1,461
Views
0
CrossRef citations to date
0
Altmetric
Regular Papers

Use of deep learning in forensic sex estimation of virtual pelvic models from the Han population

, , , , , , , , , , & show all
Pages 540-549 | Received 29 Oct 2021, Accepted 27 Dec 2021, Published online: 17 Feb 2022

References

  • Christensen AM, Passalacqua NV. Sex estimation. In: Christensen AM, Passalacqua NV, editors. A laboratory manual for forensic anthropology. Amsterdam (The Netherlands): Elsevier Academic Press; 2018. p. 113–126.
  • Klales AR. Practitioner preferences for sex estimation from human skeletal remains. In: Klales AR, editor. Sex estimation of the human skeleton. Amsterdam (The Netherlands): Elsevier Academic Press; 2020. p. 11–23.
  • Harrison D. Background in adult sexual dimorphism. In: Harrison D, editor. Investigations in sex estimation. Amsterdam (The Netherlands): Elsevier Academic Press; 2019. p. 11–33.
  • Bruzek J. A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol. 2002;117:157–168.
  • Leutenegger W. Functional aspects of pelvic morphology in simian primates. J Hum Evol. 1974;3:207–222.
  • Rosenberg K, Trevathan W. Birth, obstetrics and human evolution. BJOG. 2002;109:1199–1206.
  • Correia H, Balseiro S, De Areia M. Sexual dimorphism in the human pelvis: testing a new hypothesis. Homo. 2005;56:153–160.
  • Lewin R. Human evolution: an illustrated introduction. Malden (MA): Blackwell Publishing; 2004.
  • Moraitis K, Spiliopoulou C. Forensic implications of carnivore scavenging on human remains recovered from outdoor locations in Greece. J Forensic Leg Med. 2010;17:298–303.
  • de Boer HH, Blau S, Delabarde T, et al. The role of forensic anthropology in disaster victim identification (DVI): recent developments and future prospects. Forensic Sci Res. 2019;4:303–315.
  • de Boer HH, Roberts J, Delabarde T, et al. Disaster victim identification operations with fragmented, burnt, or commingled remains: experience-based recommendations. Forensic Sci Res. 2020;5:191–201.
  • Phenice TW. A newly developed visual method of sexing the os pubis. Am J Phys Anthropol. 1969;30:297–301.
  • Walker PL. Greater sciatic notch morphology: sex, age, and population differences. Am J Phys Anthropol. 2005;127:385–391.
  • Klales AR, Ousley SD, Vollner JM. A revised method of sexing the human innominate using Phenice’s nonmetric traits and statistical methods. Am J Phys Anthropol. 2012;149:104–114.
  • Walker PL. Sexing skulls using discriminant function analysis of visually assessed traits. Am J Phys Anthropol. 2008;136:39–50.
  • Harrison D. Skeletal collections. In: Harrison D, editor. Investigations in sex estimation. Amsterdam (The Netherlands): Elsevier Academic Press; 2019. p. 51–69.
  • Ubelaker D, Volk C. A test of the Phenice method for the estimation of sex. J Forensic Sci. 2002;47:19–24.
  • Bytheway JA, Ross AH. A geometric morphometric approach to sex determination of the human adult os coxa. J Forensic Sci. 2010;55:859–864.
  • Klales AR, Cole SJ. Improving nonmetric sex classification for Hispanic individuals. J Forensic Sci. 2017;62:975–980.
  • Gómez-Valdés JA, Menéndez Garmendia A, García-Barzola L, et al. Recalibration of the Klales et al. (2012) method of sexing the human innominate for Mexican populations. Am J Phys Anthropol. 2017;162:600–604.
  • Kenyhercz MW, Klales AR, Stull KE, et al. Worldwide population variation in pelvic sexual dimorphism: a validation and recalibration of the Klales et al. method. Forensic Sci Int. 2017;277:259.e1–259.e8.
  • Colman KL, Dobbe JGG, Stull KE, et al. The geometrical precision of virtual bone models derived from clinical computed tomography data for forensic anthropology. Int J Legal Med. 2017;131:1155–1163.
  • Colman KL, van der Merwe AE, Stull KE, et al. The accuracy of 3D virtual bone models of the pelvis for morphological sex estimation. Int J Legal Med. 2019;133:1853–1860.
  • Thali MJ, Yen K, Schweitzer W, et al. Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci. 2003;48:386–403.
  • Colman KL, Janssen MCL, Stull KE, et al. Dutch population specific sex estimation formulae using the proximal femur. Forensic Sci Int. 2018;286:268.e1–268.e8.
  • Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24:1559–1567.
