506
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Cutting-edge green nanoclay nanocomposites—fundamentals and technological opportunities for packaging, dye removal, and biomedical sectors

ORCID Icon, , , , &
Pages 172-196 | Received 09 Oct 2023, Accepted 22 Mar 2024, Published online: 16 Apr 2024

References

  • Dhanasekar S, Baskar S, Vishvanathperumal S. Cure characteristics, compression set, swelling behaviors, abrasion resistance and mechanical properties of nanoclay (cloisite 15A, cloisite 20A and cloisite 30B) filler filled EPDM/NBR blend system. J Polym Res. 2023;30(10):375. doi: 10.1007/s10965-023-03759-7.
  • Du C, Huang W. Progress and prospects of nanocomposite hydrogels in bone tissue engineering. Nanocomposites. 2022;8(1):102–124. doi: 10.1080/20550324.2022.2076025.
  • Chen P, Xie F, Tang F, et al. Structure and properties of thermomechanically processed silk peptide and nanoclay filled chitosan. Nanocomposites. 2020;6(3):125–136. doi: 10.1080/20550324.2020.1820796.
  • Papatzani S, Paine K. Inorganic and organomodified nano-montmorillonite dispersions for use as supplementary cementitious materials–a novel theory based on nanostructural studies. Nanocomposites. 2017;3(1):2–19. doi: 10.1080/20550324.2017.1315210.
  • van Erp TB, Reynolds CT, Bilotti E, et al. Nanoclay assisted ultra-drawing of polypropylene tapes. Nanocomposites. 2019;5(4):114–123. doi: 10.1080/20550324.2019.1671038.
  • Gbadeyan O, Adali S, Bright G, et al. The investigation of reinforcement properties of nano-CaCO3 synthesized from Achatina fulica snail shell through mechanochemical methods on epoxy nanocomposites. Nanocomposites. 2021;7(1):79–86. doi: 10.1080/20550324.2021.1936972.
  • Zhang X, Shi X, Gautrot JE, et al. Nanoengineered electrospun fibers and their biomedical applications: a review. Nanocomposites. 2021;7(1):1–34. doi: 10.1080/20550324.2020.1857121.
  • Eriksson M, Goffin A-L, Dubois P, et al. The influence of grafting on flow-induced crystallization and rheological properties of poly (ε-caprolactone)/cellulose nanocrystal nanocomposites. Nanocomposites. 2018;4(3):87–101. doi: 10.1080/20550324.2018.1529713.
  • Lazorenko G, Kasprzhitskii A, Yavna V. Comparative study of the hydrophobicity of organo-montmorillonite modified with cationic, amphoteric and nonionic surfactants. Minerals. 2020;10(9):732. doi: 10.3390/min10090732.
  • Lin W, Zhao Y, Edward G, et al. Mechanical properties and scratch recovery of nanoclay/polyester composite coatings for pre-coated metal (PCM) sheets. Compos Part B: Eng. 2024;273:111217. doi: 10.1016/j.compositesb.2024.111217.
  • Colorado HA, Gutierrez-Velasquez EI, Gil LD, et al. Exploring the advantages and applications of nanocomposites produced via vat photopolymerization in additive manufacturing: a review. Adv Compos Hybrid Mater. 2024;7(1):1. doi: 10.1007/s42114-023-00808-z.
  • Bergaya F, Lagaly G. Introduction to clay science: techniques and applications. In: Bergaya F, Lagaly G, editors. Developments in clay science. Netherlands: Elsevier; 2013. p. 1–7.
  • Rekbi FML. Behavior of materials in the presence of particles additive technique: a review. ENP Eng Sci J. 2023;3(1):15–26. doi: 10.53907/enpesj.v3i1.122.
  • Ninago MD, Giaroli MC, Passaretti MG, et al. Polymer–clay nanocomposites for food packaging. In: Jacob J, Cacciotti I, Thomas S, editors. Nanostructured materials for food packaging applications. Netherlands: Elsevier; 2024. p. 189–213.
  • Keshavarzi F, Samaei MR, Hashemi H, et al. Application of montmorillonite/octadecylamine nanoparticles in the removal of textile dye from aqueous solutions: modeling, kinetic, and equilibrium studies. Heliyon. 2024;10(4):e25919. doi: 10.1016/j.heliyon.2024.e25919.
  • Sahraeeazartamar F, Yang Z, Terryn S, et al. Designing flexible and self-healing electronics using hybrid carbon black/nanoclay composites based on diels–alder dynamic covalent networks. Macromolecules. 2024;57(2):539–553. doi: 10.1021/acs.macromol.3c01904.
  • Swain R, Nandi S, Mohapatra S, et al. Engineered clay-polymer composite for biomedical drug delivery and future challenges: a survey. Curr Drug Deliv. 2024;21(5):645–661. doi: 10.2174/1567201820666230410110206.
  • Elmi C. Physical-chemical properties of nano-sized phyllosilicates: recent environmental and industrial advancements. Encyclopedia. 2023;3(4):1439–1460. doi: 10.3390/encyclopedia3040103.
  • Elmergawy FH, Nassif MS, El-Borady OM, et al. Physical and mechanical evaluation of dental resin composite after modification with two different types of montmorillonite nanoclay. J Dent. 2021;112:103731. doi: 10.1016/j.jdent.2021.103731.
  • Padil VV, Kumar KA, Murugesan S, et al. Sustainable and safer nanoclay composites for multifaceted applications. Green Chem. 2022;24(8):3081–3114. doi: 10.1039/D1GC03949K.
