2,802
Views
0
CrossRef citations to date
0
Altmetric
Review Article

State-of-the-art electrochromic thin films devices, fabrication techniques and applications: a review

, , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1-40 | Received 08 Oct 2023, Accepted 01 Dec 2023, Published online: 14 Dec 2023

References

  • Saqib N, Radulescu M, Usman M, et al. Environmental technology, economic complexity, renewable electricity, environmental taxes and CO2 emissions: implications for low-carbon future in G-10 bloc. Heliyon. 2023;9(6):e16457. doi: 10.1016/j.heliyon.2023.e16457.
  • Saqib N, Usman M, Mahmood H, et al. The moderating role of technological innovation and renewable energy on CO2 emission in O.E.C.D. countries: evidence from panel quantile regression approach. Econ Res Ekon. 2023;36(3):2168720. doi: 10.1080/1331677X.2023.2168720.
  • Uddin I, Usman M, Saqib N, et al. Correction to: the impact of geopolitical risk, governance, technological innovations, energy use, and foreign direct investment on CO2 emissions in the BRICS region. Environ Sci Pollut Res Int. 2023;30(31):77957–77957. doi: 10.1007/s11356-023-28076-w.
  • Kim KH, Jeong SJ, Koo BR, et al. Surface amending effect of N-doped carbon-embedded NiO films for multirole electrochromic energy-storage devices. Appl Surf Sci. 2021;537:147902. doi: 10.1016/j.apsusc.2020.147902.
  • Kim KH, Koo BR, Ahn HJ. Effects of Sb-doped SnO2–WO3 nanocomposite on electrochromic performance. Ceram Int. 2019;45(13):15990–15995. doi: 10.1016/j.ceramint.2019.05.109.
  • Lusis A, Kleperis J, Pentjušs E. Model of electrochromic and related phenomena in tungsten oxide thin films. J Solid State Electrochem. 2003;7(2):106–112. doi: 10.1007/s10008-002-0315-2.
  • Niklasson GA, Granqvist CG. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem. 2007;17(2):127–156. doi: 10.1039/B612174H.
  • Somani PR, Radhakrishnan S. Electrochromic materials and devices: present and future. Mater Chem Phys. 2003;77(1):117–133. doi: 10.1016/S0254-0584(01)00575-2.
  • Yang P, Sun P, Mai W. Electrochromic energy storage devices. Mater Today. 2016;19(7):394–402. doi: 10.1016/j.mattod.2015.11.007.
  • Buch VR, Chawla AK, Rawal SK. Review on electrochromic property for WO3 thin films using different deposition techniques. Mater Today. 2016;3(6):1429–1437. doi: 10.1016/j.matpr.2016.04.025.
  • Granqvist CG, Arvizu MA, Pehlivan IB, et al. Electrochromic materials and devices for energy efficiency and human comfort in buildings: a critical review. Electrochim Acta. 2018;259:1170–1182. doi: 10.1016/j.electacta.2017.11.169.
  • Granqvist CG. Handbook of inorganic electrochromic materials. Amsterdam: Elsevier B.V.; 1995.
  • Sibilio S, Rosato A, Scorpio M, et al. A review of electrochromic windows for residential applications. IJHT. 2016;34(S2):S481–S488. doi: 10.18280/ijht.34S241.
  • Patel K, Bhatt G, Ray J, et al. All-inorganic solid-state electrochromic devices: a review. J Solid State Electrochem. 2017;21(2):337–347. doi: 10.1007/s10008-016-3408-z.
  • Monk PM, Ali T, Partridge RD. The effect of doping electrochromic molybdenum oxide with other metal oxides: correlation of optical and kinetic properties. Solid State Ion. 1995;80(1–2):75–85. doi: 10.1016/0167-2738(95)00130-X.
  • Chang I, Kmetz A, Von Willisen F. Nonemissive electrooptic displays. New York: Plenum; 1976.
  • Rosseinsky DR, Mortimer RJ. Electrochromic systems and the prospects for devices. Adv Mater. 2001;13(11):783–793. doi: 10.1002/1521-4095(200106)13:11%3C783::AID-ADMA783%3E3.0.CO;2-D.
  • Granqvist CG. Electrochromic tungsten oxide films: review of progress. Sol Energy Mater Sol Cells. 2000;60(3):201–262. doi: 10.1016/S0927-0248(99)00088-4.
  • Granqvist C. Progress in electrochromics: tungsten oxide revisited. Electrochim Acta. 1999;44(18):3005–3015. doi: 10.1016/s0013-4686(99)00016-x.
  • Mortimer RJ. Organic electrochromic materials. Electrochim Acta. 1999;44(18):2971–2981. doi: 10.1016/S0013-4686%2899%2900046-8.
  • Mortimer RJ. Electrochromic materials. Chem Soc Rev. 1997;26(3):147–156. doi: 10.1039/cs9972600147.
  • Granqvist CG, Avendaño E, Azens A. Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films. 2003;442(1–2):201–211. doi: 10.1016/S0040-6090(03)00983-0.
  • Granqvist CG. Electrochromic metal oxides: an introduction to materials and devices. In: Mortimer RJ, Rosseinsky DR, Monk PMS, editors. Electrochromic materials and devices. Germany: Wiley‐VCH Verlag GmbH & Co. KGaA; 2013. p. 1–40. doi: 10.1002/9783527679850.ch1.
  • Ohno H, Yamazaki H. Preparation and characteristics of all solid-state electrochromic display with cation-conductive polymer electrolytes. Solid State Ionics. 1993;59(3–4):217–222. doi: 10.1016/0167-2738(93)90053-6.
  • Granqvist CG. Electrochromic devices. J Eur Ceram. 2005;25(12):2907–2912. doi: 10.1016/j.jeurceramsoc.2005.03.162.
  • Corr D, Bach U, Fay D, et al. Coloured electrochromic paper quality displays based on modified mesoporous electrodes. Solid State Ionics. 2003;165(1–4):315–321. doi: 10.1016/j.ssi.2003.08.054.
  • Lin SY, Chen YC, Wang CM, et al. Study of MoO3–NiO complementary electrochromic devices using a gel polymer electrolyte. Solid State Ionics. 2012;212:81–87. doi: 10.1016/j.ssi.2012.02.005.
  • Riza MA, Ibrahim MA, Ahamefula UC, et al. Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part I–material developments. Sol Energy. 2016;137:371–378. doi: 10.1016/j.solener.2016.08.042.
  • Bright C. Review of transparent conductive oxides (TCO). In: Mattox DM, Mattox VH, editors. 50 Years of vacuum coating technology and the growth of the society of vacuum coaters. Tuscon (AZ): 3M Company; 2007. p. 38–45.
  • Chen Y, Wang Y, Sun P, et al. Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J Mater Chem A. 2015;3(41):20614–20618. doi: 10.1039/C5TA04011F.
  • Bisht H, Eun HT, Mehrtens A, et al. Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates. Thin Solid Films. 1999;351(1–2):109–114. doi: 10.1016/S0040-6090(99)00254-0.
  • Kim TH, Park SH, Kim DH, et al. Roll-to-roll sputtered ITO/Ag/ITO multilayers for highly transparent and flexible electrochromic applications. Sol Energy Mater Sol Cells. 2017;160:203–210. doi: 10.1016/j.solmat.2016.10.033.
  • Akanda MR, Osman AM, Nazal MK, et al. Review recent advancements in the utilization of indium tin oxide (ITO) in electroanalysis without surface modification. J Electrochem Soc. 2020;167(3):037534. doi: 10.1149/1945-7111/ab64bd.
  • Way A, Luke J, Evans AD, et al. Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices. AIP Adv. 2019;9(8):085220. doi: 10.1063/1.5104333.
  • Kawashima T, Ezure T, Okada K, et al. FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. J Photochem Photobiol A. 2004;164(1–3):199–202. doi: 10.1016/j.jphotochem.2003.12.028.
  • Deb S. A novel electrophotographic system. Appl Opt. 1969;8(S1):192–195. doi: 10.1364/AO.8.000192.
  • Deb S. Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos Mag. 1973;27(4):801–822. doi: 10.1080/14786437308227562.
  • Giglia R. Features of an electrochromic display device. SID Symp Digest. 1975;6:52.
  • Chang I, Gilbert B, Sun T. Electrochemichromic systems for display applications. J Electrochem Soc. 1975;122(7):955–962. doi: 10.1149/1.2134377.
  • Goodman L. Passive liquid displays: liquid crystals, electrophoretics and electrochromics. IEEE Trans Consumer Electron. 1975;CE-21(3):247–259. doi: 10.1109/TCE.1975.266744.
  • Faughnan BW, Crandall RS, Heyman PM. Electrochromism in WO3 amorphous films. RCA Rev. 1975;36(1):177–197.
  • Lorteije J. A survey of drive methods for gas discharge, light emitting diode, liquid crystal and electrochromic displays. 1975;28(6):196–200.
  • Mikhailov D, Yefanova V, Mikhailova A. Solid-state electrochromic indicator. Russ J Electrochem. 2011;47(8):871–876. doi: 10.1134/S1023193511080106.
