5,109
Views
12
CrossRef citations to date
0
Altmetric
Review Article

A review of phage mediated antibacterial applications

ORCID Icon, , , , , & show all
Pages 1-20 | Received 19 Aug 2020, Accepted 10 Nov 2020, Published online: 31 Dec 2020

References

  • CDC, Facility Guidance for Control of Carbapenem-resistant Enterobacteriaceae (CRE) 2015.
  • UNAS. Antibiotic resistance in Uganda: situation analysis and recommendations. Uganda National Academy of Science; 2015.
  • Centre for Disease Dynamics Economics and Policy-CDDEP. The state of the world’s antibiotics. Washington DC-New Delhi; 2015.
  • Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. J Infec drug resist. 2015;8: 49.
  • Warnes SL, Highmore CJ, Keevil CW. Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health. 2012 3(6); J MBio.
  • World Health Organization., World health organization estimates of the global burden of foodborne diseases. WHO, Geneva, Switzerland (2015). http://apps.who.int
  • Lewin S, et al. Estimating the burden of disease attributable to unsafe water and lack of sanitation and hygiene in South Africa in 2000. S. Afr Med Journal; 2007;97(8):755–762.
  • Fenwick AJS. Waterborne infectious diseases—could they be consigned to history? 2006;313(5790):1077–1081.
  • Shlaes DM. The perfect storm, in antibiotics. The Netherlands: Springer; 2010. p. 1–7.
  • Guttman B, Raya R, Kutter EJBBA. Basic phage biology. 4 (2005).
  • Abedon S. Bacteriophage clinical use as antibacterial “drugs”: utility and precedent. Microbiol. Spectr. 2017;5:BAD-0003-2016.
  • Kutateladze M, Adamia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. G. Eliava Institute of Bacteriophages. Trends Biotechnol. 2010;28(12):591–595.
  • Silva YJ, et al. Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. 2014;9(12):e114197.
  • Cortés ME, Bonilla JC, Sinisterra RD. Biofilm formation, control and novel strategies for eradication. 2011;2:896–905. %J Sci Against Microbial Pathog Commun Curr Res Technol Adv.
  • Abedon S. Bacteriophages and biofilms: ecology. 2011;557: J Phage Therapy Plaques.
  • Hughes KA, Sutherland IW, Jones M. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. 1998;144(11):3039–3047. V %J Microbio.
  • Wittebole X, De Roock S, Opal S. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. M %J Virulence. 2014;5(1):226–235.
  • Borysowski J, Międzybrodzki R, Górsk A. Phage therapy: current research and applications. Caister Academic Press; 2014.
  • Chan BK, et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. 2018;2018(1):60–66.
  • Kazi M, Annapure US. Bacteriophage biocontrol of foodborne pathogens. J food sci tech. 2016;53(3):1355–1362.
  • Roy B, et al. Biological inactivation of adhering Listeria monocytogenes by listeriaphages and a quaternary ammonium compound. 1993;59(9):2914–2917.
  • Greer G. Effects of phage concentration, bacterial density, and temperature on phage control of beef spoilage. J Food Sci. 1988;53(4):1226–1227.
  • Fischetti VA. Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol. 2010;300(6):357–362.
  • Le TS, et al. Bacteriophages as biological control agents of enteric bacteria contaminating edible oysters. 2018;75(5):611–619.
  • Hudson J, et al. Bacteriophages as biocontrol agents in food. 2005;68(2):426–437.
  • Chatain-LY MH. The factors affecting effectiveness of treatment in phages therapy. 2014;5:51. J Frontiers microbio.
  • Gill J, Abedon STJAF. Bacteriophage ecology and plants. 2003;1–17.
  • Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One. 2011;6(3):e17549.
  • Faruque S, Mekalanos J. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence. 2012;3(7):556–565.
  • McCallin S, et al. Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. 2013;443(2):187–196.
  • Gill JJ, Hyman PJCPB. Phage choice, isolation, and preparation for phage therapy. 2010;11(1):2–14.
  • Hagens S, Loessner MJJCPB. Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. 2010;11(1):58–68.
  • Mahony J, et al. Bacteriophages as biocontrol agents of food pathogens. 2011;22(2):157–163.
  • Jeon J, et al. In vivo application of bacteriophage as a potential therapeutic agent to control OXA-66-like carbapenemase-producing Acinetobacter baumannii strains belonging to sequence type 357. 2016;82(14):4200–4208.
