43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Engineered beads-on-a-string nanocomposites for an improved drug fast-sustained bi-stage release

, , , , ORCID Icon &
Pages 240-253 | Received 28 Dec 2023, Accepted 27 May 2024, Published online: 12 Jun 2024

References

  • Wang JY, Yu YQ, Zhang CQ, et al. New advances in diagnosis and treatment of nano drug delivery systems across the blood-brain barrier. Nanocomposites. 2023;9(1):116–127. doi: 10.1080/20550324.2023.2256466.
  • Qosim N, Majd H, Huo S, et al. Hydrophilic and hydrophobic drug release from core (polyvinylpyrrolidone)-sheath (ethyl cellulose) pressure-spun fibers. Int J Pharm. 2024;654:123972. doi: 10.1016/j.ijpharm.2024.123972.
  • Zhou J, Che Y, Liu Y, et al. Electrospun meicated gelatin/polycaprlactone Janus fibers for photothermal-chem combined thrapy of liver cancer. Int J Biolog Macromol. 2024;269:132113. doi: 10.1016/j.ijbiomac.2024.132113.
  • Zhan Y, Zhang S. Design of novel PLK4 inhibitors as TRIM37-amplified breast cancer drugs using 3D-QSAR, molecular docking, and molecular dynamics simulation methods. Mol Simul. 2024;50(7–9):571–587. doi: 10.1080/08927022.2024.2331237.
  • Audtarat S, Hongsachart P, Dasri T, et al. Green synthesis of silver nanoparticles loaded into bacterial cellulose for antimicrobial application. Nanocomposites. 2022;8(1):34–46. doi: 10.1080/20550324.2022.2055375.
  • Sun CC, Zhi HX, Li H, et al. Synthesis, characterization and antimicrobial study of cinnamic acid functionalized Ag nanoparticles. Nanocomposites. 2022;8(1):95–101. doi: 10.1080/20550324.2022.2066827.
  • Yu DG, Zhao P. The key elements for biomolecules to biomaterials and to bioapplications. Biomolecules. 2022;12(9):1234. doi: 10.3390/biom12091234.
  • Liao Q, Kim EJ, Tang Y, et al. Rational design of hyper-crosslinked polymers for biomedical applications. J Polym Sci. 2023;62(8):1517–1535. doi: 10.1002/pol.20230270.
  • Tan PK, Kuppusamy UR, Chua KH, et al. Emerging strategies to improve the stability and bioavailability of insulin: an update on formulations and delivery approaches. Curr Drug Deliv. 2023;20(8):1141–1162. doi: 10.2174/1567201820666221102094433.
  • Huang XY, Jiang WL, Zhou JF, et al. The applications of ferulic-acid-loaded fibrous films for fruit preservation. Polymers. 2022;14(22):4947. doi: 10.3390/polym14224947.
  • Handayani M, Suwaji BI, Asih GIN, et al. In-situ synthesis of reduced graphene oxide/silver nanoparticles (rGO/AgNPs) nanocomposites for high loading capacity of acetylsalicylic acid. Nanocomposites. 2022;8(1):74–80. doi: 10.1080/20550324.2022.2054210.
  • Murugesan R, Raman S. Recent trends in carbon nanotubes based prostate cancer therapy: a biomedical hybrid for diagnosis and treatment. Curr Drug Deliv. 2022;19(2):229–237. doi: 10.2174/1567201818666210224101456.
  • Du CC, Huang W. Progress and prospects of nanocomposite hydrogels in bone tissue engineering. Nanocomposites. 2022;8(1):102–124. doi: 10.1080/20550324.2022.2076025.
  • Lu HJ, Zhao Y, Qin SC, et al. Fluorine substitution tunes the nanofiber chirality of supramolecular hydrogels to promote cell adhesion and proliferation. Adv Fiber Mater. 2023;5(1):377–387. doi: 10.1007/s42765-022-00232-w.
  • Yang Y, Zhang R, Liang Z, et al. Application of electrospun drug-loaded nanofibers in cancer therapy. Polymers. 2024;16(4):504. doi: 10.3390/polym16040504.
