149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing the compatibility of low-value multilayer plastic waste in bitumen mixtures using atmospheric cold plasma and thermal oxidation

ORCID Icon, , , &
Article: 2375929 | Received 17 Jan 2024, Accepted 30 Jun 2024, Published online: 13 Jul 2024

References

  • Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. Jul. 2017;3(7):e1700782. doi:10.1126/sciadv.1700782.
  • Walker TW, Frelka N, Shen Z, et al. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci Adv. Nov. 2020;6(47):1–9. doi:10.1126/sciadv.aba7599.
  • Namazi H. Polymers in our daily life. Bioimpacts. Jun. 2017;7(2):73–74. doi:10.15171/bi.2017.09.
  • Kaiser K, Schmid M, Schlummer M. Recycling of polymer-based multilayer packaging: a review. Recycling. Dec. 2017;3(1):1. doi:10.3390/recycling3010001.
  • Jambeck JR, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean. Science. Feb. 2015;347(6223):768–771. doi:10.1126/science.1260352.
  • Lebreton LCM, van der Zwet J, Damsteeg J-W, et al. River plastic emissions to the world’s oceans. Nat Commun. Jun. 2017;8(1):15611. doi:10.1038/ncomms15611.
  • Soares C, Ek M, Östmark E, et al. Recycling of multi-material multilayer plastic packaging: current trends and future scenarios. Resour Conserv Recycl. Jan. 2022;176:105905. doi:10.1016/j.resconrec.2021.105905.
  • Cabrera G, Li J, Maazouz A, et al. A journey from processing to recycling of multilayer waste films: a review of main challenges and prospects. Polymers (Basel). Jun. 2022;14(12):2319. doi:10.3390/polym14122319.
  • Eriksson O, Finnveden G. Plastic waste as a fuel - CO2-neutral or not? Energy Environ Sci. 2009;2(9):907. doi:10.1039/b908135f.
  • Hınıslıoglu S. Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Mater Lett. Jan. 2004;58(3–4):267–271. doi:10.1016/S0167-577X(03)00458-0.
  • Brasileiro L, Moreno-Navarro F, Tauste-Martínez R, et al. Reclaimed polymers as asphalt binder modifiers for more sustainable roads: a review. Sustainability. Jan. 2019;11(3):646. doi:10.3390/su11030646.
  • Zhu J, Birgisson B, Kringos N. Polymer modification of bitumen: advances and challenges. Eur Polym J. May 2014;54:18–38. doi:10.1016/j.eurpolymj.2014.02.005.
  • Appiah JK, Berko-Boateng VN, Tagbor TA. Use of waste plastic materials for road construction in Ghana. Case Stud Constr Mater. Jun. 2017;6:1–7. doi:10.1016/j.cscm.2016.11.001.
  • Polacco G, Filippi S, Merusi F, et al. A review of the fundamentals of polymer-modified asphalts: asphalt/polymer interactions and principles of compatibility. Adv Colloid Interface Sci. Oct. 2015;224:72–112. doi:10.1016/j.cis.2015.07.010.
  • Pyshyev S, Gunka V, Grytsenko Y, et al. Polymer modified bitumen: review. Chem Technol. Dec. 2016;10(4s):631–636. doi:10.23939/chcht10.04si.631.
  • McNally T. Introduction to polymer modified bitumen (PMB). In: Polymer modified bitumen. Sawston, Woodhead Publishing; 2011, pp. 1–21. doi:10.1533/9780857093721.1.
  • Ahmedzade P, Demirelli K, Günay T, et al. Effects of waste polypropylene additive on the properties of bituminous binder. Procedia Manuf. 2015;2:165–170. doi:10.1016/j.promfg.2015.07.029.
  • Soenen H, Lu X, Laukkanen O-V. Oxidation of bitumen: molecular characterization and influence on rheological properties. Rheol Acta. Apr. 2016;55(4):315–326. doi:10.1007/s00397-016-0919-6.
  • Polacco G, Stastna J, Biondi D, et al. Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Curr Opin Colloid Interface Sci. Oct. 2006;11(4):230–245. doi:10.1016/j.cocis.2006.09.001.
  • Brasileiro LL, Moreno-Navarro F, Martínez RT, et al. Study of the feasibility of producing modified asphalt bitumens using flakes made from recycled polymers. Constr Build Mater. May 2019;208:269–282. doi:10.1016/j.conbuildmat.2019.02.095.