  • Beaujuge PM, Reynolds JR. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev. 2010;110(1):268–320. doi: 10.1021/cr900129a.
  • Dyer AL, Thompson EJ, Reynolds JR. Completing the color palette with spray-processable polymer electrochromics. ACS Appl Mater Interfaces. 2011;3(6):1787–1795. doi: 10.1021/am200040p.
  • Jang JE, Cha SN, Lee JM, et al. Multiple color reflection in a single unit cell using double-layer electrochromic reaction. Opt Lett. 2012;37(2):235–237. doi: 10.1364/OL.37.000235.
  • Jensen J, Dam HF, Reynolds JR, et al. Manufacture and demonstration of organic photovoltaic‐powered electrochromic displays using roll coating methods and printable electrolytes. J Polym Sci B Polym Phys. 2012;50(8):536–545. doi: 10.1002/polb.23038.
  • Tehrani P, Hennerdal LO, Dyer AL, et al. Improving the contrast of all-printed electrochromic polymer on paper displays. J Mater Chem. 2009;19(13):1799–1802. doi: 10.1039/b820677e.
  • Tehrani P, Engquist I, Robinson ND, et al. Printable organic electrochemical circuit to record time–temperature history. Electrochim Acta. 2010;55(23):7061–7066. doi: 10.1016/j.electacta.2010.06.073.
  • Said E, Andersson P, Engquist I, et al. Electrochromic display cells driven by an electrolyte-gated organic field-effect transistor. Org Electronics. 2009;10(6):1195–1199. doi: 10.1016/j.orgel.2009.06.008.
  • Liu H, Crooks RM. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal Chem. 2012;84(5):2528–2532. doi: 10.1021/ac203457h.
  • Baloukas B, Lamarre JM, Martinu L. Active metameric security devices using an electrochromic material. Appl Opt. 2011;50(9):C41–C49. doi: 10.1364/AO.50.000C41.
  • Baloukas B, Martinu L. WO3/SiO2 composite optical films for the fabrication of electrochromic interference filters. Appl Opt. 2012;51(16):3346–3356. doi: 10.1364/AO.51.003346.
  • Piegari P, Flory F. Optical thin films and coatings: from materials to applications. Cambridge: Woodhead Publishing; 2018.
  • Shin H, Kim Y, Bhuvana T, et al. Color combination of conductive polymers for black electrochromism. ACS Appl Mater Interfaces. 2012;4(1):185–191. doi: 10.1021/am201229k.
  • Ukoba KO, Eloka-Eboka AC, Inambao FL. Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renew Sust Energ Rev. 2018;82:2900–2915. doi: 10.1016/j.rser.2017.10.041.
  • Morosanu CE. Thin films by chemical vapour deposition. In: Volume 7 of Thin films science and technology. Amsterdam: Elsevier Science; 1990.
  • Leskelä M, Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films. 2002;409(1):138–146. doi: 10.1016/S0040-6090(02)00117-7.
  • Yang TS, Cho W, Kim M, et al. Atomic layer deposition of nickel oxide films using Ni (dmamp) 2 and water. J Vac Sci Technol. 2005;23(4):1238–1243. doi: 10.1116/1.1875172.
  • Rozati S, Akesteh S. Characterization of ZnO:Al thin films obtained by spray pyrolysis technique. Mater Charact. 2007;58(4):319–322. doi: 10.1016/j.matchar.2006.05.012.
  • Sta I, Jlassi M, Hajji M, et al. Structural, optical and electrical properties of undoped and Li-doped NiO thin films prepared by sol–gel spin coating method. Thin Solid Films. 2014;555:131–137. doi: 10.1016/j.tsf.2013.10.137.
  • Xu X, Xia C, Huang S, et al. YSZ thin films deposited by spin-coating for IT-SOFCs. Ceram Int. 2005;31(8):1061–1064. doi: 10.1016/j.ceramint.2004.11.005.
  • Brinker C, Frye G, Hurd A, et al. Fundamentals of sol-gel dip coating. Thin Solid Films. 1991;201(1):97–108. doi: 10.1016/0040-6090(91)90158-T.
  • Wang H, Wang Y, Wang X. Pulsed laser deposition of the porous nickel oxide thin film at room temperature for high-rate pseudocapacitive energy storage. Electrochem Commun. 2012;18:92–95. doi: 10.1016/j.elecom.2012.02.023.
  • Mahan JE. Physical vapor deposition of thin films. New York: Wiley; 2000.
  • Herman MA, Sitter H. Molecular beam epitaxy: fundamentals and current status. Berlin, Heidelberg: Springer; 2012.
  • Zhao Y, Wang H, Wu C, et al. Structures, electrical and optical properties of nickel oxide films by radio frequency magnetron sputtering. Vacc. 2014;103:14–16. doi: 10.1016/j.vacuum.2013.11.009.
  • Xia X, Tu J, Zhang J, et al. Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Sol Energy Mater Sol. 2008;92(6):628–633. doi: 10.1016/j.solmat.2008.01.009.
  • Luyo C, Ionescu R, Reyes LF, et al. Gas sensing response of NiO nanoparticle films made by reactive gas deposition. Chem Sens. 2009;138(1):14–20. doi: 10.1016/j.snb.2008.11.057.
  • Kalita PK, Sarma B, Das H. Structural characterization of vacuum evaporated ZnSe thin films. Bull Mater Sci. 2000;23(4):313–317. doi: 10.1007/BF02720089.
  • Tanuševski A, Poelman D. Optical and photoconductive properties of SnS thin films prepared by electron beam evaporation. Sol Energy Mater Sol Cells. 2003;80(3):297–303. doi: 10.1016/j.solmat.2003.06.002.
  • Lampert C, Omstead T, Yu P. Chemical and optical properties of electrochromic nickel oxide films. Sol Energy Mater. 1986;14(3–5):161–174. doi: 10.1016/0165-1633(86)90043-2.
  • Liang F, Yang J, Zhao Y, et al. A review of thin film electrolytes fabricated by physical vapor deposition for solid oxide fuel cells. Int J Hydrog Energy. 2022;47(87):36926–36952. doi: 10.1016/j.ijhydene.2022.08.237.
  • Rossnagel SM. Thin film deposition with physical vapor deposition and related technologies. J Vac Sci Technol A. 2003;21(5):S74–S87. doi: 10.1116/1.1600450.
  • Sun L, Yuan G, Gao L, et al. Chemical vapour deposition. Nat Rev Methods Primers. 2021;1(1):5. doi: 10.1038/s43586-020-00005-y.
  • Sequeda FO. Thin film deposition techniques in microelectronics. JOM. 1986;38(2):55–65. doi: 10.1007/BF03257928.
  • Livage J, Ganguli D. Sol–gel electrochromic coatings and devices: a review. Sol Energy Mater Sol Cells. 2001;68(3–4):365–381. doi: 10.1016/S0927-0248(00)00369-X.
  • Nishio K, Tsuchiya T. Electrochromic thin films prepared by sol-gel process. Sol Energy Mater Sol Cells. 2001;68(3–4):279–293. doi: 10.1016/S0927-0248(00)00362-7.
  • Ezekoye BA, Offor PO, Ezekoye VA, et al. Chemical bath deposition technique of thin films: a review. Int J Recent Sci Res. 2012;2:589–592. doi: 10.15373/22778179/AUG2013/149.
  • Tajima K, Kubota T, Jeong CY. Preparation of electrochromic thin films by humidity-controlled spin coating. Thin Solid Films. 2022;758:139412. doi: 10.1016/j.tsf.2022.139412.
  • Park JH, Kang JS, Cha IY, et al. Preparation of WO3 thin film by successive dip coating for electrochromic and photoelectrochromic devices. Bulletin Korean Chem Soc. 2015;36(9):2213–2220. doi: 10.1002/bkcs.10424.
  • Selvakumar N, Barshilia HC. Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Sol Energy Mater Sol Cells. 2012;98:1–23. doi: 10.1016/j.solmat.2011.10.028.
  • Lagaron J, Catalá R, Gavara R. Structural characteristics defining high barrier properties in polymeric materials. Mater Sci Technol. 2004;20(1):1–7. doi: 10.1179/026708304225010442.
  • Kalss W, Reiter A, Derflinger V, et al. Modern coatings in high performance cutting applications. Int J Refract Hard Met. 2006;24(5):399–404. doi: 10.1016/j.ijrmhm.2005.11.005.
  • Andreev AA, Gavrilko IV, Gavrilov AG, et al. Multilayer coatings of metal-cutting tools. United States Patents. US4554201A. 1985 Nov 19.
  • Wang W, Chen W, Wang B, et al. Ultrathin ferroelectric films: growth, characterization physics and applications. Mater. 2014;7(9):6377–6485. doi: 10.3390/ma7096377.
  • Chaffar Akkari F, Ben Jbara H, Abdelkader D, et al. Effect of angle deposition γ on the structural, optical and electrical properties of copper oxide zigzag (+γ, −γ) nanostructures elaborated by glancing angle deposition. Thin Solid Films. 2018;657:61–69. doi: 10.1016/j.tsf.2018.05.006.
  • Pereira S, Gonçalves A, Correia N, et al. Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature. Sol Energy Mater Sol Cells. 2014;120:109–115. doi: 10.1016/j.solmat.2013.08.024.
