1,774
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Use of experimental design to obtain polymeric microfibers with carbon nanotubes

, , , , , , ORCID Icon, & show all

References

  • Chang W-M, Wang C-C, Chen C-Y. The combination of electrospinning and forcespinning: Effects on a viscoelastic jet and a single nanofiber. Chem Eng J. 2014;244:540–551.
  • Khalf A, Madihally SV. Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm. 2017;112:1–17.
  • Formhals Anton. Process and apparatus for preparing artificial threads. U.S. Patent n. 1,975,504, 2 out. 1934.
  • Formhals Anton. Method of producing artificial fibers, 1937.
  • Formhals Anton. Method of producing artificial fibers. U.S. Patent n. 2,158,415, 16 maio 1939.
  • Formhals Anton. Production of artificial fibers from fiber forming liquids, 1940.
  • Formhals Anton. Production of artificial fibers from fiber forming liquids. U.S. Patent n. 2,323,025, 29 jun. 1943.
  • Formhals Anton. Method and apparatus for spinning. U.S. Patent n. 2,349,950, 30 maio 1944.
  • Costa RGF, Oliveira JE, de Paula G. d, et al. Eletrofiação de polímeros em solução: parte II: aplicações e perspectivas. Polímeros. 2012;22(2):178–185.
  • Sheikh FA, Macossay J, Cantu T, et al. Imaging, spectroscopy, mechanical, alignment and biocompatibility studies of electrospun medical grade polyurethane (Carbothane™ 3575A) nanofibers and composite nanofibers containing multiwalled carbon nanotubes. J Mech Behav Biomed Mater. 2015;41:189–198.
  • Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer (Guildf). 2008;49(10):2387–2425.
  • Pal DB, Singh P, Mishra PK. Composite ceria nanofiber with different copper loading using electrospinning method. J Alloys Compd. 2017;694:10–16.
  • Ren L-F, Xia F, Shao J, et al. Experimental investigation of the effect of electrospinning parameters on properties of superhydrophobic PDMS/PMMA membrane and its application in membrane distillation. Desalination. 2017;404:155–166.
  • Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–1170.
  • Alfaro De Prá MA, Ribeiro-do-Valle RM, Maraschin M, et al. Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Mater Lett. 2017;193:154–157.
  • Garg K, Bowlin GL. Electrospinning jets and nanofibrous structures. Biomicrofluidics. 2011;5(1):13403.
  • Asiabi M, Mehdinia A, Jabbari A. Preparation of water stable methyl-modified metal-organic framework-5/polyacrylonitrile composite nanofibers via electrospinning and their application for solid-phase extraction of two estrogenic drugs in urine samples. J Chromatogr A. 2015;1426:24–32.
  • Hosseini SR, Ghasemi S, Kamali-Rousta M. Preparation of CuO/NiO composite nanofibers by electrospinning and their application for electro-catalytic oxidation of hydrazine. J Power Sources. 2017;343:467–476.
  • Burke L, Mortimer CJ, Curtis DJ, et al. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):512–519.
  • Kitsara M, Agbulut O, Kontziampasis D, et al. Fibers for hearts: a critical review on electrospinning for cardiac tissue engineering. Acta Biomater. 2017;48:20–40.
  • Ahmed FE, Lalia BS, Hashaikeh R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination. 2015;356:15–30.
  • Navarro-Pardo F, Martinez-Hernandez AL, Velasco-Santos C. Carbon nanotube and graphene based polyamide electrospun nanocomposites: a review. J Nanomater. 2016;2016:1–16.
  • Rezaei B, Ghani M, Shoushtari AM, et al. Electrochemical biosensors based on nanofibres for cardiac biomarker detection: a comprehensive review. Biosens Bioelectron. 2016;78:513–523.
  • Rosenberger AG, Dragunski DC, Muniz EC, et al. Electrospinning in the preparation of an electrochemical sensor based on carbon nanotubes. J Mol Liq. 2020;298:112068.
