymerization. Synth Met. 2019;250:49–54. doi: 10.1016/j.synthmet.2019.02.007.
  • Katowah DF, Mohammed GI, Al-Eryani DA, et al. Rapid and sensitive electrochemical sensor of cross-linked polyaniline/oxidized carbon nanomaterials core-shell nanocomposites for determination of 2, 4-dichlorophenol. PLoS ONE. 2020;15(6):e0234815. doi: 10.1371/journal.pone.0234815.
  • Katowah DF, Alam MM, Hussein MA, et al. Core–shell-shell structured P (ani-co-Py)/NiF-grafted-(go-PPD)-PPy nanocomposites prepared via two steps polymerization of conducting polymer for sensitive Tl3+ detection. Surf Interfaces. 2023;42:103374. doi: 10.1016/j.surfin.2023.103374.
  • Katowah DF, Rahman MM, Hussein MA, et al. Ternary nanocomposite based poly (pyrrole-co-O-toluidine), cobalt ferrite and decorated chitosan as a selective Co2+ cationic sensor. Composites Part B: Eng. 2019;175:107175. doi: 10.1016/j.compositesb.2019.107175.
  • Katowah DF, Asiri AM, Rahman MM. Development of novel nanocomposites based on SrSnO3-conjugated coconut-shell activated carbon with conducting polymers towards 4-nitrophenol detection by electrochemical approach. Surf Interfaces. 2023;41:103241. doi: 10.1016/j.surfin.2023.103241.
  • Manjunath S, Baghel RS, Kumar M. Performance evaluation of cement–carbon composite for adsorptive removal of acidic and basic dyes from single and multi-component systems. Env Technol Innov. 2019;16:100478. doi: 10.1016/j.eti.2019.100478.
  • Nizam NUM, Hanafiah MM, Mahmoudi E, et al. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci Rep. 2021;11(1):8623. doi: 10.1038/s41598-021-88084-z.
  • Katowah DF, Al-Zahrani HK. A new ternary nanocomposites-based cellulose derivatives-CuFe2O4-Zeolite with ultra-high adsorption capacity for brilliant green dye treatment and removal from the aquatic environment. J Saudi Chem Soc. 2023;27(6):101764. doi: 10.1016/j.jscs.2023.101764.
  • Abdel-Fadeel MA, Aljohani NS, Al-Mhyawi SR, et al. A simple method for removal of toxic dyes such as brilliant green and acid red from the aquatic environment using halloysite nanoclay. J Saudi Chem Soc. 2022;26(3):101475. doi: 10.1016/j.jscs.2022.101475.
  • Munilakshmi N, Srimurali M, Karthikeyan J. Adsorptive removal of acid red 1, from aqueous solutions by preformed flocs. Int J Curr Eng Technol. 2013;3(4):1456–1462.
  • Alizadeh S, Seyyedi K. Removal of CI acid red 1 (AR1) dye pollutant from contaminated waters by adsorption method using sunflower seed shells and pine cone as agro waste materials. J Appl Chem Res. 2019;13(4):93–105.
  • Ahmad R, Ansari K. Chemically treated lawsonia inermis seeds powder (CTLISP): an eco-friendly adsorbent for the removal of brilliant green dye from aqueous solution. Groundwater Sustainable Dev. 2020;11:100417. doi: 10.1016/j.gsd.2020.100417.
  • Baidya KS, Kumar U. Adsorption of brilliant green dye from aqueous solution onto chemically modified areca nut husk. S Afr J Chem Eng. 2021;35:33–43. doi: 10.1016/j.sajce.2020.11.001.
  • Vyavahare G, Gurav R, Patil R, et al. Sorption of brilliant green dye using soybean straw-derived biochar: characterization, kinetics, thermodynamics and toxicity studies. Env Geochem Health. 2021;43(8):2913–2926. doi: 10.1007/s10653-020-00804-y.
  • Gabal MA, Al-Juaid AA, El-Rashed S, et al. Structural, thermal, magnetic and electrical properties of polyaniline/CoFe2O4 nano-composites with special reference to the dye removal capability. J Inorg Organomet Polym. 2019;29(6):2197–2213. doi: 10.1007/s10904-019-01179-z.
  • Gabal MA, Al-Harthy EA, Al Angari YM, et al. Synthesis, characterization and dye removal capability of conducting polypyrrole/Mn0.8Zn0.2Fe2O4/graphite oxide ternary composites. Catalysts. 2022;12(12):1624. doi: 10.3390/catal12121624.
  • Al-Saidi HM, Abdel-Fadeel MA, Alharthi SS. Preconcentration and ultrasensitive spectrophotometric estimation of tungsten in soils using polyurethane foam in the presence of rhodamine B: kinetic and thermodynamic studies, and designing a simple automated preconcentration system. J Saudi Chem Soc. 2021;25(8):101301. doi: 10.1016/j.jscs.2021.101301.
  • El‐Attar HG, Salem MA, Bakr EA. Facile synthesis of recoverable superparamagnetic AgFeO2@ polypyrrole/SiO2 nanocomposite as an excellent catalyst for reduction and oxidation of different dyes in wastewater. Appl Organom Chem. 2021;35(10):e6357. doi: 10.1002/aoc.6357.
  • Hameed SA, Abdel-Fadeel MA, Al-Saidi HM, et al. Simultaneous removal of the toxic tungsten ions and rhodamine B dye by graphene nanosheets from model and real water. DWT. 2020;188:266–276. doi: 10.5004/dwt.2020.25348.
  • Salam MA, Lateefa A, Abdel-Fadeel MA. Removal of toxic ammonium ions from water using nanographene sheets. DWT. 2018;129:168–176. doi: 10.5004/dwt.2018.23085.
  • Braun T, Navratil JD, Farag A. Polyurethane foam sorbents in separation science. Boca Raton: CRC press; 2018.
  • Parimelazhagan V, Yashwath P, Arukkani Pushparajan D, et al. Rapid removal of toxic remazol brilliant blue-R dye from aqueous solutions using juglans nigra shell biomass activated carbon as potential adsorbent: optimization, isotherm, kinetic, and thermodynamic investigation. Int J Mol Sci. 2022;23(20):12484. doi: 10.3390/ijms232012484.
  • Althomali RH, Alamry KA, Hussein MA, et al. Modification of alginic acid for the removal of dyes from aqueous solutions by solid-phase extraction. Int J Env Anal Chem. 2022;102(16):3673–3693. doi: 10.1080/03067319.2020.1772772.
  • Alqarni SA. Deliberated system of ternary core–shell polythiophene/ZnO/MWCNTs and polythiophene/ZnO/ox-MWCNTs nanocomposites for brilliant green dye removal from aqueous solutions. Nanocomposites. 2022;8(1):47–63. doi: 10.1080/20550324.2022.2054209.