  • Sivakumar R, Shanthakumari K, Thayumanavan A, et al. Molybdenum oxide (MoO3) thin film based electrochromic cell characterisation in 0·1M LiClO4. PC electrolyte. Surf Eng. 2009;25(7):548–554. doi: 10.1179/174329408X282523.
  • Duta L, Popescu A. C. Current status on pulsed laser deposition of coatings from animal-origin calcium phosphate sources. Coatings. 2019;9(5):335. doi: 10.3390/coatings9050335.
  • Chrisey DB, Hubler GK. Pulsed laser deposition of thin films. New York: John Wiley & Sons; 1994.
  • Eason R. Pulsed laser deposition of thin films: applications-led growth of functional materials. London: John Wiley & Sons; 2007.
  • Rashidian Vaziri M, Hajiesmaeilbaigi F, Maleki M. Monte Carlo simulation of the subsurface growth mode during pulsed laser deposition. J Appl Phys. 2011;110(4):043304. doi: 10.1063/1.3624768.
  • Cho AY, Arthur J. Molecular beam epitaxy. Prog Solid State Ch. 1975;10:157–191. doi: 10.1016/0079-6786(75)90005-9.
  • Ohring M. Materials science of thin films: deposition and structure. San Diego (CA): Academic Press; 2002.
  • Belmoubarik M, Nozaki T, Endo H, et al. Investigation of ZnO thin films deposited on ferromagnetic metallic buffer layer by molecular beam epitaxy toward realization of ZnO-based magnetic tunneling junctions. J Appl Phys. 2013;113(17):17C106. doi: 10.1063/1.4794875.
  • Jabari‐Seresht R, Jahanshahi M, Rashidi A, et al. Fabrication and of non‐porous graphene by a unique spray pyrolysis method. Chem Eng Technol. 2013;36(9):1550–1558. doi: 10.1002/ceat.201300002.
  • Udayakumar R, Khanaa V, Saravanan T. Synthesis and structural characterization of thin films of SnO2 prepared by spray pyrolysis technique. IJST. 2013;6(sp6):1–4. doi: 10.17485/ijst/2013/v6isp6.19.
  • Cho M, Harada C, Suzuki H, et al. ZnO homoepitaxy. Superlattices Microstruct. 2005;38(4–6):349–363. doi: 10.1016/j.spmi.2005.08.022.
  • Mattox DM. Atomistic film growth and some growth-related film properties. In: Handbook of physical vapor deposition (PVD) processing. 2nd ed. New York: William Andrew Publishing; 2010. p. 333–398.
  • Schultz PG, Xiang XD, Goldwasser I, et al. Polymer arrays from the combinatorial synthesis of novel materials United States Patent, US 6,794,052 B2, 2004 Sep. 21.
  • Seyfert U, Heisig U, Teschner G, et al. 40 Years of industrial magnetron sputtering in Europe. MRS Bull. 2015;26:182–189.
  • Seshan K, Schepis D. Handbook of thin film deposition. New York: William Andrew Publishing; 2018.
  • Seshan K. Handbook of thin film deposition processes and techniques. New York: William Andrew Publishing; 2001.
  • Teixeira V, Cui H, Meng L, et al. Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films. 2002;420-421:70–75. doi: 10.1016/S0040-6090(02)00656-9.
  • Utsumi K, Iigusa H, Tokumaru R, et al. Study on In2O3–SnO2 transparent and conductive films prepared by dc sputtering using high density ceramic targets. Thin Solid Films. 2003;445(2):229–234. doi: 10.1016/S0040-6090(03)01167-2.
  • Gómez A, Galeano A, Saldarriaga W, et al. Deposition of YBaCo4O7+ δ thin films on (001)-SrTiO3 substrates by dc sputtering. Vacc. 2015;119:7–14. doi: 10.1016/j.vacuum.2015.04.020.
  • Cash JH, Jr, Cunningham JA. Rf sputtering method United States Patent, US3677924A, 1972 July 18.
  • You T, Niwa O, Tomita M, et al. Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method. Electrochem Commun. 2002;4(5):468–471. doi: 10.1016/S1388-2481(02)00340-5.
  • Torng C, Sivertsen JM, Judy JH, et al. Structure and bonding studies of the C: n thin films produced by RF sputtering method. J Mater Res. 1990;5(11):2490–2496. doi: 10.1557/JMR.1990.2490.
  • Constantin DG, Apreutesei M, Arvinte RA, et al. Magnetron sputtering technique used for coatings deposition; technologies and applications. 7th International Conference on Materials Science and Engineering. 2011. p. 29–33.
  • Christie DJ. Making magnetron sputtering work: modelling reactive sputtering dynamics, part 1. SVC Bulletin. 2014;127:24–27.
  • Arnell RD, Kelly PJ. Recent advances in magnetron sputtering. Surf Coat Technol. 1999;112(1–3):170–176. doi: 10.1016/S0257-8972(98)00749-X.
  • Musil J. Recent advances in magnetron sputtering technology. Surf Coat Technol. 1998;100–101:280–286. doi: 10.1016/S0257-8972(97)00633-6.
  • Oluwatosin Abegunde O, Titilayo Akinlabi E, Philip Oladijo O, et al. Overview of thin film deposition techniques. AIMS Mater Sci. 2019;6(2):174–199. doi: 10.3934/matersci.2019.2.174.
  • Jones AC, Hitchman ML. Chemical vapour deposition: precursors, processes and applications. Cambridge: Royal Society of Chemistry; 2009.
  • Henley W, Sacks G. Deposition of electrochromic tungsten oxide thin films by plasma‐enhanced chemical vapor deposition. J Electrochem Soc. 1997;144(3):1045–1050. doi: 10.1149/1.1837528.
  • Holonyak N, Jr, Kolbas R, Dupuis R, et al. Quantum-well heterostructure lasers. IEEE J Quant Electron. 1980;16(2):170–186.
  • Duchemin J, Bonnet M, Koelsch F, et al. A new method for the growth of GaAs epilayer at low H2 pressure. J Cryst Growth. 1978;45:181–186. doi: 10.1016/0022-0248(78)90432-3.
  • Kurishima K, Nakajima H, Yamahata S, et al. High‐performance Zn‐doped‐base InP/InGaAs double‐heterojunction bipolar transistors grown by metalorganic vapor phase epitaxy. Appl Phys Lett. 1994;64(9):1111–1113. doi: 10.1063/1.110844.
  • Zvonkov NB, Zvonkov NB, Ershov AE, et al. Semiconductor lasers emitting at the 0.98 μm wavelength with radiation coupling-out through the substrate. Quantum Electron. 1998;28(7):605–607. doi: 10.1070/QE1998v028n07ABEH001287.
  • Motoda T, Kato M, Kadoiwa K, et al. Multi-wafer growth of highly uniform and high-quality AlGaInP/GaInP structure using high-speed rotating disk metalorganic chemical vapor deposition. J cryst Growth. 1994;145(1–4):650–654. doi: 10.1016/0022-0248(94)91121-5.
  • Shaheen SE, Radspinner R, Peyghambarian N, et al. Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl Phys Lett. 2001;79(18):2996–2998. doi: 10.1063/1.1413501.
  • Egawa T, Ishikawa H, Jimbo T, et al. Heteroepitaxial growth of III–V compound semiconductors for optoelectronic devices. Bull Mater Sci. 1999;22(3):363–367. doi: 10.1007/BF02749943.
  • Toda A, Kawasumi T, Imanishi D, et al. Blue-green ZnCdSe light-emitting diodes grown by MOCVD. Electron Lett. 1995;31(3):235–237. doi: 10.1049/el:19950157.
  • Sugiura S, Shigenaka K, Nakata F, et al. Misfit dislocation microstructure and kinetics of HgCdTe/CdZnTe under tensile and compressive stress. J Cryst Growth. 1994;145(1–4):547–551. doi: 10.1016/0022-0248(94)91105-3.
  • Fujita S, Fujita S. Metalorganic vapor-phase epitaxy of p-type ZnSe and p/n junction diodes. J Cryst Growth. 1994;145(1–4):552–556. doi: 10.1016/0022-0248(94)91106-1.
  • Anderson P, Erbil A, Nelson C, et al. A high-speed, rotating-disc metalorganic chemical vapor deposition system for the growth of (Hg, cd) Te and related alloys. J Cryst Growth. 1994;135(3–4):383–400. doi: 10.1016/0022-0248(94)90127-9.
  • Pautrat JL, Monterrat E, Ulmer L, et al. Band gap engineering in II–VI based heterostructure. J Cryst Growth. 1992;117(1–4):454–459. doi: 10.1016/0022-0248(92)90791-G.
  • Manasevit H, Simpson W. The use of metalorganics in the preparation of semiconductor materials: VI. Formation of IV–VI lead and tin salts. J Electrochem Soc. 1975;122(3):444–450. doi: 10.1149/1.2134233.
  • Stamenković L. Chemical vapor deposition of coatings. Zaštita Materijala. 2007;48(2):25–48.
