55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Harnessing photocurrent enhancement in silver-bacterial cellulose nanocomposite for ultra-sensitive Hg2+ electrochemical detection

, , , , , , & ORCID Icon show all
Pages 227-240 | Received 05 Jan 2024, Accepted 27 May 2024, Published online: 17 Jun 2024

References

  • Sheikhzadeh E, Naji-Tabasi S, Verdian A, et al. Equipment-free and visual detection of Pb2+ ion based on curcumin-modified bacterial cellulose nanofiber. J Iran Chem Soc. 2022;19(1):283–290. doi: 10.1007/s13738-021-02305-w.
  • Souza-Araujo J, Giarrizzo T, Lima MO, et al. Mercury and methyl mercury in fishes from bacajá river (Brazilian amazon): evidence for bioaccumulation and biomagnification. J Fish Biol. 2016;89(1):249–263. doi: 10.1111/jfb.13027.
  • Anderson C, Kath H, Colquhoun D. 4P-0951 recommended fish intake is potentially dangerous due to high methylmercury content of certain fish. Atheroscler Suppl. 2003;4(2):283. doi: 10.1016/S1567-5688(03)91209-8.
  • Lisha, K. P., Pradeep, T., Anshup. Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles.Gold Bull. 2009;42(2):144–152. doi: 10.1007/BF03214924.
  • Xu X, Yang S, Wang Y, et al. Nanomaterial-based sensors and strategies for heavy metal ion detection. Green Anal Chem. 2022;2:100020. doi: 10.1016/j.greeac.2022.100020.
  • CD-ROM. 7472-2 Revision 0. 1996. https://www.epa.gov/sites/default/files/2015-12/documents/7472.pdf
  • Aralekallu S, Palanna M, Hadimani S, et al. Biologically inspired catalyst for electrochemical reduction of hazardous hexavalent chromium. Dalton Trans. 2020;49(42):15061–15071. doi: 10.1039/d0dt02752a.
  • Zhou L, Xiong W, Liu S. Preparation of a gold electrode modified with Au–TiO2 nanoparticles as an electrochemical sensor for the detection of mercury(II) ions. J Mater Sci. 2014;50(2):769–776. doi: 10.1007/s10853-014-8636-y.
  • Anshori I, Nuraviana Rizalputri L, Rona Althof R, et al. Functionalized multi-walled carbon nanotube/silver nanoparticle (f-MWCNT/AgNP) nanocomposites as non-enzymatic electrochemical biosensors for dopamine detection. Nanocomposites. 2021;7(1):97–108. doi: 10.1080/20550324.2021.1948242.
  • Demir E, İnam O, İnam R. Determination of ophthalmic drug proparacaine using multi-walled carbon nanotube paste electrode by square wave stripping voltammetry. Anal Sci. 2018;34(7):771–776. doi: 10.2116/analsci.17P589.
  • Langari MM, Antxustegi MM, Labidi J. Nanocellulose-based sensing platforms for heavy metal ions detection: a comprehensive review. Chemosphere. 2022;302:134823. doi: 10.1016/j.chemosphere.2022.134823.
  • Czaja W, Romanovicz D, Brown R M Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose. 2004;11(3/4):403–411. doi: 10.1023/b:cell.0000046412.11983.61.
  • Watanabe K, Tabuchi M, Morinaga Y, et al. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose. 1998;5(3):187–200. doi: 10.1023/A:1009272904582.
  • Kim DY, Nishiyama Y, Kuga S. Surface acetylation of bacterial cellulose. Cellulose. 2002;9(3/4):361–367. doi: 10.1023/A:1021140726936.
  • Panaitescu DM, Frone AN, Chiulan I, et al. Structural and morphological characterization of bacterial cellulose nano-reinforcements prepared by mechanical route. Mater Des. 2016;110:790–801. doi: 10.1016/j.matdes.2016.08.052.
  • Wang P, Wang M, Zhou F, et al. Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection. Electrochem Commun. 2017;81:74–78. doi: 10.1016/j.elecom.2017.06.006.
  • Cinti S, Basso M, Moscone D, et al. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal Chim Acta. 2017;960:123–130. doi: 10.1016/j.aca.2017.01.010.