  • Hameed OM, Usman F, Hayder G, et al. Investigation of mechanical and thermal performance of nanoclay modified concrete for energy efficiency. Annales de Chimie - Science des Matériaux. 2023;47:225–235. doi: 10.18280/acsm.470405.
  • Ejeta LO. Nanoclay/organic filler-reinforced polymeric hybrid composites as promising materials for building, automotive, and construction applications-a state-of-the-art review. Compos Interfaces. 2023;30(12):1363–1386. doi: 10.1080/09276440.2023.2220217.
  • Deshmukh RK, Ramakanth D, Akhila K, et al. Natural clay‐based food packaging films. In: Parameswaranpillai J, Jayakumar A, Radhakrishnan EK, et al., editors. Natural materials for food packaging application. Weinheim, Germany: Wiley; 2023. p. 121–163.
  • Ogah AO, Ezeani OE, Ohoke FO, et al. Effect of nanoclay on combustion, mechanical and morphological properties of recycled high density polyethylene/marula seed cake/organo-modified montmorillonite nanocomposites. Polym Bull. 2023;80(1):1031–1058. doi: 10.1007/s00289-022-04574-8.
  • Kumar J, Jatoi AS, Mazari SA, et al. Advanced green nanocomposite materials for wastewater treatment. In: Karri RR, Koduru JR, Mubarak NM, Bandala ER, editors. Sustainable nanotechnology for environmental remediation. Netherlands: Elsevier; 2022. p. 297–321.
  • Tripathi M, Singh B. Synthesis of green nanocomposite material for engineering application. In: Koduru JR, Karri RR, Mubarak NM, Bandala ER, editors. Sustainable nanotechnology for environmental remediation. Netherlands: Elsevier; 2022. p. 135–157.
  • Sobh RA, Magar HS, Fahim AM, et al. Construction, molecular docking simulation and evaluation of electrochemical properties of polymeric nanospheres comprising novel synthesized monomer via green microemulsion polymerization. Polym Adv Technol. 2024;35(1):e6248. doi: 10.1002/pat.6248.
  • Fu M, Filippov SK, Williams AC, et al. On the mucoadhesive properties of synthetic and natural polyampholytes. J Colloid Interface Sci. 2024;659:849–858. doi: 10.1016/j.jcis.2023.12.176.
  • Shokrani H, Shokrani A, Jouyandeh M, et al. Green polymer nanocomposites for skin tissue engineering. ACS Appl Bio Mater. 2022;5(5):2107–2121. doi: 10.1021/acsabm.2c00313.
  • Sonawane AV, Rikame S, Sonawane SH, et al. A review of microbial fuel cell and its diversification in the development of green energy technology. Chemosphere. 2024;350:141127. doi: 10.1016/j.chemosphere.2024.141127.
  • Rocha V, Lago A, Silva B, et al. Immobilization of biogenic metal nanoparticles on sustainable materials–green approach applied to wastewater treatment: a systematic review. Environ Sci: Nano. 2024;11(1):36–60. doi: 10.1039/D3EN00623A.
  • Verma A, Parashar A, Packirisamy M. Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. Wiley Interdiscip Rev: Comput Mol Sci. 2018;8(3):e1346.
  • Payandehpeyman J, Mazaheri M. Geometrical and physical effects of nanofillers on percolation and electrical conductivity of polymer carbon-based nanocomposites: a general micro-mechanical model. Soft Matter. 2023;19(3):530–539. doi: 10.1039/d2sm01168a.
  • Silori GK, Thoka S, Ho K-C. Morphological features of SiO2 nanofillers address poor stability issue in gel polymer electrolyte-based electrochromic devices. ACS Appl Mater Interfaces. 2023;15(21):25791–25805. doi: 10.1021/acsami.3c04685.
  • Tullio S, Chalcraft D. Converting natural nanoclay into modified nanoclay augments the toxic effect of natural nanoclay on aquatic invertebrates. Ecotoxicol Environ Saf. 2020;197:110602. doi: 10.1016/j.ecoenv.2020.110602.
  • Aghdam AA, Niaki MH, Sakkaki M. Effect of basalt fibers on fracture properties of nanoclay reinforced polymer concrete after exposure to elevated temperatures. J Build Eng. 2023;76:107329. doi: 10.1016/j.jobe.2023.107329.
  • Zanini NC, Ferreira RR, Barbosa RF, et al. Two different routes to prepare porous biodegradable composite membranes containing nanoclay. J Appl Polym Sci. 2023;140:e54630.
  • Wu Q, Liao J, Yang H. Recent advances in kaolinite nanoclay as drug carrier for bioapplications: a review. Adv Sci. 2023;10(25):2300672. doi: 10.1002/advs.202300672.
  • Mousavi M, Fini EH, Hung AM. Underlying molecular interactions between sodium montmorillonite clay and acidic bitumen. J Phys Chem C. 2019;123(25):15513–15522. doi: 10.1021/acs.jpcc.9b01960.
  • Sudhakar P, Rao R, Dave H, et al. Clays and their polymer nanocomposites. In: Vithanage M, Lazzara G, Rajapaksha AU, editors. Clay composites: environmental applications. Singapore: Springer; 2023. p. 319–340.
  • Guo F, Aryana S, Han Y, et al. A review of the synthesis and applications of polymer–nanoclay composites. Appl Sci. 2018;8(9):1696. doi: 10.3390/app8091696.
  • Mazloomi F, Jalali M. Effects of vermiculite, nanoclay and zeolite on ammonium transport through saturated sandy loam soil: column experiments and modeling approaches. Catena. 2019;176:170–180. doi: 10.1016/j.catena.2019.01.014.
