28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of DHM resolution on gravity anomalies and geoid undulations: case study for Egypt

, , ORCID Icon &
Pages 153-164 | Received 19 Sep 2023, Accepted 15 Jul 2024, Published online: 27 Jul 2024

References

  • Abd-Elmotaal HA, Abd-Elbaky M, Ashry M. 2013. 30 meters digital height model for Egypt. VIII Hotine-Marussi Symposium; [17–22 June 2013]; Rome, Italy.
  • Abd-Elmotaal HA, Kühtreiber N. 2003. Geoid determination using adapted reference field, seismic moho depths, and variable density contrast. J Geod. 77(1–2):77–85. doi: 10.1007/s00190-002-0300-7.
  • Abd-Elmotaal HA, Makhloof AA, Abd-Elbaky M, Ashry M. 2016. The African 3″ × 3″ DTM and its validation.International symposium on gravity, geoid and height systems 2016: proceedings organized by IAG commission 2 and the international gravity field service. 19–23 Sep 2016]; Thessaloniki, Greece.
  • Ayhan ME. 1993. Geoid determination in Turkey (TG-91). Bullte Geodesique. 67(1):10–22. doi: 10.1007/BF00807293.
  • Bassin C, Laske G, Masters G. 2000. The current limits of resolution for surface wave tomography in North America. Eos Trans AGU. 81(48), Fall Meet. Suppl. Abstract S12A-03.
  • Blakely RJ. 1996. Potential theory in gravity and magnetic applications. (NY): Cambridge Univ. Press.
  • Bowin C. 1994. The geoid and deep Earth mass anomaly structure, geoid geophysical interpretation. Christou NT., P. Vaniček, editors. Boca, Raton, Ann, Arbor, London, Tokyo: CRC Press.
  • Bowin C, Scheer E, Smith W. 1986. Depths estimates from rations of geoid and gravity gradient anomalies. Geophysics. 51(1):123. Bruns H(1878): Die figure der Erde. Berlin, Publ. Preuss. Geod. Inst. 10.1190/1.1442025.
  • Cazenave A. 1994. The geoid and oceanic lithosphere, geoid geophysical interpretation. P. Vaniček and Christou N. T., editors. Boca, Raton, Ann, Arbor, London, Tokyo: CRC Press.
  • Chao BF. 1994. The geoid and earth rotation, geoid geophysical interpretation. P. Vaniček and Christou N. T., editors. Boca, Raton, Ann, Arbor, London, Tokyo: CRC Press.
  • Dawod G. 1998. A national gravity standardization network for Egypt [ PhD dissertation]. Zagazig: Faculty of Engineering at Shoubra, Zagazig University.
  • Denker H. 1991. GPS control of the 1989 gravimetric quasigeoid for the Federal Republic of Germany. Determination of the geoid, present and future. IAG Symposia. (106):152–159.
  • Denker H, Beherend D, Torge W. 1995. The European gravimetric quasigeoid EGG 95. Int Geoid Service Bull. 4:3–12.
  • Denker H, Behrend D, Torge W. 1994. European gravimetric geoid. Status report 1994. Proc Int Assoc Geod Symp No. 113:423–432.
  • Denker H, Torge W. 1993. Present state and future developments of the European geoid. Surv Geophysics. 14(4–5):419–427. doi: 10.1007/BF00690570.
  • Dermanis A, Filaretou LE, Tziavos IN. 1992. Strain-type representation of the potential anomalies, with an example for the eastern Mediterranean. Manuscriptageodaetica. 17:164–173.
  • EGPC. 1992. In Western Desert, oil and gas fields. A comprehensive overview paper presented at the 11th Petroleum Exploration and production Conference; Cairo: Egyptian General Petroleum Corporation. p. 1–431.
  • El-Ashquer M, Elsaka B, El-Fiky G. 2016. On the accuracy assessment of the latest releases of GOCE satellite-based geopotential models with EGM2008 andterrestrial GPS/levelling and gravity data over Egypt. Int J Geosciences. 7(11):1323–1344. doi: 10.4236/ijg.2016.711097.
  • El Shouny A, Al-Karagy EM, Mohamed FH, Dawod MG. 2018. Gis-based accuracy assessment of global geopotential models: a case study of Egypt. Am J Geographic Inf System. 7(4):118–124. doi: 10.5923/j.ajgis.20180704.03.
  • Elwan MH, Helaly A, Zahran K, Essway E, El-Gawad A A. 2021. Local geoid model of the Western Desert using terrestrial gravity and global geopotential models. Arabian J Geosci. 14(15). doi: 10.1007/s12517-021-07817-6.
  • Forsberg RH. 1984. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. 355. Colombus, Ohio: Ohio State University, Department of Geodetic Science and Surveying Rep.
  • Forsberg RH. 1993. Modelling the fine structure of the geoid: methods, data requirements and some results. Surv Geophys. 14(14):403–418. doi: 10.1007/BF00690568.
  • Forsyth DW. 1985. Subsurface loading and estimates of flexural rigidity of continental lithosphere. J Geophys Res. 90(B14):12–32. doi: 10.1029/JB090iB14p12623.
  • Fotiou A, Livieratos E, Tziavos IN. 1988. The GRS-80 combine geoid for the Hellenic area and upper crust density anomalies corresponding to its high frequency representations. ManuscriptaGeodaetica. 13:267–274.
  • Gröten E, Tealeb A. 1995. The first part of repeated relative gravimetry in the active zone of Aswan lake, Egypt. Bull NationalResearch Inst Astron Geophysics. XI:255–264.