  • D’Halluin M, Rull-Barrull J, Bretel G, et al. Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sustainable Chem Eng. 2017;5(2):1965–1973. doi: 10.1021/acssuschemeng.6b02768.
  • Aravind A, Sebastian M, Mathew B. Green synthesized unmodified silver nanoparticles as a multi-sensor for Cr(iii) ions. Environ Sci. 2018;4(10):1531–1542. doi: 10.1039/C8EW00374B.
  • El-Raheem HA, Hassan RYA, Khaled R, et al. New sensing platform of poly(ester-urethane)urea doped with gold nanoparticles for rapid detection of mercury ions in fish tissue. RSC Adv. 2021;11(50):31845–31854. doi: 10.1039/d1ra03693a.
  • Chang BY, Park SM. Electrochemical impedance spectroscopy. Annu Rev Anal Chem. 2010;3(1):207–229. doi: 10.1146/annurev.anchem.012809.102211.
  • Yousf N, Ouda E, Magar HS, et al. Synthesis, characterization, and electrochemical sensing applications of bimetallic oxide/carbon nanomaterials hybrids. J Electrochem Soc. 2022;169(4):047518. doi: 10.1149/1945-7111/ac6458.
  • García-Miranda Ferrari A, Rowley-Neale SJ, Banks CE. Screen-printed electrodes: transitioning the laboratory in-to-the field. Talanta Open. 2021;3:100032. doi: 10.1016/j.talo.2021.100032.
  • Qin Y, Ji X, Jing J, et al. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf A Physicochem Eng Asp. 2010;372(1-3):172–176. doi: 10.1016/j.colsurfa.2010.10.013.
  • Aravind A, Sebastian M, Mathew B. Green silver nanoparticles as a multifunctional sensor for toxic cd(ii) ions. New J Chem. 2018;42(18):15022–15031. doi: 10.1039/C8NJ03696A.
  • Acer S, Demir E, İnam R. Square wave voltammetric determination of pencycuron fungicide and application to commercial formulation. Food Measure. 2020;14(4):2099–2107. doi: 10.1007/s11694-020-00457-6.
  • Palanna M, Aralekallu S, Keshavananda Prabhu CP, Sajjan VA, Mounesh, Sannegowda LK. Nanomolar detection of mercury(II) using electropolymerized phthalocyanine film. Electrochim Acta. 2021;367:137519. doi: 10.1016/j.electacta.2020.137519.
  • Kumbhar JV, Rajwade JM, Paknikar KM. Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol. 2015;99(16):6677–6691. doi: 10.1007/s00253-015-6644-8.
  • Arserim-Uçar DK, Korel F, Liu LS, et al. Characterization of bacterial cellulose nanocrystals: effect of acid treatments and neutralization. Food Chem. 2021;336:127597. doi: 10.1016/j.foodchem.2020.127597.
  • Khan H, Kadam A, Dutt D. Studies on bacterial cellulose produced by a novel strain of lactobacillus genus. Carbohydr Polym. 2020;229:115513. doi: 10.1016/j.carbpol.2019.115513.
  • Pandey P, Deshpande P, Shirolkar MM, et al. Augmented Listeria monocytogenes biofilm architecture disruption and synergistic effect of antibiotics on bacterial species by biosynthesized silver nanoparticles. ChemistrySelect. 2021;6(8):1782–1786. doi: 10.1002/slct.202004687.
  • Chekin F, Ghasemi S. Silver nanoparticles prepared in presence of ascorbic acid and gelatin, and their electrocatalytic application. Bull Mater Sci. 2014;37(6):1433–1437. doi: 10.1007/s12034-014-0093-3.
  • Srivastava P, Lakshmi GBVS, Sri S, et al. Potential of electrospun cellulose acetate nanofiber mat integrated with silver nanoparticles from azadirachta indica as antimicrobial agent. J Polym Res. 2020;27(11):350. doi: 10.1007/s10965-020-02308-w.
  • Song S, Liu Z, Abubaker MA, et al. Antibacterial polyvinyl alcohol/bacterial cellulose/nano-silver hydrogels that effectively promote wound healing. Mater Sci Eng C Mater Biol Appl. 2021;126:112171. doi: 10.1016/j.msec.2021.112171.