  • Bokobza L. Elastomer nanocomposites: effect of filler–matrix and filler–filler interactions. Polymers (Basel). 2023;15(13):2900. doi: 10.3390/polym15132900.
  • Sabir F, Kanwal H, Laraib U, et al. Functionalized nanoparticles-based polymer nanocomposites: synthesis, characterizations, and biodegradability aspects. In: Deshmukh K, Pandey M, editors. Biodegradable and biocompatible polymer nanocomposites. Netherlands: Elsevier; 2023. p. 205–240.
  • Wypych F, Bergaya F, Schoonheydt RA. From polymers to clay polymer nanocomposites. In: Wypych F, Bergaya F, Schoonheydt RA, editors. Developments in clay science. Netherlands: Elsevier; 2018. p. 331–359.
  • Misaelides P. Clay minerals and zeolites for radioactive waste immobilization and containment: a concise review. In: Mercurio M, Sarkar B, Langella A, editors. Modified clay and zeolite nanocomposite materials. Netherlands: Elsevier; 2019. p. 243–274.
  • Singh SK, Jameel Y, Goyal RK, et al. Recent trends and future potential for polymeric materials (natural and synthetic). In: Chaudhary V, Gupta S, Gupta P, Das PP, editors. Assessment of polymeric materials for biomedical applications. Boca Raton (FL): CRC Press; 2023. p. 1–12.
  • Bagheri AR, Arabi M, Ghaedi M, et al. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta. 2019;195:390–400. doi: 10.1016/j.talanta.2018.11.065.
  • Ennaceri H, Mkpuma VO, Moheimani NR. Nano-clay modified membranes: a promising green strategy for microalgal antifouling filtration. Sci Total Environ. 2023;902:166479. doi: 10.1016/j.scitotenv.2023.166479.
  • Martí M, Molina L, Alemán C, et al. Novel epoxy coating based on DMSO as a green solvent, reducing drastically the volatile organic compound content and using conducting polymers as a nontoxic anticorrosive pigment. ACS Sustain Chem Eng. 2013;1(12):1609–1618. doi: 10.1021/sc400271k.
  • Kalantari K, Afifi AM, Jahangirian H, et al. Biomedical applications of chitosan electrospun nanofibers as a green polymer–review. Carbohydr Polym. 2019;207:588–600. doi: 10.1016/j.carbpol.2018.12.011.
  • González FJ, González-Castillo EI, Peña A, et al. Nanofillers and nanomaterials for green based nanocomposites. In: Belmontes FA, González FJ, López-Manchado MÁ, editors. Green-based nanocomposite materials and applications. Cham, Switzerland: Springer; 2023. p. 13–30.
  • Patanair B, Saiter-Fourcin A, Thomas S, et al. Promoting interfacial interactions with the addition of lignin in poly (lactic acid) hybrid nanocomposites. Polymers (Basel). 2021;13(2):272. doi: 10.3390/polym13020272.
  • Fauzi B, Nawawi MGM, Fauzi R, et al. Physicochemical characteristics of sago starch-chitosan nanofillers film. BioResources. 2019;14(4):8324–8330. doi: 10.15376/biores.14.4.8324-8330.
  • Grossman A, Vermerris W. Lignin-based polymers and nanomaterials. Curr Opin Biotechnol. 2019;56:112–120. doi: 10.1016/j.copbio.2018.10.009.
  • Jayrajsinh S, Shankar G, Agrawal YK, et al. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. J Drug Deliv Sci Technol. 2017;39:200–209. doi: 10.1016/j.jddst.2017.03.023.
  • Hosseini SMS, Mirzaei M. Assessment of the colloidal montmorillonite dispersion as a low-cost and eco-friendly nanofluid for improving thermal performance of plate heat exchanger. SN Appl Sci. 2020;2(10):1–16. doi: 10.1007/s42452-020-03259-z.
  • Penchah HR, Ghaemi A, Godarziani H. Eco-friendly CO2 adsorbent by impregnation of diethanolamine in nanoclay montmorillonite. Environ Sci Pollut Res. 2021;28:1–17.
  • Mallakpour S, Dinari M. Synthesis and properties of biodegradable poly (vinyl alcohol)/organo-nanoclay bionanocomposites. J Polym Environ. 2012;20(3):732–740. doi: 10.1007/s10924-012-0432-7.
  • Bokobza L. Natural rubber nanocomposites: a review. Nanomaterials. 2018;9(1):12. doi: 10.3390/nano9010012.
  • Araujo-Morera J, Verdejo R, López-Manchado MA, et al. Sustainable mobility: the route of tires through the circular economy model. Waste Manag. 2021;126:309–322. doi: 10.1016/j.wasman.2021.03.025.
  • Kang SS, Choi K, Nam J-D, et al. Magnetorheological elastomers: fabrication, characteristics, and applications. Materials. 2020;13(20):4597. doi: 10.3390/ma13204597.
  • Keereerak A, Sukkhata N, Lehman N, et al. Development and characterization of unmodified and modified natural rubber composites filled with modified clay. Polymers (Basel). 2022;14(17):3515. doi: 10.3390/polym14173515.
  • Siririttikrai N, Thanawan S, Suchiva K, et al. Comparative study of natural rubber/clay nanocomposites prepared from fresh or concentrated latex. Polym Test. 2017;63:244–250. doi: 10.1016/j.polymertesting.2017.08.015.
  • George SC, Rajan R, Aprem AS, et al. The fabrication and properties of natural rubber-clay nanocomposites. Polym Test. 2016;51:165–173. doi: 10.1016/j.polymertesting.2016.03.010.