  • Chandraboss V, Karthikeyan B, Kamalakkannan J, et al. Sol-Gel synthesis of TiO2/SiO2 and ZnO/SiO2 composite films and evaluation of their photocatalytic activity towards methyl green. J Nanopart. 2013;2013(7):1–7. doi: 10.1155/2013/507161.
  • Peng YY, Hsieh TE, Hsu CH. White-light emitting ZnO-SiO2 nanocomposite thin films prepared by the target-attached sputtering method. Nanotechnol. 2005;17(1):174–180. doi: 10.1088/0957-4484/17/1/028.
  • Alotaibi AM, Sathasivam S, Williamson BA, et al. Chemical vapor deposition of photocatalytically active pure brookite TiO2 thin films. Chem Mater. 2018;30(4):1353–1361. doi: 10.1021/acs.chemmater.7b04944.
  • Lang J, Takahashi K, Kubo M, et al. Preparation of TiO2-CNT-Ag ternary composite film with enhanced photocatalytic activity via plasma-enhanced chemical vapor deposition. Catalyst. 2022;12(5):508. doi: 10.3390/catal12050508.
  • de Oliveira AG, Nascimento JP, de Fátima Gorgulho H, et al. Electrochemical synthesis of TiO2/graphene oxide composite films for photocatalytic applications. J Alloys Compd. 2016;654:514–522. doi: 10.1016/j.jallcom.2015.09.110.
  • Chien DT, Long PD, Van HP, et al. Nanocomposite thin film TiO2/CdS electrodes prepared by thermal evaporation process for photovoltaic applications. Comm in Phys. 2011;21(1):57–57. doi: 10.15625/0868-3166/21/1/95.
  • Popescu-Pelin G, Ristoscu C, Duta L, et al. Fish bone derived bi-phasic calcium phosphate coatings fabricated by pulsed laser deposition for biomedical applications. Mar Drugs. 2020;18(12):623. doi: 10.3390/md18120623.
  • Sugumaran S, Bellan CS, Nadimuthu M. Characterization of composite PVA–Al2O3 thin films prepared by dip coating method. Iran Polym J. 2015;24(1):63–74. doi: 10.1007/s13726-014-0300-5.
  • Mohammad T, Alam F, Sadhanala A, et al. In sulfide (SnS) films deposited by an electric field-Assisted continuous spray pyrolysis technique with application as counter electrodes in Dye-Sensitized solar cells. ACS Omega. 2022;7(44):39690–39696. doi: 10.1021/acsomega.2c03454.
  • LeClair P, Berera GP, Moodera J. Titanium nitride thin films obtained by a modified physical vapor deposition process. Thin Solid Films. 2000;376(1–2):9–15. doi: 10.1016/S0040-6090(00)01192-5.
  • Sharma N, Hooda M, Sharma S. S. Synthesis and characterization of LPCVD polysilicon and silicon nitride thin films for MEMS applications. J Mater. 2014;2014:1–8. doi: 10.1155/2014/954618.
  • Klobukowski ER, Tenhaeff WE, McCamy JW, et al. Atmospheric pressure chemical vapor deposition of high silica SiO2–TiO2 antireflective thin films for glass based solar panels. J Mater Chem C. 2013;1(39):6188–6190. doi: 10.1039/c3tc31465k.
  • Lang J, Takahashi K, Kubo M, et al. Ag-doped TiO2 composite films prepared using Aerosol-Assisted, plasma-enhanced chemical vapor deposition. Catalyst. 2022;12(4):365. doi: 10.3390/catal12040365.
  • Zhou L, Hoffmann RC, Zhao Z, et al. Chemical bath deposition of thin TiO2-anatase films for dielectric applications. Thin Solid Films. 2008;516(21):7661–7666. doi: 10.1016/j.tsf.2008.02.042.
  • Ogirima M, Saida H, Suzuki M, et al. A multiwafer growth system for low pressure silicon epitaxy. J Electrochem Soc. 1978;125(11):1879–1881. doi: 10.1149/1.2131316.
  • Kern W, Schnable GL. Low-pressure chemical vapor deposition for very large-scale integration processing—a review. IEEE Trans Electron Devices. 1979;26(4):647–657. doi: 10.1109/T-ED.1979.19473.
  • Sharma N, Hooda M, Sharma KS. Synthesis and characterization of LPCVD polysilicon and silicon nitride thin films for MEMS applications. J Mater. 2014;2014:954618. doi: 10.1155/2014/954618.
  • Venkatesan V. Low pressure chemical vapor deposition of silicon dioxide and phosphosilicate glass thin films [master’s thesis-1128]. New Jersey Institute of Technology; 1996. https://digitalcommons.njit.edu/theses/1128.
  • Kern W, Rosler RS. Advances in deposition processes for passivation films. J Vacc Sci Technol. 1977;14(5):1082–1099. doi: 10.1116/1.569340.
  • Baron M, Zelez J. Vacuum systems for plasma etching, plasma deposition; and low pressure CVD. Solid State Technol. 1978;21(12):61–82.
  • Logar R, Herring R, Wauk M. C356–C356. Reduced pressure silicon epitaxy in a cylindrical geometry reactor. Pennington (NJ): Electrochemical Society Inc.; 1978.
  • Ban VS. Novel reactor for high volume low-cost silicon epitaxy. J Cryst Growth. 1978;45:97–107. doi: 10.1016/0022-0248(78)90420-7.
  • Drosos C, Vernardou D. Perspectives of energy materials grown by APCV. Sol Energy Mater Sol Cells. 2015;140:1–8. doi: 10.1016/j.solmat.2015.03.019.
  • Hou X, Choy KL. Processing and applications of aerosol‐assisted chemical vapor deposition. Chem Vap Depos. 2006;12(10):583–596. doi: 10.1002/cvde.200600033.
  • Lewkebandara TS, Winter CH. CVD routes to titanium disulfide films. Adv Mater. 1994;6(3):237–239. doi: 10.1002/adma.19940060313.
  • Marchand P, Hassan IA, Parkin IP, et al. Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Trans. 2013;42(26):9406–9422. doi: 10.1039/C3DT50607J.
  • Price J, Wu SY. Plasma enhanced CVD, plasma enhanced CVD United States Patents, US4692343A, 1987 Sept. 08.
  • Li Y, Mann D, Rolandi M, et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004;4(2):317–321. doi: 10.1021/nl035097c.
  • Hozumi A, Takai O. Preparation of ultra water-repellent films by microwave plasma-enhanced CVD. Thin Solid Films. 1997;303(1-2):222–225. doi: 10.1016/S0040-6090(97)00076-X.
  • Said B, Belgacem S, Dachraoui M, et al. Structural and optical properties of cdsub (1-y) znsub (y) S/CuPc bilayers: exhibition of a photovoltaic effect. Rev Phys Appl. 1986;21(7):407–415.
  • Nair P, Nair M, Fernandez A, et al. Prospects of chemically deposited metal chalcogenide thin films for solar control application. J Phys D: appl Phys. 1989;22(6):829–836. doi: 10.1088/0022-3727/22/6/021.
  • Suryanarayana C, Lakshmanan A, Subramanian V, et al. Preparation of thin film electrodes for electrochemical solar cells-chemical bath deposition. Bull Electrochem. 1986;2(1):57–58.
  • Lokhande C. Chemical deposition of metal chalcogenide thin films. Mater Chem Phys. 1991;27(1):1–43. doi: 10.1016/0254-0584(91)90158-Q.
  • Ibanez JG, Gomez F, Konik I, et al. Preparation of semiconducting materials in the laboratory, part 2: microscale chemical bath deposition of materials with band gap energies in the UV, VIS, and IR. J Chem Educ. 1997;74(10):1205. doi: 10.1021/ed074p1205.
  • Lokhande CD, Ennaoui A, Patil PS, et al. Process and characterisation of chemical bath deposited manganese sulphide (MnS) thin films. Thin Solid Films. 1998;330(2):70–75. doi: 10.1016/S0040-6090(98)00500-8.
  • Brinker CJ. Hydrolysis and condensation of silicates: effects on structure. J Non Cryst Solids. 1988;100(1–3):31–50. doi: 10.1016/0022-3093(88)90005-1.
  • Fakoya MF, Shah SN. Emergence of nanotechnology in the oil and gas industry: emphasis on the application of silica nanoparticles. Petroleum. 2017;3(4):391–405. doi: 10.1016/j.petlm.2017.03.001.
  • Glynn C, O'Dwyer C. Solution processable metal oxide thin film deposition and material growth for electronic and photonic devices. Adv Materials Inter. 2017;4(2):1600610. doi: 10.1002/admi.201600610.
  • Bhuiyan M, Paranthaman M, Salama K. Solution-derived textured oxide thin films—a review. Supercond Sci Technol. 2006;19(2):R1–R21. doi: 10.1088/0953-2048/19/2/R01.
  • Schneller T, Waser R, Kosec M, et al. Chemical solution deposition of functional oxide thin films. Vienna: Springer-Verlag Wien; 2013.
  • Meyerhofer D. Characteristics of resist films produced by spinning. J Appl Phys. 1978;49(7):3993–3997. doi: 10.1063/1.325357.