  • Bai YB, Liu YA, Lv H, et al. Processes of electrospun polyvinylidene fluoride-based nanofibers, their piezoelectric properties, and several fantastic applications. Polymers. 2022;14(20):4311. doi: 10.3390/polym14204311.
  • Al-Hazeem NZ, Ahmed NM, Jafri MZM, et al. The effect of deposition angle on morphology and diameter of electrospun TiO2/PVP nanofibers. Nanocomposites. 2021;7(1):70–78. doi: 10.1080/20550324.2021.1917836.
  • Chen S, Zhou JF, Fang BY, et al. Three EHDA processes from a detachable spinneret for fabricating drug fast dissolution composites. Macro Mater Eng. 2023;309(4):2300361. doi: 10.1002/mame.202300361.
  • Ji YX, Zhao H, Liu H, et al. Electrosprayed stearic-acid-coated ethylcellulose microparticles for an improved sustained release of anticancer drug. Gels. 2023;9(9):700. doi: 10.3390/gels9090700.
  • Sivan M, Madheswaran D, Hauzerova S, et al. AC electrospinning: impact of high voltage and solvent on the electrospinnability and productivity of polycaprolactone electrospun nanofibrous scaffolds. Mater Today Chem. 2022;26:101025. doi: 10.1016/j.mtchem.2022.101025.
  • Sivan M, Madheswaran D, Valtera J, et al. Alternating current electrospinning: the impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers. Mater Des. 2022;213:110308. doi: 10.1016/j.matdes.2021.110308.
  • Yu DG, Xu L. Impact evaluations of articles in current drug delivery based on web of science. Curr Drug Deliv. 2024;21(3):360–367. doi: 10.2174/1567201820666230508115356.
  • Peng W, Wang L, Zhang M, et al. Biodegradable flexible conductive film based on sliver nanowires and PLA electrospun fibers. J Appl Polym Sci. 2024;141(22):e55433. doi: 10.1002/app.55433.
  • Li T, Ding X, Tian L, et al. The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs. Mater Sci Eng C Mater Biol Appl. 2017;74:471–477. doi: 10.1016/j.msec.2016.12.050.
  • Brimo N, Serdaroğlu DÇ, Uysal B. Comparing antibiotic pastes with electrospun nanofibers as modern drug delivery systems for regenerative endodontics. Curr Drug Deliv. 2022;19(9):904–917. doi: 10.2174/1567201819666211216140947.
  • Li DM, Cheng YY, Luo YX, et al. Electrospun nanofiber materials for photothermal interfacial evaporation. Materials. 2023;16(16):16165676. doi: 10.3390/ma16165676.
  • Li DM, Yue GC, Li S, et al. Fabrication and applications of multi-fluidic electrospinning multi-structure hollow and core-shell nanofibers. Engineering. 2022;13:116–127. doi: 10.1016/j.eng.2021.02.025.
  • Zhang Y, Lu Y, Li Y, et al. Poly(glutamic acid)-engineered nanoplatforms for enhanced cancer phototherapy. Curr Drug Deliv. 2024;21(3):326–338. doi: 10.2174/1567201820666230116164511.
  • Tabakoglu S, Kołbuk D, Sajkiewicz P. Multifluid electrospinning for multi-drug delivery systems: pros and cons, challenges, and future directions. Biomater Sci. 2022;11(1):37–61. doi: 10.1039/d2bm01513g.
  • Mao H, Zhou J, Yan L, et al. Hybrid films loaded with 5-fluorouracil and reglan for synergistic treating colon cancer through an asynchronous dual-drug delivery. Front Bioeng Biotechnol. 2024;12:1398730. doi: 10.3389/fbioe.2024.1398730.
  • Kang S, Hou SC, Chen XW, et al. Energy-saving electrospinning with a concentric Teflon-core rod spinneret to create medicated nanofibers. Polymers. 2020;12(10):2421. doi: 10.3390/polym12102421.
  • Qian CH, Liu YB, Chen S, et al. Electrospun core-sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications. Front Bioeng Biotechnol. 2023;11:1205252. doi: 10.3389/fbioe.2023.1205252.
  • Shen SF, Zhu LF, Liu J, et al. Novel core-shell fiber delivery system for synergistic treatment of cervical cancer. J Drug Deliv Sci Technol. 2020;59:101865. doi: 10.1016/j.jddst.2020.101865.