  • Perera SJ, Egodage SM, Walpalage S. Enhancement of mechanical properties of natural rubber–clay nanocomposites through incorporation of silanated organoclay into natural rubber latex. e-Polymers. 2020;20(1):144–153. doi: 10.1515/epoly-2020-0017.
  • Sookyung U, Nakason C, Venneman N, et al. Influence concentration of modifying agent on properties of natural rubber/organoclay nanocomposites. Polym Test. 2016;54:223–232. doi: 10.1016/j.polymertesting.2016.07.009.
  • Chouytan J, Kalkornsurapranee E, Fellows CM, et al. In situ modification of polyisoprene by organo-nanoclay during emulsion polymerization for reinforcing natural rubber thin films. Polymers (Basel). 2019;11(8):1338. doi: 10.3390/polym11081338.
  • Shao L, Xi Y, Weng Y. Recent advances in PLA-based antibacterial food packaging and its applications. Molecules. 2022;27(18):5953. doi: 10.3390/molecules27185953.
  • Ilyas R, Sapuan S, Bayraktar E. Bio and synthetic based polymer composite materials. 2022;14:3778.
  • Taib N-A, Rahman MR, Huda D, et al. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym Bull. 2023;80(2):1179–1213. doi: 10.1007/s00289-022-04160-y.
  • Darie RN, Pâslaru E, Sdrobis A, et al. Effect of nanoclay hydrophilicity on the poly (lactic acid)/clay nanocomposites properties. Ind Eng Chem Res. 2014;53(19):7877–7890. doi: 10.1021/ie500577m.
  • Salah LS, Ouslimani N, Danlée Y, et al. Investigation of mechanical recycling effect on electromagnetic properties of polylactic acid (PLA)–nanoclay nanocomposites: towards a valorization of recycled PLA nanocomposites. Compos Part C: Open Access. 2023;10:100339. doi: 10.1016/j.jcomc.2022.100339.
  • Mahani H, Karevan M, Safavi M. Comparative performance of fused deposit modeling 3D‐printed and injection molded polylactic acid/thermoplastic starch/nanoclay bio‐based nanocomposites. Polym Adv Technol. 2023;34(6):1901–1917. doi: 10.1002/pat.6019.
  • Grigora M-E, Terzopoulou Z, Tsongas K, et al. Physicochemical characterization and finite element analysis-assisted mechanical behavior of polylactic acid-montmorillonite 3D printed nanocomposites. Nanomaterials. 2022;12(15):2641. doi: 10.3390/nano12152641.
  • Ramos M, Fortunati E, Beltrán A, et al. Controlled release, disintegration, antioxidant, and antimicrobial properties of poly (lactic acid)/thymol/nanoclay composites. Polymers (Basel). 2020;12(9):1878. doi: 10.3390/polym12091878.
  • Darie-Niță RN, Irimia A, Doroftei F, et al. Bioactive and physico-chemical assessment of innovative poly (lactic acid)-based biocomposites containing sage, coconut oil, and modified nanoclay. Int J Mol Sci. 2023;24(4):3646. doi: 10.3390/ijms24043646.
  • Bai J, Goodridge RD, Hague RJ, et al. Processing and characterization of a polylactic acid/nanoclay composite for laser sintering. Polym Compos. 2017;38(11):2570–2576. doi: 10.1002/pc.23848.
  • Kazemzadeh G, Jirofti N, Kazemi Mehrjerdi H, et al. A review on developments of in-vitro and in-vivo evaluation of hybrid PCL-based natural polymers nanofibers scaffolds for vascular tissue engineering. J Ind Text. 2022;52:152808372211283. doi: 10.1177/15280837221128314.
  • Stodolak-Zych E, Kurpanik R, Dzierzkowska E, et al. Effects of montmorillonite and gentamicin addition on the properties of electrospun polycaprolactone fibers. Materials. 2021;14(22):6905. doi: 10.3390/ma14226905.
  • Song W, Zhao X, Jin Z, et al. Poly (vinyl alcohol) for multi-functionalized corrosion protection of metals: a review. J Cleaner Prod. 2023;394:136390. doi: 10.1016/j.jclepro.2023.136390.
  • Vatanpour V, Teber O, Mehrabi M, et al. Polyvinyl alcohol-based separation membranes: a comprehensive review on fabrication techniques, applications and future prospective. Mater Today Chem. 2023;28:101381. doi: 10.1016/j.mtchem.2023.101381.
  • Ohsedo Y, Ueno W. Creation of polymer hydrogelator/poly (vinyl alcohol) composite molecular hydrogel materials. Gels. 2023;9(9):679. doi: 10.3390/gels9090679.
  • Sapuła P, Bialik-Wąs K, Malarz K. Are natural compounds a promising alternative to synthetic cross-linking agents in the preparation of hydrogels? Pharmaceutics. 2023;15(1):253. doi: 10.3390/pharmaceutics15010253.
  • Gaume J, Rivaton A, Thérias S, et al. Influence of nanoclays on the photochemical behaviour of poly (vinyl alcohol). Polym Degrad Stab. 2012;97(4):488–495. doi: 10.1016/j.polymdegradstab.2012.01.022.
  • Awad SA, Khalaf EM. Investigation of photodegradation preventing of polyvinyl alcohol/nanoclay composites. J Polym Environ. 2019;27(9):1908–1917. doi: 10.1007/s10924-019-01470-7.