  • Birnie DP, Hau SK, Kamber DS, et al. Effect of ramping-up rate on film thickness for spin-on processing. J Mater Sci: Mater Electron. 2005;16(11–12):715–720. doi: 10.1007/s10854-005-4973-6.
  • Emslie AG, Bonner FT, Peck LG. Flow of a viscous liquid on a rotating disk. J Appl Phys. 1958;29(5):858–862. doi: 10.1063/1.1723300.
  • Rezende BA, dos Santos AJ, Câmara MA, et al. Characterization of ceramics coatings processed by sol-gel for cutting tools. Coat. 2019;9(11):755. doi: 10.3390/coatings9110755.
  • Brinker C, Hurd A, Schunk P, et al. Review of sol-gel thin film formation. J Non-Cryst Solids. 1992;147–148:424–436. doi: 10.1016/S0022-3093(05)80653-2.
  • Landau L, Levich B. Dragging of a liquid by a moving plate. In: Dynamics of curved fronts. Amsterdam: Elsevier, 1988. p. 141–153. doi: 10.1016/B978-0-08-092523-3.50016-2.
  • Faustini M, Louis B, Albouy PA, et al. Preparation of sol − gel films by dip-coating in extreme conditions. J Phys Chem C. 2010;114(17):7637–7645. doi: 10.1021/jp9114755.
  • Glynn C, Creedon D, Geaney H, et al. Inking precursor alterations to nanoscale structure and optical transparency in polymer assisted fast-rate dip-coating of vanadium oxide thin films. Sci Rep. 2015;5(1):11574. doi: 10.1038/srep11574.
  • Nishida F, Dunn B, McKiernan J, et al. In-situ fluorescence imaging of sol-gel thin film deposition. J Sol-Gel Sci Technol. 1994;2(1–3):477–481. doi: 10.1007/BF00486294.
  • Hurd AJ, Brinker CJ. Optical sol-gel coatings: ellipsometry of film formation. J Phys France. 1988;49(6):1017–1025. doi: 10.1051/jphys:019880049060101700.
  • Krebs FC. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells. 2009;93(4):394–412. doi: 10.1016/j.solmat.2008.10.004.
  • Abadi MHS, Hamidon MN, Shaari AH, et al. SnO2/Pt thin film laser ablated gas sensor array. Sensors. 2011;11(8):7724–7735. doi: 10.3390/s110807724.
  • Moonen PF, Yakimets I, Huskens J. Fabrication of transistors on flexible substrates: from mass‐printing to high‐resolution alternative lithography strategies. Adv Mater. 2012;24(41):5526–5541. doi: 10.1002/adma.201202949.
  • Menard E, Meitl MA, Sun Y, et al. Micro-and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev. 2007;107(4):1117–1160. doi: 10.1021/cr050139y.
  • Søndergaard R, Hösel M, Angmo D, et al. Roll-to-roll fabrication of polymer solar cells. Mater Today. 2012;15(1–2):36–49. doi: 10.1016/S1369-7021(12)70019-6.
  • Xia C, Chen F, Liu M. Reduced-Temperature solid oxide fuel cells fabricated by screen printing. Electrochem Solid-State Lett. 2001;4(5):A52. DOI doi: 10.1149/1.1361158.
  • Zielke D, Hübler AC, Hahn U, et al. Polymer-based organic field-effect transistor using offset printed source/drain structures. Appl Phys Lett. 2005;87(12):123508. doi: 10.1063/1.2056579.
  • Guo Q, Ford GM, Yang WC, et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc. 2010;132(49):17384–17386. doi: 10.1021/ja108427b.
  • Gamota D R, Brazis P. Kalyanasundaram K, Zhang J, editors. Printed organic and molecular electronics. Boston, New York, London: Springer; 2004.
  • Wen Y, Liu Y, Guo Y, et al. Experimental techniques for the fabrication and characterization of organic thin films for field-effect transistors. Chem Rev. 2011;111(5):3358–3406. doi: 10.1021/cr1001904.
  • Nehru L, Umadevi M, Sanjeeviraja C. Studies on structural, optical and electrical properties of ZnO thin films prepared by the spray pyrolysis method. IJME. 2012;2(1):12–17. doi: 10.5923/j.ijme.20120201.03.
  • Ilegbusi OJ, Khatami SN, Trakhtenberg LI. Spray pyrolysis deposition of single and mixed oxide thin films. MSA. 2017;08(02):153–169. v doi: 10.4236/msa.2017.82010.
  • Messing GL, Zhang SC, Jayanthi GV. Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc. 1993;76(11):2707–2726. doi: 10.4236/msa.2017.82010.
  • Seeber W, Abou-Helal M, Barth S, et al. Transparent semiconducting ZnO: al thin films prepared by spray pyrolysis. Mater Sci Semicond Process. 1999;2(1):45–55. doi: 10.1016/S1369-8001(99)00007-4.
  • Okuya M, Shiozaki K, Horikawa N, et al. Porous TiO2 thin films prepared by spray pyrolysis deposition (SPD) technique and their application to UV sensors. Solid State Ionics. 2004;172(1–4):527–531. doi: 10.1016/j.ssi.2004.02.060.
  • Chen C, Kelder E, Jak M, et al. Electrostatic spray deposition of thin layers of cathode materials for lithium battery. Solid State Ionics. 1996;86–88:1301–1306. doi: 10.1016/0167-2738(96)00305-0.
  • Balkenende A, Bogaerts A, Scholtz J, et al. Thin MgO layers for effective hopping transport of electrons. Philips J Res. 1996;50(3–4):365–373. doi: 10.1016/S0165-5817(97)84680-3.
  • Filipovic L, Selberherr S, Mutinati GC, et al. Modeling and analysis of spray pyrolysis deposited SnO2 films for gas sensors. In: Transactions on engineering technologies. Dordrecht: Springer Science + Business Media; 2014. p. 295–310.
  • Perednis D, Gauckler LJ. Thin film deposition using spray pyrolysis. J Electroceram. 2005;14(2):103–111. doi: 10.1007/s10832-005-0870-x.
  • Viguié JC, Spitz J. Chemical vapor deposition at low temperatures. J Electrochem Soc. 1975;122(4):585–588. doi: 10.1149/1.2134266.
  • Siefert W. Properties of thin In2O3 and SnO2 films prepared by corona spray pyrolysis, and a discussion of the spray pyrolysis process. Thin Solid Films. 1984;120(4):275–282. doi: 10.1016/0040-6090(84)90242-6.
  • Liu J, Daphne Ma XY, Wang Z, et al. Highly stable and rapid switching electrochromic thin films based on metal-organic frameworks with redox-active triphenylamine ligands. ACS Appl Mater Interfaces. 2020;12(6):7442–7450. doi: 10.1021/acsami.9b20388.
  • Rai V, Singh RS, Blackwood DJ, et al. A review on recent advances in electrochromic devices: a material approach. Adv Eng Mater. 2020;22(8):2000082. doi: 10.1002/adem.202000082.
  • Mostafavi AH, Mishra AK, Gallucci F, et al. Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniques. J of Applied Polymer Sci. 2023;140(15):e53720. doi: 10.1002/app.53720.
  • Liu X, Neoh K, Kang E. Synthesis and characterization of viologen‐containing poly (vinylidene fluoride) redox‐sensitive membranes. Surface & Interface Analysis. 2004;36(8):1037–1040. doi: 10.1002/sia.1831.
  • Paul M. Electron paramagnetic resonance spectroscopy of electrodeposited species from solutions of 1, 1′-bis-(p-cyanophenyl)-4, 4′-bipyridilium (cyanophenyl paraquat, CPQ). J Chem Soc Faraday Trans. 1990;86(14):2583–2586. doi: 10.1039/FT9908602583.
  • Schoot C, Ponjee J, Van Dam H, et al. New electrochromic memory display. Appl Phys Lett. 1973;23(2):64–65. doi: 10.1063/1.1654808.
  • Stolar M. Organic electrochromic molecules: synthesis, properties, applications and impact. Pure Appl Chem. 2020;92(5):717–731. doi: 10.1515/pac-2018-1208.
  • Rosseinsky DR, Monk PMS. Studies of tetra-(bipyridilium) salts as possible polyelectrochromic materials. J Appl Electrochem. 1994;24(12):1213–1221. doi: 10.1007/BF00249884.
  • Barclay D, Bird CL, Kirkman D, et al. An integrated electrochromic data display. Sid 80 Dig. 1980;124:124–125.
  • Jasinski RJ. n‐heptylviologen radical cation films on transparent oxide electrodes. J Electrochem Soc. 1978;125(10):1619–1623. doi; doi: 10.1149/1.2131256.
  • Howells ER. Technology of chemicals and materials for electronics. London: Society of Chemical Industry; 1984.
  • Grätzel M. Ultrafast colour displays. Nature. 2001;409(6820):575–576. doi: 10.1038/35054655.
  • Cummins D, Boschloo G, Ryan M, et al. Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting film. J Phys Chem B. 2000;104(48):11449–11459. doi: 10.1021/jp001763b.
  • Mortimer RJ, Dyer AL, Reynolds JR. Electrochromic organic and polymeric materials for display applications. Displays. 2006;27(1):2–18. doi: 10.1016/j.displa.2005.03.003.