  • Bulatović VO, Rek V, Marković KJ. Polymer modified bitumen. Mater Res Innovations. Feb. 2012;16(1):1–6. doi:10.1179/1433075X11Y.0000000021.
  • Tapkın S. The effect of polypropylene fibers on asphalt performance. Build Environ. Jun. 2008;43(6):1065–1071. doi:10.1016/j.buildenv.2007.02.011.
  • Roziafanto AN, Alfarisi FH, Ramadhan TH, et al. Preliminary study of modified lignin compatibility in polypropylene‐modified bitumen. Macromol Symp. Jun. 2020;391(1):1900158. doi:10.1002/masy.201900158.
  • Gaol CSAL, Priyono B, Chalid M, et al. The effect of multilayer plastic waste addition to polymer modified bitumen characteristics. OISAA J Indones Emas. Jan. 2023;6(1):57–64. doi:10.52162/jie.2023.006.01.7.
  • Nizamuddin S, Jamal M, Gravina R, et al. Recycled plastic as bitumen modifier: the role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. J Clean Prod. Sep. 2020;266:121988. doi:10.1016/j.jclepro.2020.121988.
  • Nugraha AF, Naindraputra AJ, Gaol CSAL, et al. Polypropylene-based multilayer plastic waste utilization on bitumen modification for hot-mixed asphalt application: preliminary study. J Appl Sci Eng Technol Educ. Nov. 2022;4(2):157–166. doi:10.35877/454RI.asci1119.
  • Yuanita E, Hendrasetyawan BE, Firdaus DF, et al. Improvement of polypropylene (PP)-modified bitumen through lignin addition. IOP Conf Ser: Mater Sci Eng. Jul. 2017;223:012028. doi:10.1088/1757-899X/223/1/012028.
  • Thibodeaux N, Guerrero DE, Lopez JL, et al. Effect of cold plasma treatment of polymer fibers on the mechanical behavior of fiber-reinforced cementitious composites. Fibers. Oct. 2021;9(10):62. doi:10.3390/fib9100062.
  • Bauer MG, Reithmeir R, Lutz TM, et al. Wetting behavior and stability of surface‐modified polyurethane materials. Plasma Processes Polymers. Nov. 2021;18(11):2100126. doi:10.1002/ppap.202100126.
  • Scheller J, Brenner T, Ott M, et al. Release properties of plasma polymeric coated polymer films and adhesive strength of transferred polyurethane coatings to fiber-reinforced thermosets. Adv Manuf: Polym Compos Sci. Jan. 2022;8(1):11–21. doi:10.1080/20550340.2022.2033539.
  • Friedrich J, Jabłońska M, Hidde G. Plasma oxidation of polyolefins - course of O/C ratio from unmodified bulk to surface and finally to CO2 in the gas phase: a critical review. Rev Adhes Adhesives. Sep. 2019;7(3):233–257. doi:10.7569/RAA.2019.097309.
  • Dorai R, Kushner MJ. A model for plasma modification of polypropylene using atmospheric pressure discharges. J Phys D: Appl Phys. 2003;36(6):666–685. http://iopscience.iop.org/0022-3727/36/6/309 doi:10.1088/0022-3727/36/6/309.
  • Kehrer M, Duchoslav J, Hinterreiter A, et al. Surface functionalization of polypropylene using a cold atmospheric pressure plasma jet with gas water mixtures. Surf Coat Technol. Feb. 2020;384:125170. doi:10.1016/j.surfcoat.2019.125170.
  • Oehr C, Hegemann D, Liehr M, et al. Cost structure and resource efficiency of plasma processes. Plasma Processes Polymers. Oct. 2022;19(10):2200022. doi:10.1002/ppap.202200022.
  • Khanam PN, AlMaadeed MAA. Processing and characterization of polyethylene-based composites. Adv Manuf: Polymer Compos Sci. Apr. 2015;1(2):63–79. doi:10.1179/2055035915Y.0000000002.
  • Cui N-Y, Brown NMD. Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. Appl Surf Sci. Apr. 2002;189(1–2):31–38. doi:10.1016/S0169-4332(01)01035-2.
  • Mandolfino C. Polypropylene surface modification by low pressure plasma to increase adhesive bonding: effect of process parameters. Surf Coat Technol. May 2019;366:331–337. doi:10.1016/j.surfcoat.2019.03.047.
  • Polito J, Denning M, Stewart R, et al. Atmospheric pressure plasma functionalization of polystyrene. J Vac Sci Technol A. Jul. 2022;40(4):043001. doi:10.1116/6.0001850.