  • Alves DR, et al. A novel bacteriophage cocktail reduces and disperses P seudomonas aeruginosa biofilms under static and flow conditions. J Microbial biotech. 2016;9(1):61–74.
  • Alves D, et al. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. J App Environ Microbio. 2014;80(21):6694–6703.
  • Liu M, et al. Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillusfermentum. 2015;8(1):132.
  • Dalmasso M, Strain R, Neve H, et al. Three new Escherichia coli phages from the human gut show promising potential for phage therapy. PLoS One. 2016;11(6):e0156773. .
  • Carlton RM, Noordman WH, Biswas B, et al. Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol. 2005;43(3):301–312. .
  • Endersen L, Buttimer C, Nevin E, et al. Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula. Int J Food Microbiol. 2017;253:1–11.
  • Jun JW, et al. Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware. 2018;271:33–47.
  • Pereira C, et al. Bacteriophages with potential to inactivate Salmonella Typhimurium: use of single phage suspensions and phage cocktails. 2016;220:179–192.
  • Beims H, et al. Paenibacillus larvae-directed bacteriophage HB10c2 and its application in American foulbrood-affected honey bee larvae. 2015;81(16):5411–5419.
  • Dini C, De Urraza PJ. Isolation and selection of coliphages as potential biocontrol agents of enterohemorrhagic and Shiga toxin-producing E. coli (EHEC and STEC) in cattle. J Appl Microbiol. 2010;109(3):873–887.
  • Ackermann H-W, Tremblay D, Moineau S. Long-term bacteriophage preservation. 2004;38:35e40. WFCC Newsletters.
  • Jończyk E, et al. The influence of external factors on bacteriophages. 2011;56(3):191–200.
  • Vandenheuvel D, Lavigne R, Brüssow H. Bacteriophage therapy: advances in formulation strategies and human clinical trials. Annu Rev Virol. 2015;2(1):599–618.
  • Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance, in advances in applied microbiology. Elsevier; 2010. p. 217–248.
  • Markoishvili K, et al. A novel sustained‐release matrix based on biodegradable poly (ester amide) s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. 2002;41(7):453–458.
  • Jikia D, et al. The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug‐resistant Staphylococcus aureus‐infected local radiation injuries caused by exposure to Sr90. 2005;30(1):23–26.
  • O’flynn G, et al. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157: H7. J Applied Environ Microbio. 2004;70(6):3417–3424.
  • Johnson R, et al. Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. 2008;9(2):201.
  • Abedon S. Phage therapy dosing: the problem(s) with multiplicity of infection (MOI). Bacteriophage. 2016;6(3):e1220348.
  • Bach SJ, et al. Effect of bacteriophage DC22 on Escherichia coli O157: H7 in an artificial rumen system (Rusitec) and inoculated sheep. 2003;52(2):89–101.
  • Majewska J, et al. Oral application of T4 phage induces weak antibody production in the gut and in the blood. 2015;7(8):4783–4799.
  • Chen L-K, et al. Potential of bacteriophage ΦAB2 as an environmental biocontrol agent for the control of multidrug-resistant Acinetobacter baumannii. 2013;13(1):1–10.
  • Sutherland IW, et al. The interaction of phage and biofilms. 2004;232(1):1–6.
  • Kishor C, et al. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Med Res. 2016;143(1):87–94. .
  • Wang Y, et al. Intranasal treatment with bacteriophage rescues mice from Acinetobacter baumannii-mediated pneumonia. 2016;11(5):631–641.
  • Yin S, Huang G, Zhang Y, et al. Phage Abp1 rescues human cells and mice from infection by pan-drug resistant Acinetobacter Baumannii. Cell Physiol Biochem. 2017;44(6):2337–2345. .
  • EARS-NET., European antimicrobial resistance surveillance network (EARS-Net). 2014. EARS-Net Report,Quarters 1–4. Dublin. 2014. This is a permanent publication in PDF, thus access date not require 
  • Kateete DP, et al. High prevalence of methicillin resistant Staphylococcus aureus in the surgical units of Mulago hospital in Kampala, Uganda. BMC Res Notes. 2011;4(1):326.
  • Seni J, et al. Molecular characterization of Staphylococcus aureus from patients with surgical site infections at Mulago Hospital in Kampala, Uganda. PLoS One. 2013;8(6):e66153.
  • Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8(3):159–166.
  • EFSA Panel on Biological Hazards. Scientific Opinion on Carbapenem resistance in food animal ecosystems. J EFSA. 2013;11(12):3501.