  • Lin CK, Tseng SC, Cheng CH, et al. Electrochromic performance of hybrid tungsten oxide films with multiwalled-CNT additions. Thin Solid Films. 2011;520(5):1375–1378. doi: 10.1016/j.tsf.2011.08.074.
  • Rosseinsky DR, Monk PMS, Mortimer RJ. Electrochromic materials and devices. New York: John Wiley and Sons; 2015.
  • Gillaspie DT, Tenent RC, Dillon AC. Metal-oxide films for electrochromic applications: present technology and future directions. J Mater Chem. 2010;20(43):9585–9592. doi: 10.1039/c0jm00604a.
  • Tian Y, Cong S, Su W, et al. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 2014;14(4):2150–2156. doi: 10.1021/nl5004448.
  • Sun P, Deng Z, Yang P, et al. Freestanding CNT–WO3 hybrid electrodes for flexible asymmetric supercapacitors. J Mater Chem A. 2015;3(22):12076–12080. doi: 10.1039/C5TA02316E.
  • Yang P, Sun P, Chai Z, et al. Large‐scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew Chem. 2014;126(44):12129–12133. doi: 10.1002/ange.201407365.
  • Yang P, Sun P, Du L, et al. Quantitative analysis of charge storage process of tungsten oxide that combines pseudocapacitive and electrochromic properties. J Phys Chem C. 2015;119(29):16483–16489. doi: 10.1021/acs.jpcc.5b04707.
  • Wen R-T, Granqvist CG, Niklasson GA. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat Mater. 2015;14(10):996–1001. doi: 10.1038/nmat4368.
  • Xie Z, Jin X, Chen G, et al. Integrated smart electrochromic windows for energy saving and storage applications. Chem Commun (Camb). 2014;50(5):608–610. doi: 10.1039/C3CC47950A.
  • Aegerter MA. Sol–gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol Energy Mater Sol Cells. 2001;68(3–4):401–422. doi: 10.1016/S0927-0248(00)00372-X.
  • Come J, Augustyn V, Kim JW, et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes. J Electrochem Soc. 2014;161(5):A718–A725. doi: 10.1149/2.040405jes.
  • Llordés A, Garcia G, Gazquez J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature. 2013;500(7462):323–326. doi: 10.1038/nature12398.
  • Qiang P, Chen Z, Yang P, et al. TiO2 nanowires for potential facile integration of solar cells and electrochromic devices. Nanotechnol. 2013;24(43):435403. doi: 10.1088/0957-4484/24/43/435403.
  • Chen JZ, Ko WY, Yen CY, et al. Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano. 2012;6(8):6633–6639. doi: 10.1021/nn300787r.
  • Giannuzzi R, Manca M, De Marco L, et al. TiO2 (B) nanorods with superior lithium-ion storage performance. ACS Appl Mater Interfaces. 2014;6(3):1933–1943. doi: 10.1021/am4049833.
  • Cai G, Wang X, Cui M, et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy. 2015;12:258–267. doi: 10.1016/j.nanoen.2014.12.031.
  • Wen RT, Granqvist CG, Niklasson GA. Anodic electrochromism for energy‐efficient windows: cation/anion‐based surface processes and effects of crystal facets in nickel oxide thin films. Adv Funct Materials. 2015;25(22):3359–3370. doi: 10.1002/adfm.201500676.
  • Talledo A, Granqvist CG. Electrochromic vanadium–pentoxide–based films: structural, electrochemical, and optical properties. J Appl Phys. 1995;77(9):4655–4666. doi: 10.1063/1.359433.
  • Wei Q, Liu J, Feng W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity. J Mater Chem A. 2015;3(15):8070–8075. doi: 10.1039/C5TA00502G.
  • Scherer MR, Li L, Cunha PM, et al. Enhanced electrochromism in gyroid‐structured vanadium pentoxide. Adv Mater. 2012;24(9):1217–1221. doi: 10.1002/adma.201104272.
  • Wei D, Scherer MR, Bower C, et al. A nanostructured electrochromic supercapacitor. Nano Lett. 2012;12(4):1857–1862. doi: 10.1021/nl2042112.
  • Scherer MR, Steiner U. Efficient electrochromic devices made from 3D nanotubular gyroid networks. Nano Lett. 2013;13(7):3005–3010. doi: 10.1021/nl303833h.
  • Wei D, Scherer MR, Astley M, et al. Visualization of energy: light dose indicator based on electrochromic gyroid nano-materials. Nanotechnol. 2015;26(22):225501. doi: 10.1088/0957-4484/26/22/225501.
  • Juris A, Balzani V, Barigelletti F, et al. Ru (II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord Chem Rev. 1988;84:85–277. doi: 10.1016/0010-8545(88)80032-8.
  • Abruna HD, Denisevich P, Umana M, et al. Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes. J Am Chem Soc. 1981;103(1):1–5. doi: 10.1021/ja00391a001.
  • Murray RW. Polymer modification of electrodes. Annu Rev Mater Sci. 1984;14(1):145–169. doi: 10.1146/annurev.ms.14.080184.001045.
  • Gould S, Strouse GF, Meyer TJ, et al. Formation of thin polymeric films by electropolymerization. Reduction of metal complexes containing bromomethyl-substituted derivatives of 2, 2'-bipyridine. Inorg Chem. 1991;30(14):2942–2949. doi: 10.1021/ic00014a022.
  • Ellis CD, Margerum LD, Murray RW, et al. Oxidative electropolymerization of polypyridyl complexes of ruthenium. Inorg Chem. 1983;22(9):1283–1291. doi: 10.1021/ic00151a005.
  • Horwitz CP, Zuo Q. Oxidative electropolymerization of iron and ruthenium complexes containing aniline-substituted 2, 2'-bipyridine ligands. Inorg Chem. 1992;31(9):1607–1613. doi: 10.1021/ic00035a017.
  • Hanabusa K, Nakamura A, Koyama T, et al. Electropolymerization and characterization of terpyridinyl iron (II) and ruthenium (II) complexes. Polym Int. 1994;35(3):231–238. doi: 10.1002/pi.1994.210350303.
  • Beer PD, Kocian O, Mortimer RJ, et al. Electrochemical polymerisation studies of aza-15-crown-5 vinyl-2, 2′-bipyridine ruthenium (II) complexes. J Electroanal Chem. 1996;408(1-2):61–66. doi: 10.1016/0022-0728(95)04465-5.
  • Beer PD, Kocian O, Mortimer RJ. Novel mono-and di-ferrocenyl bipyridyl ligands: syntheses, electrochemistry, and electropolymerisation studies of their ruthenium (II) complexes. J Chem Soc, Dalton Trans. 1990;11(11):3283–3288. doi: 10.1039/dt9900003283.
  • Beer PD, Kocian O, Mortimer RJ, et al. New alkynyl-and vinyl-linked benzo-and aza-crown etherbipyridyl ruthenium (II) complexes which spectrochemically recognize group IA and IIA metal cations. J Chem Soc, Dalton Trans. 1993;17(17):2629–2638. doi: 10.1039/dt9930002629.
  • Zeng Q, McNally A, Keyes TE, et al. Redox induced switching dynamics of a three colour electrochromic metallopolymer film. Electrochim Acta. 2008;53(24):7033–7038. doi: 10.1016/j.electacta.2008.05.027.
  • Dutschke A, Diegelmann C, Löbmann P. Preparation of TiO2 thin films on polystyrene by liquid phase deposition. J Mater Chem. 2003;13(5):1058–1063. doi: 10.1039/b212535h.
  • Szczurek A, Tran LTN, Varas S, et al. SiO2-TiO2 hybrid coatings applied on polymeric materials for flexible photonics applications. Proc. SPIE 12142, Fiber Lasers and Glass Photonics: Materials through Applications III, 1214208 (25 May 2022). doi: 10.1117/12.2621465.
  • Tumsarp P, Pangpaiboon N, Sujaroon K, et al. Inorganic nanoparticle-blended polymer nanofilm and its wettability improvement: film grading and dewetting cause analysis. Appl Surf Sci. 2020;521:146399. doi: 10.1016/j.apsusc.2020.146399.
  • Kumi Barimah E, Rahayu S, Ziarko MW, et al. Erbium-doped nanoparticle–polymer composite thin films for photonic applications: structural and optical properties. ACS Omega. 2020;5(16):9224–9232. doi: 10.1021/acsomega.0c00040.
  • Berberova-Buhova N, Sharlandjiev P, Mateev GL, et al. Composite thin films of azopolymer and embedded gold nanosized particles: evaluation of the effective complex refractive index. J Chem Technol Metall. 2022;57(2):241–246.
  • Fernandes D, Hechenleitner AW, Lima S, et al. Preparation, characterization, and photoluminescence study of PVA/ZnO nanocomposite films. Mater Chem Phys. 2011;128(3):371–376. doi: 10.1016/j.matchemphys.2011.03.002.
  • Ali H, Iliadis A. Thin ZnO nanocomposite poly (styrene–acrylic acid) films on Si and SiO2 surfaces. Thin Solid Films. 2005;471(1-2):154–158. doi: 10.1016/j.tsf.2004.05.074.