  • Hager BH. 1984. Subducted geoid and the geoid: constraints on mental rheology and flow. Journal of geophysical research, 8. 6003.
  • Hammer S. 1939. Terrain corrections for gravimeter stations. Geophysics. 4(3):184–194. doi: 10.1190/1.1440495.
  • Hayling KL. 1994. The geoid and geophysical prospecting, geoid and its geophysical interpretations. P. Vaniček and Christou N. T., editors. Boca, Raton, Ann, Arbor, London, Tokyo: CRC Press.
  • Heiskanen WA, Moritz H. 1967. Physical Geodesy, W.H. San Francisc and. London: Freeman and Company.
  • Hilton RD, Featherstone WE, Berry PAM, Johnson CPD, Kirby JF. 2003. Comparison of digital elevation models over Australia and external validation using ERS-1 satellite radar altimetry. Aust J Earth Sci. 50(2):157–168. doi: 10.1046/j.1440-0952.2003.00982.x.
  • Huang J, Vaníček P, Pagiatakis SD, Brink W. 2001. Effect of topographical density on geoid in the Canadian Rocky Mountains. J Geod. 74(11–12):805–815. doi: 10.1007/s001900000145.
  • LaFehr TR. 1991. Standardisation in gravity reduction. Geophysics. 56(8):1170–1178. doi: 10.1190/1.1443137.
  • Leaman DE. 1998. The gravity terrain correction—practical considerations, explor. Geophys. 29(3–4):467–471. doi: 10.1071/EG998467.
  • Li X, Goetze HJ. 2001. Ellipsoid, geoid, gravity, geodesy and geophysics. Geophysics. 66(6):1660–1668. doi: 10.1190/1.1487109.
  • Livieratos E. 1987 Aug 9–22. Differential geometry treatment of a gravity field feature: the strain interpretation of the global geoid. In: Schwartz KP, editor, XIX General Assembly of the IUGG, IAG Section IV, Vancover, Contribution to geodetic theory and methodology. The University of Calgary, Publ. No. 60006.
  • Livieratos E. 1994. The geoid and its strain and stress field, geoid and its geophysical interpretations. P. Vaniček and Christou N. T., editors. 221–237. Boca, Raton, Ann, Arbor, London, Tokyo: CRC Press.
  • Makhloof AA. 2007. The use of topographic-isostatic mass information in geodetic application [ Disseratation D98]. Bonn: Institute of Geodesy and Geoinformation.
  • Martinec Z, Vaníček P, Mainville A, Véronneau M. 1996. Evaluation of topographical effects in precise geoid computation from densely sampled heights. J Geod. 70(11):746–754. doi: 10.1007/BF00867153.
  • Milbert DG. 1993. A New Geoid Model for the United States, EOS, Transoctions. Am Geophys Union. 74.
  • Nowell DAG. 1999. Gravity terrain corrections — an overview. J Appl Geophys. 42(2):117–134. doi: 10.1016/S0926-9851(99)00028-2.
  • Pick M. 1994. The geoid and tectonic forces, geoid and its geophysical interpretations. P. Vaniček and Christou N. T., editors. 239–253. Boca, Raton, Ann, Arbor, London, Tokyo: CRC Press.
  • Rapp R, Rummel R. 1975. Methods for the computation of detailed geoids and their accuracy. Ohio State University, Department of Geodetic Science and Surveying, Rep 233.
  • Rummel R, Rapp RH, Sünkel H, Tscherning CC. 1988. Comparisons of Global Topographic/isostatic Models to the Earth’s Observed Gravity Field. In: Rep Vol. 388, The Ohio StateUniversity, Columbus: Department of geodetic Science and Surveying.
  • Sandwell DT, Mckenize KR. 1989. Geoid heights versus topography for oceanic plateaus and swell. J Geophys Res. 94(B6):7403. doi: 10.1029/JB094iB06p07403.
  • Sansò F. 1997. Lecture notes: int school for the determination and use of the geoid. Int Geoid Service, DIIAR-PolitecnicodiMilano, Milan.
  • Sideris MG, She BB. 1995. A new high-resolution geoid for Canada and part of US, by 1D-FFT method. Bull. Geod. 69:92e108.
  • Tscherning CC, Forsberg R. 1986. Geoid determination in the Nordic countries from gravity and heights data. Proc Int Symposia Definition Geoid, IstitutoGeograficoMilitare Italiano, Florence, Italy, pp:325–350.
  • Tziavos IN. 1987. Determination of geoidal heights and deflection of the vertical for the hellemic area using heterogeneous data. Bull Geodesique. 61(2):177–197. doi: 10.1007/BF02521266.
  • Vaniček P, Kleusberg R. 1987. The Canadian geoid- stokesian approach. ManuscriptaGeodaetica. 12:86–98.
  • Vaniček P, Najafi M, Martinec Z, Harrie L, Sjöberg LE. 1995. Higher-degree reference field in the generalized stokes-helmert scheme for geoid computation. J Geod. 70(3):176–182. doi: 10.1007/BF00943693.
  • Vella JP, Featherstone WE. 1999. A gravimetric geoid model of Tasmania, computed using one-dimensional fast Fourier transform and a deterministically modified kernel, Geomatics research Australasia. 70:53–76.
  • Vincent S, Marsh J. 1974. Gravimetric global geoid. In: Veis G, editor. Proceedings of international symposium on the use of artificial satellites for geodesy and geodynamics. Athens, Greece: National Technical University.
  • Wunsch C, Stammer D. 1993. The global frequency-wavenumber spectrum of oceanic variability estimated from TOPEX/Poseiden altimetric measurements. J Geophys Res. 100(C12):24895–24910. doi: 10.1029/95JC01783.