  • Tian H, Wang K, Liu D, et al. Enhanced mechanical and thermal properties of poly (vinyl alcohol)/corn starch blends by nanoclay intercalation. Int J Biol Macromol. 2017;101:314–320. doi: 10.1016/j.ijbiomac.2017.03.111.
  • Allel A, Naceur MW, Benguergoura H, et al. Pervaporative separation of water–ethanol mixtures using an Algerian Na + montmorillonite nanoclay-incorporated poly (vinyl alcohol) nanocomposite membrane. RSC Adv. 2020;10(65):39531–39541. doi: 10.1039/d0ra07265f.
  • Gu F, Yang W, Song J, et al. Crosslinked PVA/nanoclay hydrogel coating for improving water vapor barrier of cellulose-based packaging at high temperature and humidity. Coatings. 2022;12(10):1562. doi: 10.3390/coatings12101562.
  • Shen Z, Rajabi-Abhari A, Oh K, et al. Improving the barrier properties of packaging paper by polyvinyl alcohol based polymer coating—effect of the base paper and nanoclay. Polymers (Basel). 2021;13(8):1334. doi: 10.3390/polym13081334.
  • Singhal S, Agarwal S, Kumar A, et al. Waste clothes to microcrystalline cellulose: an experimental investigation. J Polym Environ. 2022;31(1):358–372. doi: 10.1007/s10924-022-02609-9.
  • Alves L, Ferraz E, Gamelas J. Composites of nanofibrillated cellulose with clay minerals: a review. Adv Colloid Interface Sci. 2019;272:101994. doi: 10.1016/j.cis.2019.101994.
  • Joseph B, Sagarika V, Sabu C, et al. Cellulose nanocomposites: fabrication and biomedical applications. J Bioresour Bioprod. 2020;5(4):223–237. doi: 10.1016/j.jobab.2020.10.001.
  • Olusanya JO, Mohan T, Kanny K. Effect of cellulose-nanoparticles (CNPs) and nanoclay (NC) reinforced starch based biocomposite films on thermal and mechanical properties. 2022;30:262.
  • Chakkour M, Ould Moussa M, Khay I, et al. Towards widespread properties of cellulosic fibers composites: a comprehensive review. J Reinf Plast Compos. 2022;42(5–6):222–263. doi: 10.1177/07316844221112974.
  • Barbi S, Taurino C, La China S, et al. Mechanical and structural properties of environmental green composites based on functionalized bacterial cellulose. Cellulose. 2021;28(3):1431–1442. doi: 10.1007/s10570-020-03602-y.
  • Ming S, Chen G, He J, et al. Highly transparent and self-extinguishing nanofibrillated cellulose-monolayer clay nanoplatelet hybrid films. Langmuir. 2017;33(34):8455–8462. doi: 10.1021/acs.langmuir.7b01665.
  • Ferfera-Harrar H, Dairi N. Green nanocomposite films based on cellulose acetate and biopolymer-modified nanoclays: studies on morphology and properties. Iran Polym J. 2014;23(12):917–931. doi: 10.1007/s13726-014-0286-z.
  • Singh SJ, Ahlawat N, Panwar V. Computational analysis of viscoelastic properties in polymer composites. In: Verma A, Jain N, Sanjay MR, et al., editors. Dynamic mechanical and creep-recovery behavior of polymer-based composites. Netherlands: Elsevier; 2024. p. 291–309.
  • Champa-Bujaico E, Díez-Pascual AM, Redondo AL, et al. Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: a combination of experimental and machine learning techniques. Compos Part B: Eng. 2024;269:111099. doi: 10.1016/j.compositesb.2023.111099.
  • Lightfoot J, Castro-Dominguez B, Buchard A, et al. A molecular dynamics approach to modelling oxygen diffusion in PLA and PLA clay nanocomposites. Mater Adv. 2023;4(10):2281–2291. doi: 10.1039/D3MA00158J.
  • El Haouti R, Ouachtak H, El Guerdaoui A, et al. Cationic dyes adsorption by Na-montmorillonite nano clay: experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations. J Mol Liq. 2019;290:111139. doi: 10.1016/j.molliq.2019.111139.
  • Chowdhury U, Wu X-F. Cohesive zone modeling of the elastoplastic and failure behavior of polymer nanoclay composites. J Compos Sci. 2021;5(5):131. doi: 10.3390/jcs5050131.
  • Chen Z, Yu T, Kim Y-H, et al. Different-structured nanoclays incorporated composites: computational and experimental analysis on mechanical properties. Compos Sci Technol. 2021;203:108612. doi: 10.1016/j.compscitech.2020.108612.
  • Goel P, Arora R, Haleem R, et al. Advances in bio-degradable polymer composites-based packaging material. Chem Afr. 2022;6(1):95–115. doi: 10.1007/s42250-022-00404-6.
  • Najeeb J, Naeem S. Biodegradable food packaging materials. In: Ali GAM, Makhlouf ASH, editors. Handbook of biodegradable materials. Cham, Germany: Springer; 2022. p. 1–29.
  • Shin H, Thanakkasaranee S, Sadeghi K, et al. Preparation and applicability of polylactic acid/polyethylene glycol/nanoclay composite films for smart steam release in microwave packaging. Food Packag Shelf Life. 2023;40:101188.
  • Tawakkal IS, Cran MJ, Miltz J, et al. A review of poly (lactic acid)‐based materials for antimicrobial packaging. J Food Sci. 2014;79(8):R1477–R1490. doi: 10.1111/1750-3841.12534.
  • Aulin C, Salazar-Alvarez G, Lindström T. High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale. 2012;4(20):6622–6628. doi: 10.1039/c2nr31726e.