  • Da Silva HA, Da Silva MB. Aplicação de um projeto de experimentos (DOE) na soldagem de tubos de zircaloy-4. Revista P&E. 2016;1(1):41.
  • Hibbert DB. Experimental design in chromatography: a tutorial review. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;910:2–13.
  • Dong Y, Bickford T, Haroosh HJ, et al. Multi-response analysis in the material characterisation of electrospun poly (lactic acid)/halloysite nanotube composite fibres based on Taguchi design of experiments: fibre diameter, non-intercalation and nucleation effects. Appl Phys A. 2013;112(3):747–757.
  • Mohammad Khanlou H, Chin Ang B, Talebian S, et al. Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the Taguchi design of experiments. Text Res J. 2015;85(4):356–368.
  • Seyedmahmoud R, Rainer A, Mozetic P, et al. A primer of statistical methods for correlating parameters and properties of electrospun poly(L-lactide) scaffolds for tissue engineering-PART 1: design of experiments. J Biomed Mater Res A. 2015;103(1):91–102.
  • Simonoska Crcarevska M, Dimitrovska A, Sibinovska N, et al. Implementation of quality by design principles in the development of microsponges as drug delivery carriers: identification and optimization of critical factors using multivariate statistical analyses and design of experiments studies. Int J Pharm. 2015;489(1-2):58–72.
  • Xie G, Chen Z, Ramakrishna S, et al. Orthogonal design preparation of phenolic fiber by melt electrospinning. J Appl Polym Sci. 2015;132(38):42574–42578.
  • Borrotti M, Lanzarone E, Manganini F, et al. Defect minimization and feature control in electrospinning through design of experiments. J Appl Polym Sci. 2017;134: 44740–44750.
  • Gunst RF, Mason RL. Fractional factorial design. Wiley Interdiscip Rev Comput Stat. 2009;1(2):234–244. doi:10.1002/wics.27.
  • Kim B, Sigmund WM. Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir. 2004;20(19):8239–8242.
  • Li J, He W-D, Yang L-P, et al. Preparation of multi-walled carbon nanotubes grafted with synthetic poly(l-lysine) through surface-initiated ring-opening polymerization. Polymer (Guildf). 2007;48(15):4352–4360.
  • Rahmatpour A, Kaffashi B, Maghami S. Preparation and rheological properties of functionalized multiwalled carbon nanotube/waterborne polyurethane nanocomposites. J Macromol Sci Part B Phys. 2011;50(9):1834–1846.
  • Talaei Z, Mahjoub AR, Rashidi A, Morad, et al. The effect of functionalized group concentration on the stability and thermal conductivity of carbon nanotube fluid as heat transfer media. Int Commun Heat Mass Transf. 2011;38(4):513–517.
  • Gómez S, Rendtorff NM, Aglietti EF, et al. Intensity of sulfonitric treatment on multiwall carbon nanotubes. Chem Phys Lett. 2017;689:135–141.
  • Gómez S, Rendtorff NM, Aglietti EF, et al. Surface modification of multiwall carbon nanotubes by sulfonitric treatment. Appl Surf Sci. 2016;379:264–269.
  • Ramaseshan R, Sundarrajan S, Jose R, et al. Nanostructured ceramics by electrospinning. J Appl Phys. 2007;102(11):111101.
  • Saligheh O, Arasteh R, Forouharshad M, et al. Poly(butylene terephthalate)/single wall carbon nanotubes composite nanofibers by electrospinning. J Macromol Sci Part B. 2011;50(6):1031–1041.
  • Chen H, Liu Z, Cebe P. Chain confinement in electrospun nanofibers of PET with carbon nanotubes. Polymer (Guildf). 2009;50(3):872–880.
  • Ra EJ, An KH, Kim KK, et al. Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett. 2005;413(1-3):188–193.
  • Naebe M, Lin T, Tian W, et al. Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres. Nanotechnology. 2007;18(22):225605.