  • Nordmann P, Dortet L, Poirel LJTIMM. Carbapenem resistance in Enterobacteriaceae: here is the storm! 2012;18(5):263–272.
  • CDC, Antibiotic resistance threats in the United States. 2013.
  • Rose T, et al. Experimental phage therapy of burn wound infection: difficult first steps. 2014;4(2):66.
  • Sarker S, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. 2016;4:124–137.
  • Verstappen KM, et al. The effectiveness of bacteriophages against methicillin-resistant Staphylococcus aureus ST398 nasal colonization in pigs. PLoS One. 2016;11(8):e0160242.
  • Rodríguez-Rubio L, et al. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol. 2013;39(4):427–434. .
  • Young R. Phage lysis: do we have the hole story yet? Curr Opin Microbiol. 2013;16(6):790–797.
  • Haddad Kashani H, et al. Recombinant endolysins as potential therapeutics against antibiotic-resistant <span class=“named-content genus-species” id=“named-content-1”>Staphylococcus aureus</span>: current status of research and novel delivery strategies. 2018;31(1):e00071–17.
  • García P, Rodríguez L, Rodríguez A, et al. Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food SciTechnol. 2010;21(8):373–382. .
  • Borysowski J, Weber-Dąbrowska B, Górski A, et al. Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood). 2006;231(4):366–377. .
  • Kusuma C, Jadanova A, Chanturiya T, et al. Lysostaphin-resistant variants of Staphylococcus aureus demonstrate reduced fitness in vitro and in vivo. Antimicrob Agents Chemother. 2007;51(2):475–482. .
  • Viertel T, Ritter K, Horz HP. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother. 2014;69(9):2326–2336.
  • Mao J, et al. Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme. 2013;342(1):30–36.
  • Yang H, Yu J, Wei H. Engineered bacteriophage lysins as novel anti-infectives. 5(542):2014.
  • Donovan D, Foster-Frey J. LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett. 2008;287(1):22–33.
  • Lang LH. FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology. 2006;131(5):1370.
  • de Oliveira AC, Damasceno QS. [Surfaces of the hospital environment as possible deposits of resistant bacteria: a review]. Rev Esc Enferm USP. 2010;44(4):1118–1123.
  • French GL, et al. Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp Infect. 2004;57(1):31–37. .
  • Ssekatawa K, et al. A systematic review: the current status of carbapenem resistance in East Africa. BMC Res Notes. 2018;11(1):629. .
  • D’Accolti M, et al. Efficient removal of hospital pathogens from hard surfaces by a combined use of bacteriophages and probiotics: potential as sanitizing agents. 2018;11:1015.
  • Ho YH, et al. Application of bacteriophage-containing aerosol against nosocomial transmission of carbapenem-resistant acinetobacter baumannii in an intensive care unit. PLoS One. 2016;11(12):e0168380. .
  • Akimkin V, Shestopalov N, Shumilov V, et al. ICPIC, meeting abstracts from international conference on prevention & infection control (ICPIC 2017), biological disinfection with bacteriophages. Antimicrob Resist Infect Control. 2017;6(3):52.
  • O’flaherty S, et al. Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. 2005;71(4):1836–1842.
  • Brown TL, et al. The formulation of bacteriophage in a semi solid preparation for control of propionibacterium acnes growth. PLoS One. 2016;11(3):e0151184. .
  • Beckner M, Ivey ML, Phister TG. Microbial contamination of fuel ethanol fermentations. 2011;53(4):387–394.
  • Silva J, Sauvageau D. Bacteriophages as antimicrobial agents against bacterial contaminants in yeast fermentation processes. J Biotechn biofuels. 2014;7(1):123.
  • Fish R, et al. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. 2016;25(Sup7):S27–S33.
  • Leszczyński P, et al. Successful eradication of methicillin-resistant Staphylococcus aureus (MRSA) intestinal carrier status in a healthcare worker–case report. Folia Microbiol (Praha). 2006;51(3):236–238. .
  • Marza JAS, et al. Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns. 2006;32(5):644–646. .
  • Fadlallah A, Chelala E, Legeais J-MJTOOJ. Corneal infection therapy with topical bacteriophage administration. 2015;9:167.
  • Wright A, et al. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic‐resistant Pseudomonas aeruginosa; a preliminary report of efficacy. 2009;34(4):349–357.
  • Khawaldeh A, et al. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J Med Microbiol. 2011;60(Pt 11):1697–1700. .