  • Farmahini-Farahani M, Bedane AH, Pan Y, et al. Cellulose/nanoclay composite films with high water vapor resistance and mechanical strength. Cellulose. 2015;22(6):3941–3953. doi: 10.1007/s10570-015-0774-0.
  • de Souza AG, Dos Santos NMA, da Silva Torin RF, et al. Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int J Biol Macromol. 2020;164:1737–1747. doi: 10.1016/j.ijbiomac.2020.07.226.
  • Garusinghe UM, Varanasi S, Raghuwanshi VS, et al. Nanocellulose-montmorillonite composites of low water vapour permeability. Colloids Surf A. 2018;540:233–241. doi: 10.1016/j.colsurfa.2018.01.010.
  • Oliver-Ortega H, Vandemoortele V, Bala A, et al. Nanoclay effect into the biodegradation and processability of poly (lactic acid) nanocomposites for food packaging. Polymers (Basel). 2021;13(16):2741. doi: 10.3390/polym13162741.
  • Sethy SK, Kishore MV, Bhagat C, et al. Periodic monitoring of nano clay as the potential adsorbent to remove metal and dyes from wastewater: a review. Total Environ Res Themes. 2023;7:100067. doi: 10.1016/j.totert.2023.100067.
  • Al-Hazmi HE, Mohammadi A, Hejna A, et al. Wastewater treatment for reuse in agriculture: prospects and challenges. Environ Res. 2023;236(Pt 1):116711. doi: 10.1016/j.envres.2023.116711.
  • Kordbacheh F, Heidari G. Water pollutants and approaches for their removal. Mater Chem Horizons. 2023;2(2):139–153.
  • Elgarahy A, Elwakeel K, Mohammad S, et al. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Eng Technol. 2021;4:100209. doi: 10.1016/j.clet.2021.100209.
  • Mishra V, Mudgal N, Rawat D, et al. Integrating microalgae into textile wastewater treatment processes: advancements and opportunities. J Water Process Eng. 2023;55:104128. doi: 10.1016/j.jwpe.2023.104128.
  • Bhattacharjee C, Dutta S, Saxena VK. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environ Adv. 2020;2:100007. doi: 10.1016/j.envadv.2020.100007.
  • Hubbe MA, Ferrer A, Tyagi P, et al. Nanocellulose in thin films, coatings, and plies for packaging applications: a review. BioResources. 2017;12(1):2143–2233. doi: 10.15376/biores.12.1.Hubbe.
  • Çınar S, Dinçer A, Eser A, et al. Application of crosslinked chitosan-nanoclay composite beads for efficient removal of Ponceau S azo dye from aqueous medium. Toxin Rev. 2023;42(3):599–614. doi: 10.1080/15569543.2023.2204367.
  • Sardi A, Bounaceur B, Mokhtar A, et al. Kinetics and thermodynamic studies for removal of trypan blue and methylene blue from water using nano clay filled composite of HTAB and PEG and its antibacterial activity. J Polym Environ. 2023;31(12):5065–5088. doi: 10.1007/s10924-023-02927-6.
  • Andrade-Guel M, Cabello-Alvarado C, Romero-Huitzil R, et al. Nanocomposite PLA/C20A nanoclay by ultrasound-assisted melt extrusion for adsorption of uremic toxins and methylene blue dye. Nanomaterials. 2021;11(10):2477. doi: 10.3390/nano11102477.
  • Tsekova P, Stoilova O. Fabrication of electrospun cellulose acetate/nanoclay composites for pollutant removal. Polymers (Basel). 2022;14(23):5070. doi: 10.3390/polym14235070.
  • Balavigneswaran CK, Muthuvijayan V. Nanohybrid-reinforced gelatin-ureidopyrimidinone-based self-healing injectable hydrogels for tissue engineering applications. ACS Appl Bio Mater. 2021;4(6):5362–5377. doi: 10.1021/acsabm.1c00458.
  • Molchanov VS, Efremova MA, Kiseleva TY, et al. Injectable ultra soft hydrogel with natural nanoclay. Nanosystems: Phys Chem Math. 2019;10(1):76–85. doi: 10.17586/2220-8054-2019-10-1-76-85.
  • Bashir MH, Korany NS, Farag DB, et al. Polymeric nanocomposite hydrogel scaffolds in craniofacial bone regeneration: a comprehensive review. Biomolecules. 2023;13(2):205. doi: 10.3390/biom13020205.
  • Ferrández-Rives M, Beltrán-Osuna ÁA, Gómez-Tejedor JA, et al. Electrospun PVA/bentonite nanocomposites mats for drug delivery. Materials. 2017;10(12):1448. doi: 10.3390/ma10121448.
  • Hsu W-H, Chang H-M, Lee Y-L, et al. Biodegradable polymer-nanoclay composites as intestinal sleeve implants installed in digestive tract for obesity and type 2 diabetes treatment. Mater Sci Eng C Mater Biol Appl. 2020;110:110676. doi: 10.1016/j.msec.2020.110676.
  • Liu X, Lu X, Su Y, et al. Clay-polymer nanocomposites prepared by reactive melt extrusion for sustained drug release. Pharmaceutics. 2020;12(1):51. doi: 10.3390/pharmaceutics12010051.
  • Miedzianowska J, Masłowski M, Rybiński P, et al. Modified nanoclays/straw fillers as functional additives of natural rubber biocomposites. Polymers (Basel). 2021;13(5):799. doi: 10.3390/polym13050799.