  • Abdullah H, Azmy NAN, Naim NM, et al. Synthesis and fabrication of ZnO–CuO doped PVA and ZnO–PbO doped PVA nanocomposite films by using γ-radiolysis and it’s microbial sensor application. J Sol-Gel Sci Technol. 2015;74(1):15–23. doi: 10.1007/s10971-014-3565-4.
  • Alsaad A, Ahmad A, Al Dairy AR, et al. Characterization of as-prepared (PMMA-PVA)/CuO-NPs hybrid nanocomposite thin films. Preprints. 2021:2021010607. doi: 10.20944/preprints202101.0607.v1.
  • Loh KJ, Chang D. Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. J Mater Sci. 2011;46(1):228–237. doi: 10.1007/s10853-010-4940-3.
  • Ritonga H, Faiqoh CE, Wibowo D, et al. Preparation of TiO2-PEG thin film on hydrophility performance and photocurrent response. Biosci, Biotech Res Asia. 2015;12(3):1985–1989. doi: 10.13005/bbra/1865.
  • El-Hachemi B, Miloud S, Sabah M, et al. Structural, electrical and optical properties of PVC/ZnTe nanocomposite thin films. J Inorg Organomet Polym. 2021;31(9):3637–3648. doi: 10.1007/s10904-021-01994-3.
  • Peerakiatkhajorn P, Chawengkijwanich C, Onreabroy W, et al. Novel photocatalytic Ag/TiO2 thin film on polyvinyl chloride for gaseous BTEX treatment. MSF. 2012;712:133–145. doi: 10.4028/www.scientific.net/MSF.712.133.
  • Abed RN, Yousif E, Abed ARN, et al. Synthesis thin films of poly (vinyl chloride) doped by aromatic organosilicon to absorb the incident light. Silicon. 2022;14(17):11829–11845. doi: 10.1007/s12633-022-01893-3.
  • Tan K, Gan W, Velayutham T, et al. Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles. Smart Mater Struct. 2014;23(12):125006. doi: 10.1088/0964-1726/23/12/125006.
  • Lyly Nyl I, Mohd Wahid MH, Habibah Z, et al. Dielectric properties of PVDF-TrFE/PMMA: tiO2multilayer dielectric thin films. AMR. 2012;576:582–585. doi: 10.4028/www.scientific.net/AMR.576.582.
  • Polat S. Dielectric properties of GNPs@ MgO/CuO@ PVDF composite films. Fen Bilim Derg. 2021;37(3):412–422.
  • Iqbal T, Haq KU, Irfan M, et al. Structural and optical investigations on ZnO-PVDF-NiO advanced polymer composites for modern electronic devices. Mater Res Express. 2023;10(4):045302. doi: 10.1088/2053-1591/acc92b.
  • Khaleel AK, Abbas LK. Synthesis and characterization of PVDF/PMMA/ZnO hybrid nanocomposite thin films for humidity sensor application. Optik. 2023;272:170288. doi: 10.1016/j.ijleo.2022.170288.
  • Mohd Dahan R, Arshad AN, Md Razif MH, et al. Structural and electrical properties of PVDF-TrFE/ZnO bilayer and filled PVDF-TrFE/ZnO single layer nanocomposite films. Adv Mater Process Technol. 2017;3(3):300–307. doi: 10.1080/2374068X.2017.1330630.
  • Cavallini D, Fortunato M, De Bellis G, et al. PFM characterization of piezoelectric PVDF/ZnONanorod thin films. 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), 23-26 July 2018 2018:1–3. doi: 10.1109/NANO.2018.8626362.
  • Yadav AK, Dey R, Bhunia R, et al. Local structure studies of Ni doped ZnO/PVDF composite free-standing flexible thin films using XPS and EXAFS studies. J Polym Res. 2016;23(12):1–10. doi: 10.1007/s10965-016-1162-7.
  • Dutta B, Kar E, Sen G, et al. Flexible NiO@ SiO2/PVDF nanocomposite film for UV protection and EMI shielding application. Mater Res Bull. 2020;124:110746. doi: 10.1016/j.materresbull.2019.110746.
  • Nayak SM, Anjum R, Husain J, et al. PVA-ZnO nanocomposites thin films for sensing devices. Ferroelectric. 2021;577(1):221–228. doi: 10.1080/00150193.2021.1916365.
  • Sugumaran S, Bellan CS, Muthu D, et al. Novel hybrid PVA–InZnO transparent thin films and sandwich capacitor structure by dip coating method: preparation and characterizations. RSC Adv. 2015;5(14):10599–10610. doi: 10.1039/C4RA14817G.
  • Duan L, Yan F, Zhang L, et al. ZnO@ polyvinyl alcohol/poly (lactic acid) nanocomposite films for the extended shelf life of pork by efficient antibacterial adhesion. ACS Omega. 2022;7(49):44657–44669. doi: 10.1021/acsomega.2c03016.
  • Svensson J, Granqvist C. Modulated transmittance and reflectance in crystalline electrochromic WO3 films: theoretical limits. Appl Phys Lett. 198;45(8):828–830. doi: 10.1063/1.95415.
  • Truong VV, Tanemura S, Haché A. Optical properties of thin films. In: Singh J, editor. Optical properties of materials and their applications. New York: John Wiley & Sons Ltd; 2019. p. 403–434. doi: 10.1002/9781119506003.ch14.
  • Jayachandran M, Vijayalakshmi R, Visalakshi R, et al. Review on WO, thin films: materials properties, preparation techniques and electrochromic devices. Trans SAEST. 2005;40(2):42–61. doi: 10.1002/9781119506003.ch14.
  • Ponraj JS, Attolini G, Bosi M. Review on atomic layer deposition and applications of oxide thin films. Crit Rev Solid State Mater Sci. 2013;38(3):203–233. doi: 10.1080/10408436.2012.736886.
  • Tajima K, Yamada Y, Bao SM, et al. All-solid-state switchable mirror on flexible sheet. Surf Coat Technol. 2008;202(22–23):5633–5636. doi: 10.1016/j.surfcoat.2008.06.098.
  • Österholm AM, Nhon L, Shen DE, et al. Conquering residual light absorption in the transmissive states of organic electrochromic materials. Mater Horiz. 2022;9(1):252–260. doi: 10.1039/D1MH01136G.
  • Xu X, Webster RD. Primary coloured electrochromism of aromatic oxygen and sulfur diesters. RSC Adv. 2014;4(35):18100–18107. doi: 10.1039/c4ra02523g.
  • Huang ZJ, Li F, Xie JP, et al. Electrochromic materials based on tetra-substituted viologen analogues with broad absorption and good cycling stability. Sol Energy Mater Sol Cells. 2021;223:110968. doi: 10.1016/j.solmat.2021.110968.
  • Shi Y, Liu J, Li M, et al. Novel electrochromic-fluorescent bi-functional devices based on aromatic viologen derivates. Electrochim Acta. 2018;285:415–423. doi: 10.1016/j.electacta.2018.07.236.
  • Beverina L, Pagani GA, Sassi M. Multichromophoric electrochromic polymers: colour tuning of conjugated polymers through the side chain functionalization approach. Chem Commun (Camb). 2014;50(41):5413–5430. doi: 10.1039/C4CC00163J.
  • Wang Z, Wang X, Cong S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities. Nat Commun. 2020;11(1):302–311. doi: 10.1038/s41467-019-14194-y.
  • Atighilorestani M, Jiang H, Kaminska B. Electrochromic-polymer-based switchable plasmonic color devices using surface-relief nanostructure pixels. Adv Opt Mater. 2018;6(23):1801179. doi: 10.1002/adom.201801179.
  • Wang B, Zhang W, Zhao F, et al. An overview of recent progress in the development of flexible electrochromic devices. Nano Mater Sci. 2022. doi: 10.1016/j.nanoms.2022.08.002.
  • Lee ES, Claybaugh ES, LaFrance M. Electrochromic tungsten oxide films for energy efficient windows. Energy Build. 2012;47:267–284. doi: 10.1016/j.enbuild.2011.12.003.
  • Granqvist CG. End user impacts of automated electrochromic windows in a pilot retrofit application. Smart Mater Bull. 2002;2002(10):9–10. doi: 10.1016/j.enbuild.2011.12.003.
  • Azens A, Gustavsson G, Karmhag R, et al. Electrochromic devices on polyester foil. Solid State Ion. 2003;165(1–4):1–5. doi: 10.1016/j.ssi.2003.08.009.
  • Cannavale A, Ayr U, Fiorito F, et al. Smart electrochromic windows to enhance building energy efficiency and visual comfort. Energies. 2020;13(6):1449. doi: 10.3390/en13061449.
  • Platzer W, Platzer W. Switchable facade technology - energy efficient office buildings with smart facades. Solar World Congress; 2003. p. 6.
  • Tavares PF, Gaspar AR, Martins AG, et al. Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates. Energy Policy. 2014;67:68–81. doi: 10.1016/j.enpol.2013.07.038.
  • Qu H, Zhang H, Zhang X, et al. Review: recent progress in ordered macroporous electrochromic materials. J Mater Sci. 2017;52(19):11251–11268. doi: 10.1007/s10853-017-1077-7.