  • Lee C-R, Chen L-J. Polyvinylbutyral assisted synthesis and characterization of kesterite quaternary semiconductor Cu2ZnSnSe4 nanofibers by electrospinning route. Sol Energy Mater Sol Cells. 2016;151:24–29.
  • Liu H, Hsieh Y-L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys. 2002;40(18):2119–2129.
  • Rodrigues BVM, Silva AS, Melo GFS, et al. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. Mater Sci Eng C Mater Biol Appl. 2016;59:782–791.
  • Bounioux C, Avrahami R, Vasilyev G, et al. Single-step electrospinning of multi walled carbon nanotubes – poly(3-octylthiophene) hybrid nano-fibers. Polymer (Guildf). 2016;86:15–21.
  • Schneider R, Mercante LA, Andre RS, et al. Biocompatible electrospun nanofibers containing cloxacillin: antibacterial activity and effect of pH on the release profile. React Funct Polym. 2018;132:26–35.
  • Yuan H, Zhou Q, Zhang Y. 2017. Improving fiber alignment during electrospinning. In: Electrospun Nanofibers. China: Elsevier Ltd; p. 125–147.
  • Cañete-Rosales P, Ortega V, Álvarez-Lueje A, et al. Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties. Electrochim Acta. 2012;62:163–171.
  • De Volder MFL, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535–339.
  • McCullen SD, Stevens DR, Roberts WA, et al. Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes. Macromolecules. 2007;40(4):997–1003.
  • Baji A, Mai YW, Abtahi M, et al. Microstructure development in electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence on tensile strength and dielectric permittivity. Compos Sci Technol. 2013;88:1–8.
  • Tijing LD, Park C-H, Choi WL, et al. Characterization and mechanical performance comparison of multiwalled carbon nanotube/polyurethane composites fabricated by electrospinning and solution casting. Compos Part B Eng. 2013;44(1):613–619.
  • Wang W, Ciselli P, Kuznetsov E, et al. Effective reinforcement in carbon nanotube–polymer composites. Philos Trans R Soc Lond A Math Phys Eng Sci. 2008;366: 1613–1626.
  • Wang S-H, Wan Y, Sun B, et al. Mechanical and electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector. Nanoscale Res Lett. 2014;9(1):522.
  • Grabbert N, Wang B, Avnon A, et al. Mechanical properties of individual composite poly(methyl-methacrylate)-multiwalled carbon nanotubes nanofibers. IOP Conf Ser Mater Sci Eng. 2014;64:012005.
  • Assis OBG. Alteração do caráter hidrofílico de filmes de quitosana por tratamento de plasma de HMDS. Quím Nova. 2010;33(3):603–606.
  • Goyanes S, Rubiolo GR, Salazar A, et al. Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diam Relat Mater. 2007;16(2):412–417.
  • Manesh KM, Kim HT, Santhosh P, et al. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Biosens Bioelectron. 2008;23(6):771–779.
  • Chen Y, Lu Z, Zhou L, et al. Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries. Energy Environ Sci. 2012;5(7):7898.
  • Zussman E, Yarin AL, Bazilevsky AV, et al. Electrospun polyaniline/poly(methyl methacrylate)-derived turbostratic carbon micro-/nanotubes. Adv Mater. 2006;18(3):348–353.
  • Wang Z-G, Xu Z-K, Wan L-S, et al. Nanofibrous membranes containing carbon nanotubes: electrospun for redox enzyme immobilization. Macromol Rapid Commun. 2006;27(7):516–521.
  • Mei F, Zhong J, Yang X, et al. Improved biological characteristics of poly(L-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules. 2007;8(12):3729–3735.
  • Im JS, Bai BC, Lee Y-S. The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system. Biomaterials. 2010;31(6):1414–1419.
  • Yang L, Leung WW-F. Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells. Adv Mater Weinheim. 2013;25(12):1792–1795.