  • Morariu S, Brunchi C-E, Honciuc M, et al. Development of hybrid materials based on chitosan, poly (ethylene glycol) and Laponite® RD: effect of clay concentration. Polymers (Basel). 2023;15(4):841. doi: 10.3390/polym15040841.
  • Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective. Compos Part B: Eng. 2017;110:442–458. doi: 10.1016/j.compositesb.2016.11.034.
  • Fradique R, Correia TR, Miguel SP, et al. Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping. J Mater Sci: Mater Med. 2016;27(4):1–14. doi: 10.1007/s10856-016-5681-x.
  • Hamedi MM, Hajian A, Fall AB, et al. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano. 2014;8(3):2467–2476. doi: 10.1021/nn4060368.
  • Surudžić R, Janković A, Bibić N, et al. Physico–chemical and mechanical properties and antibacterial activity of silver/poly (vinyl alcohol)/graphene nanocomposites obtained by electrochemical method. Compos Part B: Eng. 2016;85:102–112. doi: 10.1016/j.compositesb.2015.09.029.
  • Gaharwar AK, Cross LM, Peak CW, et al. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater. 2019;31(23):1900332. doi: 10.1002/adma.201900332.
  • Peña-Parás L, Sánchez-Fernández JA, Vidaltamayo R. Nanoclays for biomedical applications. In: Martínez L, Kharissova O, Kharisov B. editors. Handbook of ecomaterials. Cham, Germany: Springer; 2018. p. 3453–3471.
  • Gebeshuber IC. Biomimetic nanotechnology. Biomimetics. 2022;7(1):16. doi: 10.3390/biomimetics7010016.
  • Nilforoushzadeh MA, Amirkhani MA, Seirafianpour F, et al. Regenerative medicine in dermatology. J Skin Stem Cell. 2022;9(1):e124222. doi: 10.5812/jssc-124222.
  • Jafari A, Ajji Z, Mousavi A, et al. Latest advances in 3D bioprinting of cardiac tissues. Adv Mater Technol. 2022;7(11):2101636. doi: 10.1002/admt.202101636.
  • Pierchala MK, Makaremi M, Tan HL, et al. Nanotubes in nanofibers: antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. Appl Clay Sci. 2018;160:95–105. doi: 10.1016/j.clay.2017.12.016.
  • Nouri M, Mokhtari J, Rostamloo M. Electrospun poly (ɛ-caprolactone)/nanoclay nanofibrous mats for tissue engineering. Fibers Polym. 2013;14(6):957–964. doi: 10.1007/s12221-013-0957-y.
  • Jin Y, Liu C, Chai W, et al. Self-supporting nanoclay as internal scaffold material for direct printing of soft hydrogel composite structures in air. ACS Appl Mater Interfaces. 2017;9(20):17456–17465. doi: 10.1021/acsami.7b03613.
  • Rezanejad Gatabi Z, Heshmati N, Mirhoseini M, et al. The application of clay-based nanocomposite hydrogels in wound healing. Arab J Sci Eng. 2022;48(7):8481–8494. doi: 10.1007/s13369-022-06959-3.
  • Bibi S, Mir S, Rehman W, et al. Synthesis and in vitro/ex vivo characterizations of ceftriazone-loaded sodium alginate/poly (vinyl alcohol) clay reinforced nanocomposites: possible applications in wound healing. Materials. 2022;15(11):3885. doi: 10.3390/ma15113885.
  • Asthana N, Pal K, Aljabali AA, et al. Polyvinyl alcohol (PVA) mixed green–clay and aloe vera based polymeric membrane optimization: peel-off mask formulation for skin care cosmeceuticals in green nanotechnology. J Mol Struct. 2021;1229:129592. doi: 10.1016/j.molstruc.2020.129592.
  • Tamer TM, Alsehli MH, Omer AM, et al. Development of polyvinyl alcohol/kaolin sponges stimulated by marjoram as hemostatic, antibacterial, and antioxidant dressings for wound healing promotion. Int J Mol Sci. 2021;22(23):13050. doi: 10.3390/ijms222313050.
  • Moradihamedani P. Recent development in polymer/montmorillonite clay mixed matrix membranes for gas separation: a short review. Polym Bull. 2022;80(5):4663–4687. doi: 10.1007/s00289-022-04266-3.
  • Nourizadeh H, Bakhshayesh A. ‘Nanoclay-based products across global markets’, StatNano Applied and Industrial Series: nanoclay-based products across global markets: applications and properties. StatNano Publications; 2020, p. 3–33. doi: 10.22034/SAR.2020.01.
  • Aysa NH, Shalan AE. Green nanocomposites: magical solution for environmental pollution problems. In: Shalan AE, Hamdy Makhlouf ASH, Lanceros‐Méndez S, editors. Advances in nanocomposite materials for environmental and energy harvesting applications. Cham, Germany: Springer; 2022. p. 389–417.
  • Khan SH. Green nanotechnology for the environment and sustainable development. In: Naushad M, Lichtfouse E, editors. Green materials for wastewater treatment. Cham, Germany: Springer; 2020. p. 13–46.
  • Tripathy DB, Gupta A. Nanocomposites as sustainable smart materials: a review. J Reinf Plast Compos. 2024;07316844241233162. doi: 10.1177/07316844241233162.
  • Burelo M, Martínez A, Hernández-Varela JD, et al. Recent developments in synthesis, properties, applications and recycling of bio-based elastomers. Molecules. 2024;29(2):387. doi: 10.3390/molecules29020387.
  • Okoye IJ, Idumah CI, Ogbu JE, et al. Development, fabrication, characterization, features and multifarious applications of cryogel polymeric nanoarchitectures: a review. Polymer-Plast Technol Mater. 2024;63(8):990–1010. doi: 10.1080/25740881.2024.2310560.