  • Gómez Ruiz B, Roux S, Courtois F, et al. Spectrophotometric method for fast quantification of ascorbic acid and dehydroascorbic acid in simple matrix for kinetics measurements. Food Chem. 2016;211:583–589. doi: 10.1016/j.foodchem.2016.05.107.
  • Audtarat S, Hongsachart P, Dasri T, et al. Green synthesis of silver nanoparticles loaded into bacterial cellulose for antimicrobial application. Nanocomposites. 2022;8(1):34–46. doi: 10.1080/20550324.2022.2055375.
  • Ghosh S, Mondal A. Aggregation chemistry of green silver nanoparticles for sensing of Hg2+ and Cd2+ ions. Colloids Surf A Physicochem Eng Asp. 2020;605:125335. doi: 10.1016/j.colsurfa.2020.125335.
  • Ito H, Sakata M, Hongo C, et al. Cellulose nanofiber nanocomposites with aligned silver nanoparticles. Nanocomposites. 2018;4(4):167–177. doi: 10.1080/20550324.2018.1556912.
  • Zhang H, Zou G, Liu L, et al. Synthesis of silver nanoparticles using large-area arc discharge and its application in electronic packaging. J Mater Sci. 2017;52(6):3375–3387. doi: 10.1007/s10853-016-0626-9.
  • Rameshkumar P, Manivannan S, Ramaraj R. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions. J Nanopart Res. 2013;15(5):1639. doi: 10.1007/s11051-013-1639-9.
  • Suherman AL, Ngamchuea K, Tanner EEL, et al. Electrochemical detection of ultratrace (picomolar) levels of Hg2+ using a silver nanoparticle-modified glassy carbon electrode. Anal Chem. 2017;89(13):7166–7173. doi: 10.1021/acs.analchem.7b01304.
  • Shtepliuk I, Vagin M, Yakimova R. Insights into the electrochemical behavior of mercury on graphene/SiC electrodes.C. 2019;5(3):51. doi: 10.3390/c5030051.
  • Ivanišević I. The role of silver nanoparticles in electrochemical sensors for aquatic environmental analysis. Sensors. 2023;23(7):3692. doi: 10.3390/s23073692.
  • Jeong NC, Prasittichai C, Hupp JT. Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells. Langmuir. 2011;27(23):14609–14614. doi: 10.1021/la203557f.
  • Liu Y, Liu CH, Debnath T, et al. Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution. Nat Commun. 2023;14(1):541. doi: 10.1038/s41467-023-35981-8.
  • Moh SH, Kulkarni A, San BH, et al. Photocurrent enhancement of SiNW-FETs by integrating protein-shelled CdSe quantum dots. Nanoscale. 2016;8(4):1921–1925. doi: 10.1039/c5nr07901b.
  • Ayhan ME, Kalita G, Kondo M, et al. Photoresponsivity of silver nanoparticles decorated graphene-silicon Schottky junction. RSC Adv. 2014;4(51):26866–26871. doi: 10.1039/C4RA02867H.
  • Yu H, Qu L, Zhang M, et al. Achieving high responsivity of photoelectrochemical solar-blind ultraviolet photodetectors via oxygen vacancy engineering. Adv Opt Mater. 2023;11(4):2202341. doi: 10.1002/adom.202202341.
  • Linnet J, Walther AR, Albrektsen O, et al. Enhanced photoresponsivity in organic field effect transistors by silver nanoparticles. Org Electron. 2017;46:270–275. doi: 10.1016/j.orgel.2017.04.019.
  • Shakeel S, Talpur FN, Anwar N, et al. Xanthan gum-mediated silver nanoparticles for ultrasensitive electrochemical detection of Hg2+ ions from water. Catalysts. 2023;13(1):208. doi: 10.3390/catal13010208.
  • Xu D, Yu S, Yin Y, et al. Sensitive colorimetric Hg2+ detection via amalgamation-mediated shape transition of gold nanostars. Front Chem. 2018;6:566. doi: 10.3389/fchem.2018.00566.
  • Nguyen TTK, Luu HT, Vu LD, et al. Determination of total mercury in solid samples by anodic stripping voltammetry. J Chem. 2021;2021:1–8. doi: 10.1155/2021/8888879.