  • Xu L, Li Q, Wang H, et al. Electrospun multi-functional medicated tri-section Janus nanofibers for an improved anti-adhesion tendon repair. Chem Eng J. 2024;492:152359. doi: 10.1016/j.cej.2024.152359.
  • Song W, Tang Y, Qian C, et al. Electrospinning spinneret: a bridge between the visible world and the invisible nanostructures. Innovation. 2023;4(2):100381. doi: 10.1016/j.xinn.2023.100381.
  • Guler E, Nur Hazar-Yavuz A, Tatar E, et al. Oral empagliflozin-loaded tri-layer core-sheath fibers fabricated using tri-axial electrospinning: enhanced in vitro and in vivo antidiabetic performance. Int J Pharm. 2023;635(25):122716. doi: 10.1016/j.ijpharm.2023.122716.
  • Zhang S, Yang W, Gong W, et al. Recent progress of electrospun nanofibers as burning dressings. RSC Adv. 2024;14(20):14374–14391. doi: 10.13039/501100007129.
  • Yao ZC, Zhang CC, Xing Z, et al. Controlled engineering of multifunctional porous structures using tri-needle co-axial electrohydrodynamic flow and sacrificial media. Chem Eng J. 2022;429:132221. doi: 10.1016/j.cej.2021.132221.
  • Zhou JF, Yi T, Zhang ZY, et al. Electrospun janus core (ethyl cellulose//polyethylene oxide) @ shell (hydroxypropyl methyl cellulose acetate succinate) hybrids for an enhanced colon-targeted prolonged drug absorbance. Adv Compos Hybrid Mater. 2023;6(6):189. doi: 10.1007/s42114-023-00766-6.
  • Chen X, Liu Y, Liu P. Electrospun core-sheath nanofibers with a cellulose acetate coating for the synergistic release of zinc ion and drugs. Mol Pharm. 2023;21(1):173–182. doi: 10.1021/acs.molpharmaceut.3c00703.
  • Zhou J, Pan H, Gong W, et al. Electrosprayed eudragit RL100 nanoparticles with janus polyvinylpyrrolidone patches for multiphase release of paracetamol. Nanoscale. 2024;16(17):8573–8582. doi: 10.1039/D4NR00893F.
  • Wang ML, Hou JS, Yu DG, et al. Electrospun tri-layer nanodepots for sustained release of acyclovir. J Alloys Compd. 2020;846:156471. doi: 10.1016/j.jallcom.2020.156471.
  • Zhao P, Zhou K, Xia Y, et al. Electrospun trilayer eccentric janus nanofibers for a combined treatment of periodontitis. Adv Fiber Mater. 2024;5:1–21. doi: 10.1007/s42765-024-00397-6.
  • Liu Y, Chen X, Lin X, et al. Electrospun multi-chamber core–shell nanofibers and their controlled release behaviors: a review. WIREs Nanomed Nanobiotechnol. 2024;16:1954. doi: 10.1002/wnan.1954.
  • Yao ZC, Zhang CC, Ahmad Z, et al. Designer fibers from 2D to 3D-simultaneous and controlled engineering of morphology, shape and size. Chem Eng J. 2018;334:89–98. doi: 10.1016/j.cej.2017.10.033.
  • He H, Wu MA, Zhu JW, et al. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv Fiber Mater. 2022;4(2):305–317. doi: 10.1007/s42765-021-00112-9.
  • Yu DG, Gong W, Zhou J, et al. Engineered shapes using electrohydrodynamic atomization for an improved drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024;16(3):e1964. doi: 10.1002/wnan.1964.
  • Xu L, He H, Du Y, et al. Electrosprayed core (cellulose acetate)-shell (polyvinylpyrrolidone) nanoparticles for smart acetaminophen delivery. Pharmaceutics. 2023;15(9):2314. doi: 10.3390/pharmaceutics15092314.
  • Zhu Y, Zhang C, Liang Y, et al. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers. Biomater Sci. 2024;12(7):1643–1661. doi: 10.1039/d3bm02038j.