  • Letkiewicz S, et al. Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis—case report. 2009;54(5):457.
  • Roach DR, et al. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. 2013;6(1):20.
  • Khatibi PA, et al. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation. 2014;7(1):104.
  • Obeso JM, et al. Use of logistic regression for prediction of the fate of Staphylococcus aureus in pasteurized milk in the presence of two lytic phages. Appl Environ Microbiol. 2010;76(18):6038–6046. .
  • Lee Y-D, Park J-H. Characterization and application of phages isolated from sewage for reduction of Escherichia coli O157:H7 in biofilm. Lebensmittel-Wissenschaft + [i.e. und] Tech. 2015;60(no. 1):571–577–2015.
  • Tomat D, Mercanti D, Balagué C, et al. Phage biocontrol of enteropathogenic and Shiga toxin-producing Escherichia coli during milk fermentation. Lett Appl Microbiol. 2013;57(1):3–10. .
  • Guenther S, Loessner MJ. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. J App Bacteri. 2011;1(2):94–100.
  • Vonasek EL, et al. Incorporating phage therapy into WPI dip coatings for applications on fresh whole and cut fruit and vegetable surfaces. 2018;83(7):1871–1879.
  • Leverentz B, et al. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. 2003;69(8):4519–4526.
  • Guenther S, et al. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. J App environ microbio. 2009;75(1):93–100.
  • Deasy T, et al. Isolation of a virulent Lactobacillus brevis phage and its application in the control of beer spoilage. 2011;74(12):2157–2161.
  • Augustine J, Bhat SG. Biocontrol of Salmonella Enteritidis in spiked chicken cuts by lytic bacteriophages ΦSP‐1 and ΦSP‐3. J basic microbio. 2015;55(4):500–503.
  • Patel J, et al. Inactivation of Escherichia coli O157: H7 attached to spinach harvester blade using bacteriophage. 2011;8(4):541–546.
  • Jun JW, et al. Eating oysters without risk of vibriosis: application of a bacteriophage against Vibrio parahaemolyticus in oysters. 2014;188:31–35.
  • Bandara N, et al. Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods. 2012;31(1):9–16.
  • Lone A, et al. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. 2016;217:49–58.
  • Kim KP, Klumpp J, Loessner MJ. Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int J Food Microbiol. 2007;115(2):195–203.
  • Huang C, et al. Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res Int. 2018;111:631–641.
  • Gouvêa DM, et al. Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging. 2015;63(1):85–91.
  • Gouvêa DM, et al. Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. 2016;67:159–166.
  • Pereira C, et al. Application of phage therapy during bivalve depuration improves Escherichia coli decontamination. 2017;61:102–112.
  • Ryan EM, et al. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. 2012;65(2):395–398.
  • Kusmiatun A, Rusmana I, Budiarti S. Characterization of bacteriophage specific to bacillus pumilus from Ciapus River in Bogor, West Java, Indonesia. HAYATI J Biosci. 2015;22(1):27–33.
  • Kvachadze L, et al. Evaluation of lytic activity of staphylococcal bacteriophage Sb‐1 against freshly isolated clinical pathogens. 2011;4(5):643–650.
  • Sillankorva S, Neubauer P, Azeredo JJBB. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. 2008;8(1):79.
  • Jung L-S, et al. Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella Typhimurium. 2017;16(1):1–9.
  • Alves DR, et al. Development of a high-throughput ex-vivo burn wound model using porcine skin, and its application to evaluate new approaches to control wound infection. J Frontiers cellular infec microbio. 2018;8:196.
  • Ghosh A, et al. Combined application of essential oil compounds and bacteriophage to inhibit growth of Staphylococcus aureus in vitro. 2016;72(4):426–435.
  • Lungren MP, et al. Bacteriophage K for reduction of Staphylococcus aureus biofilm on central venous catheter material. 2013;3(4):e26825.
  • Carson L, Gorman S, Gilmore B. The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis  and Escherichia coli. 2010;59(3):447–455.
  • Nouraldin AAM, et al. Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. 2016;52(2):99–105.
  • Vipra AA, et al. Antistaphylococcal activity of bacteriophage derived chimeric protein P128. 2012;12(1):41.
  • Chhibber S, Nag D, Bansal SJBM. Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. 2013;13(1):1–8.
  • Abdulamir AS, et al. The potential of bacteriophage cocktail in eliminating Methicillin-resistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes. 2015;14(1):49.