  • Idumah CI. Novel trends in conductive polymeric nanocomposites, and bionanocomposites. Synth Met. 2021;273:116674. doi: 10.1016/j.synthmet.2020.116674.
  • Dubey N, Kushwaha CS, Shukla S. A review on electrically conducting polymer bionanocomposites for biomedical and other applications. Int J Polym Mater Polym Biomater. 2019;69(11):709–727. doi: 10.1080/00914037.2019.1605513.
  • Yaseen M, Khattak MAK, Khan A, et al. State-of-the-art electrochromic thin films devices, fabrication techniques and applications: a review. Nanocomposites. 2024;10(1):1–40. doi: 10.1080/20550324.2023.2291619.
  • Benali S, Aouadi S, Dechief A-L, et al. Key factors for tuning hydrolytic degradation of polylactide/zinc oxide nanocomposites. Nanocomposites. 2015;1(1):51–61. doi: 10.1179/2055033214Y.0000000007.
  • Nedaipour, F., Bagheri, H., and Mohammadi, S. “Polylactic acid-polyethylene glycolhydroxyapatite composite” an efficient composition for interference screws. Nanocomposites. 2020;6(3):99–110. doi: 10.1080/20550324.2020.1794688.
  • Sierra-Romero A, Chen B. Strategies for the preparation of polymer composites with complex alignment of the dispersed phase. Nanocomposites. 2018;4(4):137–155. doi: 10.1080/20550324.2018.1551830.
  • Mishnaevsky L. Sustainable end-of-life management of wind turbine blades: overview of current and coming solutions. Materials. 2021;14(5):1124. doi: 10.3390/ma14051124.
  • Talukder ME, Alam F, Pervez MN, et al. New generation washable PES membrane face mask for virus filtration. Nanocomposites. 2022;8(1):13–23. doi: 10.1080/20550324.2021.2008209.
  • Krauklis AE, Karl CW, Gagani AI, et al. Composite material recycling technology—state-of-the-art and sustainable development for the 2020s. J Compos Sci. 2021;5(1):28. doi: 10.3390/jcs5010028.
  • Sen Gupta R, Samantaray PK, Bose S. Going beyond cellulose and chitosan: synthetic biodegradable membranes for drinking water, wastewater, and oil–water remediation. ACS Omega. 2023;8(28):24695–24717. doi: 10.1021/acsomega.3c01699.
  • Samantaray PK, Little A, Wemyss AM, et al. Design and control of compostability in synthetic biopolyesters. ACS Sustain Chem Eng. 2021;9(28):9151–9164. doi: 10.1021/acssuschemeng.1c01424.
  • Samantaray PK, Little A, Haddleton DM, et al. Poly (glycolic acid)(PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chem. 2020;22(13):4055–4081. doi: 10.1039/D0GC01394C.
  • Narisetty V, Cox R, Willoughby N, et al. Recycling bread waste into chemical building blocks using a circular biorefining approach. Sustain Energy Fuels. 2021;5(19):4842–4849. doi: 10.1039/d1se00575h.
  • Deng J, Xu L, Zhang L, et al. Recycling of carbon fibers from CFRP waste by microwave thermolysis. Processes. 2019;7(4):207. doi: 10.3390/pr7040207.
  • Chatziparaskeva G, Papamichael I, Voukkali I, et al. End-of-life of composite materials in the framework of the circular economy. Microplastics. 2022;1(3):377–392. doi: 10.3390/microplastics1030028.
  • Sourkouni G, Kalogirou C, Moritz P, et al. Study on the influence of advanced treatment processes on the surface properties of polylactic acid for a bio-based circular economy for plastics. Ultrason Sonochem. 2021;76:105627. doi: 10.1016/j.ultsonch.2021.105627.
  • Anucha CB, Bacaksiz E, Stathopoulos VN, et al. Molybdenum modified sol–gel synthesized TiO2 for the photocatalytic degradation of carbamazepine under UV irradiation. Processes. 2022;10(6):1113. doi: 10.3390/pr10061113.
  • Lunetto V, Galati M, Settineri L, et al. Sustainability in the manufacturing of composite materials: a literature review and directions for future research. J Manuf Processes. 2023;85:858–874. doi: 10.1016/j.jmapro.2022.12.020.
  • Hetzer M, De Kee D. Wood/polymer/nanoclay composites, environmentally friendly sustainable technology: a review. Chem Eng Res Des. 2008;86(10):1083–1093. doi: 10.1016/j.cherd.2008.05.003.
  • Kumar M, Panjagari NR, Kanade PP, et al. Sodium caseinate-starch-modified montmorillonite based biodegradable film: laboratory food extruder assisted exfoliation and characterization. Food Packag Shelf Life. 2018;15:17–27. doi: 10.1016/j.fpsl.2017.12.008.
  • Vanamudan A, Pamidimukkala P. Chitosan, nanoclay and chitosan–nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties. Int J Biol Macromol. 2015;74:127–135. doi: 10.1016/j.ijbiomac.2014.11.009.
  • Fatiha M, Belkacem B. Adsorption of methylene blue from aqueous solutions using natural clay. J. Mater. Environ. Sci. 2016;7(1):285–292.
  • Shunmugasamy VC, Xiang C, Gupta N. Clay/polymer nanocomposites: processing, properties, and applications. In: Kim C-S, Randow C, Sano T, editors. Hybrid and hierarchical composite materials. Cham, Germany: Springer; 2015. p. 161–200.