  • Duan H, Chen HN, Chen R, et al. A novel electrospun nanofiber system with PEGylated paclitaxel nanocrystals enhancing the transmucus permeability and in situ retention for an efficient cervicovaginal cancer therapy. Int J Pharm. 2024;650:123660. doi: 10.1016/j.ijpharm.2023.123660.
  • Wang ML, Ge RL, Zhang FY, et al. Electrospun fibers with blank surface and inner drug gradient for improving sustained release. Biomater Adv. 2023;150:213404. doi: 10.1016/j.bioadv.2023.213404.
  • Jiang X, Zeng Y-E, Li C, et al. Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front Bioeng Biotechnol. 2024;12:1354286. doi: 10.3389/fbioe.2024.1354286.
  • Wen RY, Gao ZH, Luo L, et al. Sandwich-structured electrospun all-fluoropolymer membranes with thermal shut-down function and enhanced electrochemical performance. Nanocomposites. 2022;8(1):64–73. doi: 10.1080/20550324.2022.2057661.
  • Lv H, Liu Y, Zhou J, et al. Efficient piezophotocatalysis of ZnO@PVDF coaxial nanofibers modified with BiVO4 and Ag for the simultaneous generation of H2O2 and removal of pefloxacin and Cr(VI) in water. Chem Eng J. 2024;484:149514. doi: 10.1016/j.cej.2024.149514.
  • Sun L, Zhou JF, Chen YN, et al. A combined electrohydrodynamic atomization method for preparing nanofiber/microparticle hybrid medicines. Front Bioeng Biotechnol. 2023;11:1308004. doi: 10.3389/fbioe.2023.1308004.
  • Wasilewska K, Winnicka K. Ethylcellulose–a pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials. 2019;12(20):3386. doi: 10.3390/ma12203386.
  • Grant JJ, Pillai SC, Perova TS, et al. Electrospun fibres of chitosan/PVP for the effective chemotherapeutic drug delivery of 5-fluorouracil. Chemosensors. 2021;9(4):70. doi: 10.3390/chemosensors9040070.
  • Huang C, Wang M, Yu S, et al. Electrospun fenoprofen/polycaprolactone @ tranexamic acid/hydroxyapatite nanofibers as orthopedic hemostasis dressings. Nanomaterials. 2024;14(7):646. doi: 10.3390/nano14070646.
  • Mostafa AM, Mwafy EA, Awwad NS, et al. Linear and nonlinear optical studies of Ag/Zn/ZnO nanocomposite thin film prepared by pulsed laser deposition technique. Radiat Phys Chem. 2021;179:109233. doi: 10.1016/j.radphyschem.2020.109233.
  • ElFaham MM, Mostafa AM, Mwafy EA. The effect of reaction temperature on structural, optical and electrical properties of tunable ZnO nanoparticles synthesized by hydrothermal method. J Phys Chem Solids. 2021;154:110089. doi: 10.1016/j.jpcs.2021.110089.
  • Mostafa AM. The enhancement of nonlinear absorption of Zn/ZnO thin film by creation oxygen vacancies via infrared laser irradiation and coating with Ag thin film via pulsed laser deposition. J Mol Struct. 2021;1226(B):129407. doi: 10.1016/j.molstruc.2020.129407.
  • Mostafa AM, Mwafy EA, Toghan A. ZnO nanoparticles decorated carbon nanotubes via pulsed laser ablation method for degradation of methylene blue dyes. Colloids Surf A. 2021;627(20):127204. doi: 10.1016/j.colsurfa.2021.127204.
  • Khattab TA, Gabr AM, Mostafa AM, et al. Luminescent plant root: a step toward electricity-free natural lighting plants. J Mol Struct. 2019;1176(15):249–253. doi: 10.1016/j.molstruc.2018.08.101.
  • Mostafa AM, Lotfy VF, Mwafy EA, et al. Influence of coating by Cu and Ag nanoparticles via pulsed laser deposition technique on optical, electrical and mechanical properties of cellulose paper. J Mol Struct. 2020;1203:127472. doi: 10.1016/j.molstruc.2019.127472.
  • Mwafy EA, Mostafa AM. Tailored MWCNTs/SnO2 decorated cellulose nanofiber adsorbent for the removal of Cu (II) from waste water. Radiat Phys Chem. 2020;177:109172. doi: 10.1016/j.radphyschem.2020.109172.