  • Carrino L, Polini W, Sorrentino L. Ageing time of wettability on polypropylene surfaces processed by cold plasma. J Mater Process Technol. Nov. 2004;153–154:519–525. doi:10.1016/j.jmatprotec.2004.04.134.
  • Strobel M, Lyons CS. The role of low-molecular-weight oxidized materials in the adhesion properties of corona-treated polypropylene film. J Adhesion Sci Technol. 2003;17(1):15–23. doi:10.1163/15685610360472411.
  • Akishev Y, Grushin M, Dyatko N, et al. Studies on cold plasma–polymer surface interaction by example of PP- and PET-films. J Phys D: Appl Phys. Dec. 2008;41(23):235203. doi:10.1088/0022-3727/41/23/235203.
  • Strobel M, Kirk SM, Heinzen L, et al. Contact angle measurements on oxidized polymer surfaces containing water-soluble species. J Adhes Sci Technol. Jul. 2015;29(14):1483–1507. doi:10.1080/01694243.2015.1031443.
  • Kehrer M, Rottensteiner A, Hartl W, et al. Cold atmospheric pressure plasma treatment for adhesion improvement on polypropylene surfaces. Surf Coat Technol. Dec. 2020;403:126389. doi:10.1016/j.surfcoat.2020.126389.
  • Setiaji DA, Chalid M, Abuzairi T, et al. Effect of cold plasma treatment on physical properties of multilayer plastics for polymer asphalt applications. PISTON J Tech Eng. Jul. 2022;6(1):1. doi:10.32493/pjte.v6i1.20771.
  • Hoff A, Jacobsson S. Thermal oxidation of polypropylene close to industrial processing conditions. J Appl Polym Sci. Jul. 1982;27(7):2539–2551. doi:10.1002/app.1982.070270723.
  • Hoff A, Jacobsson S. Thermal oxidation of polypropylene in the temperature range of 120–280 °C. J Appl Polym Sci. Feb. 1984;29(2):465–480. doi:10.1002/app.1984.070290203.
  • Morent R, De Geyter N, Leys C, et al. Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces. Surf Interface Anal. Mar. 2008;40(3–4):597–600. doi:10.1002/sia.2619.
  • De Geyter N, Morent R, Leys C. Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy. Surf Interface Anal. Mar. 2008;40(3–4):608–611. doi:10.1002/sia.2611.
  • Du H, Komuro A, Ono R. Quantitative and selective study of the effect of O radicals on polypropylene surface treatment. Plasma Sour Sci Technol. Jul. 2023;32(7):075013. doi:10.1088/1361-6595/ace5d3.
  • Gotoh K, Yasukawa A, Taniguchi K. Water contact angles on poly(ethylene terephthalate) film exposed to atmospheric pressure plasma. J Adhes Sci Technol. Jan. 2011;25(1–3):307–322. doi:10.1163/016942410X511114.
  • Mansergas A, Anglada JM. Reaction mechanism between carbonyl oxide and hydroxyl radical: a theoretical study. J Phys Chem A. Mar. 2006;110(11):4001–4011. doi:10.1021/jp057133x.
  • Gijsman P, Fiorio R. Long term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclability. Polym Degrad Stab. Feb. 2023;208:110260. doi:10.1016/j.polymdegradstab.2023.110260.
  • Achimsky L, Audouin L, Verdu J. Kinetic study of the thermal oxidation of polypropylene. Polym Degrad Stab. Sep. 1997;57(3):231–240. doi:10.1016/S0141-3910(96)00167-X.
  • Yeh P-H, Nien Y-H, Chen J-H, et al. Thermal and rheological properties of maleated polypropylene modified asphalt. Polym Eng Sci. Aug. 2005;45(8):1152–1158. doi:10.1002/pen.20386.
  • Yan K, Xu H, You L. Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene. Constr Build Mater. May 2015;83:143–149. doi:10.1016/j.conbuildmat.2015.02.092.
  • Stastna J, Zanzotto L, Vacin OJ. Viscosity function in polymer-modified asphalts. J Colloid Interface Sci. Mar. 2003;259(1):200–207. doi:10.1016/S0021-9797(02)00197-2.
  • Han Q, Yang Y, Zhang J, et al. Insights into the interfacial strengthening mechanism of waste rubber/cement paste using polyvinyl alcohol: experimental and molecular dynamics study. Cem Concr Compos. Nov. 2020;114:103791. doi:10.1016/j.cemconcomp.2020.103791.