  • Sauvet K, Sauques L, Rougier A. Electrochromic properties of WO3 as a single layer and in a full device: from the visible to the infrared. J Phys Chem Solids. 2010;71(4):696–699. doi: 10.1016/j.jpcs.2009.12.069.
  • Ali F, Neelakantan L, Swaminathan P. Electrochromic displays via the room-temperature electrochemical oxidation of nickel. ACS Omega. 2022;7(43):39090–39096. doi: 10.1021/acsomega.2c04859.
  • Kraft A. Electrochromism: a fascinating branch of electrochemistry. ChemTexts. 2018;5(1):1. doi: 10.1007/s40828-018-0076-x.
  • Shchegolkov AV, Jang SH, Shchegolkov AV, et al. A brief overview of electrochromic materials and related devices: a nanostructured materials perspective. Nanomaterials. 2021;11(9):2376. doi: 10.3390/nano11092376.
  • Zhang L, Xu G, Wang L, et al. Achieving variable infrared emissivity modulation regions of poly(aniline) films: the effect of film surface morphology on the optical tunability. Dyes Pigm. 2021;187:109084. doi: 10.1016/j.dyepig.2020.109084.
  • Zhang L, Wang B, Li X, et al. Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. J Mater Chem C. 2019;7(32):9878–9891. doi: 10.1039/C9TC02126D.
  • Zhang Y, Zhao L. The electrochromic properties of the film enhanced by forming WO3 and PANI core–shell structure. J Mater Sci: Mater Electron. 2022;33(26):20802–20811. doi: 10.1007/s10854-022-08889-0.
  • Deepa M, Ahmad S, Sood KN, et al. Electrochromic properties of polyaniline thin film nanostructures derived from solutions of ionic liquid/polyethylene glycol. Electroch Acta. 2007;52(26):7453–7463. doi: 10.1016/j.electacta.2007.06.031.
  • Marks ZD, Glugla D, Friedlein JT, et al. Switchable diffractive optics using patterned PEDOT: PSS based electrochromic thin-films. Org Electron. 2016;37:271–279. doi: 10.1016/j.orgel.2016.07.004.
  • Hein A, Kortz C, Oesterschulze E. Tunable graduated filters based on electrochromic materials for spatial image control. Sci Rep. 2019;9(1):15822. doi: 10.1038/s41598-019-52080-1.
  • Gu C, Jia AB, Zhang YM, et al. Emerging electrochromic materials and devices for future displays. Chem Rev. 2022;122(18):14679–14721. doi: 10.1021/acs.chemrev.1c01055.
  • Kang JH, Paek SM, Hwang MS, et al. Optical iris application of electrochromic thin films. Electrochem Commun. 2008;10(11):1785–1787. doi: 10.1016/j.elecom.2008.09.013.
  • Malik G, Mourya S, Hirpara JG, et al. Urface modification of sputter deposited γ-WO3 thin film for scaled electrochromic behaviour. Surf Coat Technol. 2019;375:708–714. doi: 10.1016/j.surfcoat.2019.08.008.
  • Akkurt N, Pat S, Mohammadigharehbagh R, et al. Investigation of TiO2 thin films as a Cathodic material for electrochromic display devices. J Mater Sci: Mater Electron. 2020;31(12):9568–9578. doi: 10.1007/s10854-020-03499-0.
  • Zhao Q, Pan Z, Liu B, et al. Electrochromic-Induced rechargeable aqueous batteries: an integrated multifunctional system for cross-Domain applications. Nano-Micro Lett. 2023;15(1):87. doi: 10.1007/s40820-023-01056-y.
  • Xu C, Dong J, He C, et al. Precise control of conjugated polymer synthesis from step-growth polymerization to iterative synthesis. Giant. 2023;14:100154. doi: 10.1016/j.giant.2023.100154.
  • Tao C A Y, Li Y, Wang J. The progress of electrochromic materials based on metal–organic frameworks. Coord Chem Rev. 2023;475:214891. doi: 10.1016/j.ccr.2022.214891.
  • Li G, Zhang B, Wang J, et al. Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithium-ion batteries. Angew Chem Int Ed. 2019;58(25):8468–8473. doi: 10.1002/ange.201903152.
  • Wang C, Wang Z, Ren Y, et al. Flexible electrochromic Zn mirrors based on Zn/viologen hybrid batteries. ACS Sustainable Chem Eng. 2020;8(13):5050–5055. doi: 10.1021/acssuschemeng.9b06818.
  • Novak TG, Kim J, Tiwari AP, et al. 2D MoO3 nanosheets synthesized by exfoliation and oxidation of MoS2 for high contrast and fast response time electrochromic devices. ACS Sustainable Chem Eng. 2020;8(30):11276–11282. doi: 10.1021/acssuschemeng.0c03191.
  • Mortimer RJ. Switching colors with electricity: electrochromic materials can be used in glare reduction, energy conservation and chameleonic fabrics. Am Sci. 2013;101(1):38. doi: 10.1511/2013.100.38.
  • Xu JW, Chua MH, Shah KW. Electrochromic smart materials: fabrication and applications. London: Royal Society of Chemistry; 2019. doi: 10.1039/9781788016667.
  • Johannes C, Macher S, Niklaus L, et al. Flexible electrochromic device on polycarbonate substrate with PEDOT: PSS and color-Neutral TiO2 as ion storage layer. Polymers. 2023;15(9):1982. doi: 10.3390/polym15091982.
  • Alfonso FS, Zhou Y, Liu E, et al. Label-free optical detection of bioelectric potentials using electrochromic thin films. Proc Natl Acad Sci U S A. 2020;117(29):17260–17268. doi: 10.1073/pnas.2002352117.
  • Yan C, Kang W, Wang J, et al. Stretchable and wearable electrochromic devices. ACS Nano. 2014;8(1):316–322. doi: 10.1021/nn404061g.
  • Sinha S, Daniels R, Yassin O, et al. Electrochromic fabric displays from a robust, open-air fabrication technique. Adv Mater Technol. 2022;7(3):2100548. doi: 10.1002/admt.202100548.
  • Taga Y. Recent progress of nanotechnologies of thin films for industrial applications. Mater Sci Eng C. 2001;15(1–2):231–235. doi: 10.1016/S0928-4931(01)00269-7.
  • Krukiewicz K, Zawisza P, Herman AP, et al. An electrically controlled drug delivery system based on conducting poly(3,4-ethylenedioxypyrrole) matrix. Bioelectrochemistry. 2016;108:13–20. doi: 10.1016/j.bioelechem.2015.11.002.
  • Fan H, Wei W, Hou C, et al. Wearable electrochromic materials and devices: from visible to infrared modulation. J Mater Chem C. 2023;11(22):7183–7210. doi: 10.1039/D3TC01142A.
  • Fu H, Zhang L, Dong Y, et al. Recent advances in electrochromic materials and devices for camouflage applications. Mater Chem Front. 2023;7(12):2337–2358. doi: 10.1039/D3QM00121K.
  • Shen L, Du L, Tan S, et al. Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chem Commun (Camb). 2016;52(37):6296–6299. doi: 10.1039/C6CC01139J.
  • Bi Z, Li X, He X, et al. Integrated electrochromism and energy storage applications based on tungsten trioxide monohydrate nanosheets by novel one-step low temperature synthesis. Sol Energy Mater Sol Cells. 2018;183:59–65. doi: 10.1016/j.solmat.2018.04.001.
  • Shen W, Huo X, Zhang M, et al. Synthesis of oriented core/shell hexagonal tungsten oxide/amorphous titanium dioxide nanorod arrays and its electrochromic-pseudocapacitive properties. Appl Surf Sci. 2020;515:146034. doi: 10.1016/j.apsusc.2020.146034.
  • Xie S, Bi Z, Chen Y, et al. Electrodeposited Mo-doped WO3 film with large optical modulation and high areal capacitance toward electrochromic energy-storage applications. Appl Surf Sci. 2018;459:774–781. doi: 10.1016/j.apsusc.2018.08.045.
  • Zhou K, Wang H, Jiu J, et al. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. J Chem Eng. 2018;345:290–299. doi: 10.1016/j.cej.2018.03.175.
  • Bi Z, Li X, Chen Y, et al. Bi-functional flexible electrodes based on tungsten trioxide/zinc oxide nanocomposites for electrochromic and energy storage applications. Electrochim Acta. 2017;227:61–68. doi: 10.1016/j.electacta.2017.01.003.
  • Zhang S, Ren J, Zhang Y, et al. PEDOT hollow nanospheres for integrated bifunctional electrochromic supercapacitors. Org Electron. 2020;77:105497. doi: 10.1016/j.orgel.2019.105497.
  • Yin Y, Gao T, Xu Q, et al. Electrochromic and energy storage bifunctional Gd-doped WO3/Ag/WO3 films. J Mater Chem A. 2020;8(21):10973–10982. doi: 10.1039/D0TA02079F.
  • Li J, Guo Q, Lu Y, et al. Polyindole vertical nanowire array based electrochromic-supercapacitor difunctional device for energy storage and utilization. Eur Polym J. 2019;113:29–35. doi: 10.1016/j.eurpolymj.2019.01.011.