  • El-Messery TM, Mwafy EA, Mostafa AM, et al. Spectroscopic studies of the interaction between isolated polyphenols from coffee and the milk proteins. Surf Interfaces. 2020;20:100558. doi: 10.1016/j.surfin.2020.100558.
  • Darwish WM, Darwish AM, Al-Ashkar EA. Synthesis and nonlinear optical properties of a novel indium phthalocyanine highly branched polymer. Polym Adv Technol. 2015;26(8):1014–1019. doi: 10.1002/pat.3520.
  • Darwish WM, Darwish AM, Al-Ashkar EA. Indium(III) phthalocyanine eka-conjugated polymer as high-performance optical limiter upon nanosecond laser irradiation. High Perform Polym. 2016;28(6):651–659. doi: 10.1177/0954008315593616.
  • Lv Q, Ma X, Zhang C, et al. Nanocellulose-based nanogenerators for sensor applications: a review. Int J Biolog Macromol. 2024;259:129268.
  • Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–111.
  • Zhang X, Shi XT, Gautrot JE, et al. Nanoengineered electrospun fibers and their biomedical applications: a review. Nanocomposites. 2021;7(1):1–34. doi: 10.1080/20550324.2020.1857121.
  • Chen XJ, Yan S, Wen SS, et al. Chelating adsorption-engaged synthesis of ultrafine iridium nanoparticles anchored on N-doped carbon nanofibers toward highly efficient hydrogen evolution in both alkaline and acidic media. J Colloid Interface Sci. 2023;641:782–790. doi: 10.1016/j.jcis.2023.03.097.
  • Song N, Ren SY, Zhang Y, et al. Confinement of Prussian blue analogs boxes inside conducting polymer nanotubes enables significantly enhanced catalytic performance for water treatment. Adv Funct Mater. 2022;32(34):2204751. doi: 10.1002/adfm.20220475.
  • Ejeta F, Gabriel T, Joseph NM, et al. Formulation, optimization and in vitro evaluation of fast disintegrating tablets of salbutamol sulphate using a combination of superdisintegrant and subliming agent. Curr Drug Deliv. 2022;19(1):129–141. doi: 10.2174/1567201818666210614094646.
  • Lang Y, Wang B, Chang M-W, et al. Sandwich-structured electrospun pH-responsive dental pastes for anti-caries. Colloids Surf A. 2023;668:131399. doi: 10.1016/j.colsurfa.2023.131399.
  • Xu JQ, Zhong MX, Song N, et al. General synthesis of Pt and Ni co-doped porous carbon nanofibers to boost HER performance in both acidic and alkaline solutions. Chin Chem Lett. 2022;34(2):107359. doi: 10.1016/j.cclet.2022.03.082.
  • Ji D, Lin Y, Guo X, et al. Electrospinning of nanofibres. Nat Rev Method Primers. 2024;4:1. doi: 10.1038/s43586-023-00278-z.
  • Yan S, Qian Y, Haghayegh M, et al. Electrospun organic/inorganic hybrid nanofibers for accelerating wound healing: a review. J Mater Chem B. 2024;12(13):3171–3190. doi: 10.1039/D4TB00149D.
  • Riaz Z, Baddi S, Gao FL, et al. Gallic acid-doped multifunctional hybrid hydrogel for antioxidant and antibacterial studies. Euro Polym J. 2024;206:112778. doi: 10.1016/j.eurpolymj.2024.112778.
  • Zhang Y, Tang Y, Liao Q, et al. Silver oxide decorated urchin-like microporous organic polymer composites as versatile antibacterial organic coating materials. J Mater Chem B. 2024;12(8):2054–2069. doi: 10.1039/D3TB02619A.
  • Shi Y, Zhang Y, Zhu L, et al. Tailored drug delivery platforms: stimulus-responsive core–shell structured nanocarriers. Adv Healthc Mater. 2024;13(1):2301726. doi: 10.1002/adhm.202301726.
  • Zhang X, Yu N, Ren Q, et al. Janus nanofiber membranes with photothermal-enhanced biofluid drainage and sterilization for diabetic wounds. Adv Funct Mater. 2024;34:2315020. doi: 10.1002/adfm.202315020.