  • Li B, Li Q, Zhu X, et al. Effect of sodium hypochlorite-activated crumb rubber on rheological properties of rubber-modified asphalt. J Mater Civ Eng. Nov. 2020;32(11):1–18. doi:10.1061/(ASCE)MT.1943-5533.0003403.
  • Gibreil HAA, Feng CP. Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt. Constr Build Mater. Jul. 2017;142:101–108. doi:10.1016/j.conbuildmat.2017.03.062.
  • Xiang Y, Fan H, Liu Z. Structural characteristics of silane-modified ground tyre rubber and high-temperature creep property of asphalt rubber. Constr Build Mater. Mar. 2020;236:117600. doi:10.1016/j.conbuildmat.2019.117600.
  • Su H, Yang J, Ghataora GS, et al. Surface modified used rubber tyre aggregates: effect on recycled concrete performance. Mag Concr Res. Jun. 2015;67(12):680–691. doi:10.1680/macr.14.00255.
  • Mousavi M, Fini EH. Preventing emissions of hazardous organic compounds from bituminous composites. J Clean Prod. Apr. 2022;344:131067. doi:10.1016/j.jclepro.2022.131067.
  • Faisal Kabir S, Sukumaran S, Moghtadernejad S, et al. End of life plastics to enhance sustainability of pavement construction utilizing a hybrid treatment of bio-oil and carbon coating. Constr Build Mater. Apr. 2021;278:122444. doi:10.1016/j.conbuildmat.2021.122444.
  • Kabir SF, Mousavi M, Fini EH. Selective adsorption of bio-oils’ molecules onto rubber surface and its effects on stability of rubberized asphalt. J Clean Prod. Apr. 2020;252:119856. doi:10.1016/j.jclepro.2019.119856.
  • Zhou T, Kabir SF, Cao L, et al. Comparing effects of physisorption and chemisorption of bio-oil onto rubber particles in asphalt. J Clean Prod. Nov. 2020;273:123112. doi:10.1016/j.jclepro.2020.123112.
  • Formela K, Hejna A, Zedler L, et al. Microwave treatment in waste rubber recycling – recent advances and limitations. Express Polym. Lett. 2019;13(6):565–588. doi:10.3144/expresspolymlett.2019.48.
  • Hirayama D, Saron C. Chemical modifications in styrene–butadiene rubber after microwave devulcanization. Ind Eng Chem Res. Mar. 2012;51(10):3975–3980. doi:10.1021/ie202077g.
  • Simon DÁ, Pirityi DZ, Bárány T. Devulcanization of ground tire rubber: microwave and thermomechanical approaches. Sci Rep. Oct. 2020;10(1):16587. doi:10.1038/s41598-020-73543-w.
  • Garcia PS, de Sousa FDB, de Lima JA, et al. Devulcanization of ground tire rubber: physical and chemical changes after different microwave exposure times. Express Polym Lett. 2015;9(11):1015–1026. doi:10.3144/expresspolymlett.2015.91.
  • Alawais A, West RP. Ultra-violet and chemical treatment of crumb rubber aggregate in a sustainable concrete mix. J Struct Integrity Maint. Jul. 2019;4(3):144–152. doi:10.1080/24705314.2019.1594603.
  • Kazemi M, Faisal Kabir S, Fini EH. State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resour Conserv Recycl. Nov. 2021;174:105776. doi:10.1016/j.resconrec.2021.105776.
  • Soman S, Hung A, Mardambek K, et al. Role of functionalized polypropylene on chemo-mechanics of ductility-enhanced cement beams. J Mater Civ Eng. Mar. 2024;36(3):1–13. doi:10.1061/JMCEE7.MTENG-16569.
  • Li J, Chen Z, Xiao F, et al. Surface activation of scrap tire crumb rubber to improve compatibility of rubberized asphalt. Resour Conserv Recycl. Jun. 2021;169:105518. doi:10.1016/j.resconrec.2021.105518.
  • Liu H, Wang X, Jia D. Recycling of waste rubber powder by mechano-chemical modification. J Clean Prod. Feb. 2020;245:118716. doi:10.1016/j.jclepro.2019.118716.
  • Dong R, Zhao M, Tang N. Characterization of crumb tire rubber lightly pyrolyzed in waste cooking oil and the properties of its modified bitumen. Constr Build Mater. Jan. 2019;195:10–18. doi:10.1016/j.conbuildmat.2018.11.044.