  • Dunnmon JA, Yi D, Langlotz CP, et al. Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology. 2019;290:537–544.
  • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–118.
  • Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172:1122–1131.e9.
  • Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211–252.
  • Spampinato C, Palazzo S, Giordano D, et al. Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal. 2017;36:41–51.
  • Li Y, Huang Z, Dong X, et al. Forensic age estimation for pelvic X-ray images using deep learning. Eur Radiol. 2019;29:2322–2329.
  • Yune S, Lee H, Kim M, et al. Beyond human perception: sexual dimorphism in hand and wrist radiographs is discernible by a deep learning model. J Digit Imaging. 2019;32:665–671.
  • Bewes J, Low A, Morphett A, et al. Artificial intelligence for sex determination of skeletal remains: application of a deep learning artificial neural network to human skulls. J Forensic Leg Med. 2019;62:40–43.
  • Szegedy C, Ioffe S, Vanhoucke V. Inception-V4, Inception-ResNet and the impact of residual connections on learning. Thirty-First AAAI Conference on Artificial Intelligence, 2017 Feb. 04–09; San Francisco, CA, USA.
  • Zeiler MD. Adadelta: an adaptive learning rate method. ArXiv preprint ArXiv:1212.5701. 2012.
  • Springenberg JT, Dosovitskiy A, Brox T, et al. Striving for simplicity: the all convolutional net. ArXiv preprint ArXiv:1412.6806. 2014.
  • Rogers T, Saunders S. Accuracy of sex determination using morphological traits of the human pelvis. J Forensic Sci. 1994;39:1047–1056.
  • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845.
  • Gonzalez PN, Bernal V, Perez SI. Geometric morphometric approach to sex estimation of human pelvis. Forensic Sci Int. 2009;189:68–74.
  • Sutherland L, Suchey J. Use of the ventral arc in pubic sex determination. J Forensic Sci. 1991;36:501–511.
  • Lovell NC. Test of Phenice’s technique for determining sex from the os pubis. Am J Phys Anthropol. 1989;79:117–120.
  • Kelley MA. Phenice’s visual sexing technique for the os pubis: a critique. Am J Phys Anthropol. 1978;48:121–122.
  • McFadden C, Oxenham MF. Revisiting the phenice technique sex classification results reported by MacLaughlin and Bruce (1990). Am J Phys Anthropol. 2016;159:182–183.
  • Lesciotto KM, Doershuk LJ. Accuracy and reliability of the Klales et al. (2012) morphoscopic pelvic sexing method. J Forensic Sci. 2018;63:214–220.
  • Klales AR. Sex estimation using pelvis morphology. In: Klales AR, editor. Sex estimation of the human skeleton. Amsterdam (The Netherlands): Elsevier Academic Press; 2020. p. 75–93.
  • Gómez-Valdés JA, Quinto-Sánchez M, Menéndez Garmendia A, et al. Comparison of methods to determine sex by evaluating the greater sciatic notch: visual, angular and geometric morphometrics. Forensic Sci Int. 2012;221:156.e1–156.e7.
  • Steyn M, İşcan MY. Metric sex determination from the pelvis in modern Greeks. Forensic Sci Int. 2008;179:86.e1–86.e6.
  • Papaloucas C, Fiska A, Demetriou T. Sexual dimorphism of the hip joint in Greeks. Forensic Sci Int. 2008;179:83.e1–83.e3.
  • Steyn M, Patriquin ML. Osteometric sex determination from the pelvis—does population specificity matter? Forensic Sci Int. 2009;191:113.e1–113.e5.
  • Macaluso PJ, Jr. Sex determination from the acetabulum: test of a possible non-population-specific discriminant function equation. J Forensic Leg Med. 2010;17:348–351.
  • Macaluso PJ, Jr. Sex discrimination from the acetabulum in a twentieth-century skeletal sample from France using digital photogrammetry. Homo. 2011;62:44–55.
  • Benazzi S, Maestri C, Parisini S, et al. Sex assessment from the acetabular rim by means of image analysis. Forensic Sci Int. 2008;180:58.e1–58.e3.
  • De Vito C, Saunders S. A discriminant function analysis of deciduous teeth to determine sex. J Forensic Sci. 1990;35:845–858.
  • Sutter RC. Nonmetric subadult skeletal sexing traits: I. A blind test of the accuracy of eight previously proposed methods using prehistoric known-sex mummies from Northern Chile. J Forensic Sci. 2003;48:927–935.
  • Colman KL, de Boer HH, Dobbe JGG, et al. Virtual forensic anthropology: the accuracy of osteometric analysis of 3D bone models derived from clinical computed tomography (CT) scans. Forensic Sci Int. 2019;304:109963.