  • Didamony GE, Askora A, Shehata AA. Isolation and characterization of T7-Like Lytic Bacteriophages Infecting multidrug resistant pseudomonas aeruginosa isolated from Egypt. Curr Microbiol. 2015;70(6):786–791.
  • Niculae C-M, et al. The 12th Edition of the Scientific Days of the National Institute for Infectious Diseases “Prof. Dr. Matei Bals” and the 12th National Infectious Diseases Conference. 99. Neguț AC, Săndulescu O, Streinu-Cercel A, et al. Influence of bacteriophages on sessile Gram-positive and Gramnegative bacteria. . in BMC Infectious diseases. 2016. BioMed Central.
  • Woo J, Ahn JJAOM. Assessment of synergistic combination potential of probiotic and bacteriophage against antibiotic-resistant Staphylococcus aureus exposed to simulated intestinal conditions. 2014;196(10):719–727.
  • Morris J, et al. Evaluation of bacteriophage anti-biofilm activity for potential control of orthopedic implant-related infections caused by Staphylococcus aureus. 2019;20(1):16–24.
  • Fu W, et al. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. 2010;54(1):397–404.
  • Olszak T, et al. In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients. 2015;99(14):6021–6033.
  • Guang-Han O, et al. Experimental phage therapy for Burkholderia pseudomallei infection. 2016;11(7):e0158213.
  • Chhibber S, Gupta P, Kaur SJBM. Bacteriophage as effective decolonising agent for elimination of MRSA from anterior nares of BALB/c mice. 2014;14(1):212.
  • Abdulamir AS, et al. Novel approach of using a cocktail of designed bacteriophages against gut pathogenic E. colifor bacterial load biocontrol. 2014;13(1):39.
  • Furusawa T, et al. Phage therapy is effective in a mouse model of bacterial equine keratitis. 2016;82(17):5332–5339.
  • Yen M, Cairns LS, Camilli AJNC. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. 2017;8(1):1–7.
  • Augustine J, Gopalakrishnan MV, Bhat SG. Application of ΦSP-1 and ΦSP-3 as a therapeutic strategy against Salmonella Enteritidis infection using Caenorhabditis elegans as model organism. J FEMS Microbio Letters. 2014;356(1):113–117.
  • Vieira A, et al. Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments. 2012;31(11):3241–3249.
  • Kumari S, Harjai K, Chhibber Sjtjoiidc. Topical treatment of Klebsiella pneumoniae B5055 induced burn wound infection in mice using natural products. 2010;4(6):367–377.
  • Wei C, et al. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virol Sin. 2017;32(6):476–484. .
  • Kocharunchitt C, Ross T, McNeil DL. Use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts. Int J Food Microbiol. 2009;128(3):453–459.
  • Elhalag K, et al. Potential use of soilborne lytic Podoviridae phage as a biocontrol agent against Ralstonia solanacearum. J Basic Microbiol. 2018;58(8):658–669. .
  • Soleimani-Delfan A, et al. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages. 2015;46(3):791–797.
  • Tan D, et al. Vibriophages differentially influence biofilm formation by Vibrio anguillarum strains. Appl Environ Microbiol. 2015;81(13):4489–4497.
  • Khairnar K, et al. Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosainfection in Catfish. BMC Vet Res. 2013;9(1):264. .
  • Christiansen RH, et al. Effect of bacteriophages on the growth of flavobacterium psychrophilum and development of phage-resistant strains. Microb Ecol. 2016;71(4):845–859.
  • Stalin N, Srinivasan P. Characterization of Vibrio parahaemolyticus and its specific phage from shrimp pond in Palk Strait, South East coast of India. Biologicals. 2016;44(6):526–533.
  • Kittler S, et al. Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks. 2013;79(23):7525–7533.
  • Lau GL, Sieo CC, Tan WS, et al. Characteristics of a phage effective for colibacillosis control in poultry. J Sci Food Agric. 2012;92(13):2657–2663. .
  • Belgini DRB, et al. Culturable bacterial diversity from a feed water of a reverse osmosis system, evaluation of biofilm formation and biocontrol using phages. World J Microbiol Biotechnol. 2014;30(10):2689–2700. .
  • Maal KB, et al. Isolation and identification of two novel Escherichia Coli bacteriophages and their application in wastewater treatment and coliform’s phage therapy. 2015;8:3. J Jundishapur j microbio.
  • Bull JJ, Levin BR, DeRouin T, et al. Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol. 2002;2(1):35.