7,455
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Machine learning for energy-water nexus: challenges and opportunities

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 228-267 | Received 23 Apr 2018, Accepted 01 Sep 2018, Published online: 26 Oct 2018

References

  • Abkenar, S. M. S., Stanley, S. D., Miller, C. J., Chase, D. V., & McElmurry, S. P. (2015). Evaluation of genetic algorithms using discrete and continuous methods for pump optimization of water distribution systems. Sustainable Computing: Informatics and Systems, 8, 18–23.
  • Abuella, M., & Chowdhury, B. (2015). Solar power probabilistic forecasting by using multiple linear regression analysis. In SoutheastCon 2015 (pp. 1–5). IEEE.
  • Adamowski, J., Fung Chan, H., Prasher, S. O., Ozga-Zielinski, B., & Sliusarieva, A. (2012). Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in montreal, canada. Water Resources Research, 48(1).
  • Adamowski, J. F. (2008). Peak daily water demand forecast modeling using artificial neural networks. Journal of Water Resources Planning and Management, 134(2), 119–128.
  • Ahmad, A., Hassan, M., Abdullah, M., Rahman, H., Hussin, F., Abdullah, H., & Saidur, R. (2014). A review on applications of ann and svm for building electrical energy consumption forecasting. Renewable and Sustainable Energy Reviews, 33, 102–109.
  • Akkurt, M., Demirel, O. F., Zaim, S. (2010). Forecasting turkey’s natural gas consumption by using time series methods. European Journal of Economic and Political Studies, 3(2), 1–21.
  • Al-Garni, A. Z., Zubair, S. M., & Nizami, J. S. (1994). A regression model for electric-energy-consumption forecasting in eastern saudi arabia. Energy, 19(10), 1043–1049.
  • Al-Gunaid, M. A., Shcherbakov, M. V., Skorobogatchenko, D. A., Kravets, A. G., & Kamaev, V. A. (2016). Forecasting energy consumption with the data reliability estimation in the management of hybrid energy system using fuzzy decision trees. In Information, Intelligence, Systems & Applications (IISA), 2016 7th International Conference (pp. 1–8). Chalkidiki, Greece: IEEE.
  • Alvisi, S., Franchini, M., & Marinelli, A. (2007). A short-term, pattern-based model for water-demand forecasting. Journal of Hydroinformatics, 9(1), 39–50.
  • Al-Zahrani, M. A., & Abo-Monasar, A. (2015). Urban residential water demand prediction based on artificial neural networks and time series models. Water Resources Management, 29(10), 3651–3662.
  • Antunes, C. M., & Oliveira, A. L. (2001). Temporal data mining: An overview. KDD Workshop on Temporal Data Mining, 1, 1–13.
  • Arandia, E., Ba, A., Eck, B., & McKenna, S. (2015). Tailoring seasonal time series models to forecast short-term water demand. Journal of Water Resources Planning and Management, 142(3), 04015067.
  • Aras, N. (2008). Forecasting residential consumption of natural gas using genetic algorithms. Energy Exploration & Exploitation, 26(4), 241–266.
  • Arbués, F., Garca-Valiñas, M. Á., & Martnez-Espiñeira, R. (2003). Estimation of residential water demand: A state-of-the-art review. The Journal of Socio-Economics, 32(1), 81–102.
  • Azimi, R., Ghayekhloo, M., & Ghofrani, M. (2016). A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting. Energy Conversion and Management, 118, 331–344.
  • Baki, S., & Makropoulos, C. (2014). Tools for energy footprint assessment in urban water systems. Procedia Engineering, 89, 548–556.
  • Barbounis, T., & Theocharis, J. B. (2007). Locally recurrent neural networks for wind speed prediction using spatial correlation. Information Sciences, 177(24), 5775–5797.
  • Barnett, V., & Lewis, T. (1974). Outliers in statistical data. Hoboken, NJ: Wiley.
  • Basalirwa, C. (1995). Delineation of uganda into climatological rainfall zones using the method of principal component analysis. International Journal of Climatology, 15(10), 1161–1177.
  • Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3(Feb), 1137–1155.
  • Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping multidimensional data (pp. 25–71). Berlin, Heidelberg: Springer.
  • Bhagwat, P. P., & Maity, R. (2013). Hydroclimatic streamflow prediction using least square-support vector regression. ISH Journal of Hydraulic Engineering, 19(3), 320–328.
  • Bi, W., Dandy, G. C., & Maier, H. R. (2015). Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge. Environmental Modelling & Software, 69, 370–381.
  • Bi, Y., & Jeske, D. R. (2010). The efficiency of logistic regression compared to normal discriminant analysis under class-conditional classification noise. Journal of Multivariate Analysis, 101(7), 1622–1637.
  • Bianco, V., Scarpa, F., & Tagliafico, L. A. (2014). Scenario analysis of nonresidential natural gas consumption in Italy. Applied Energy, 113, 392–403.
  • Bishop, C. M. (1995). Neural networks for pattern recognition. New York, NY, USA: Oxford University Press, Inc.
  • Bishop, C. M. (1998). Latent variable models. In Learning in graphical models (pp. 371–403). Springer.
  • Boersma, T., Andrews-Speed, P., Bleischwitz, R., Johnson, C., Kemp, G., & VanDeveer, S. D. (2014). Want, waste or war?: The global resource nexus and the struggle for land, energy, food, water and minerals. Abingdon, UK: Routledge.
  • Bougadis, J., Adamowski, K., & Diduch, R. (2005). Short-term municipal water demand forecasting. Hydrological Processes, 19(1), 137–148.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
  • Britt, E. (2018). Hurricanes Harvey and Irma: Electric industry impacts, restoration, and cost recovery. Technical report. http://www.dwmrlaw.com/wp-content/uploads/2018/04/ABA_INFRA57-1.pdf.
  • Brown, R. H., Kharouf, P., Feng, X., Piessens, L. P., & Nestor, D. (1994). Development of feed-forward network models to predict gas consumption. In Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference (Vol. 2, pp. 802–805). Orlando, FL, USA: EEE.
  • Brown, R. H., & Matin, I. (1995). Development of artificial neural network models to predict daily gas consumption. In Industrial Electronics, Control, and Instrumentation, 1995., Proceedings of the 1995 IEEE IECON 21st International Conference (Vol. 2, pp. 1389–1394). Orlando, FL, USA: IEEE.
  • Brown, S., Versace, V. L., Laurenson, L., Ierodiaconou, D., Fawcett, J., & Salzman, S. (2012). Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environmental Modeling & Assessment, 17(3), 241–254.
  • Bugała, A., Zaborowicz, M., Boniecki, P., Janczak, D., Koszela, K., Czekaa, W., & Lewicki, A. (2018). Short-term forecast of generation of electric energy in photovoltaic systems. Renewable and Sustainable Energy Reviews, 81, 306–312.
  • Burkett, V. R., Kirtland, D. A., Taylor, I. L., Belnap, J., Cronin, T. M., Dettinger, M. D., … Striegl, R. G. (2013). Us geological survey climate and land use change science strategy: A framework for understanding and responding to global change. Technical report. US Geological Survey.
  • Cai, X., Wallington, K., Shafiee-Jood, M., & Marston, L. (2018). Understanding and managing the food-energy-water nexus–Opportunities for water resources research. Advances in Water Resources, 111, 259–273.
  • Caiado, J. (2009). Performance of combined double seasonal univariate time series models for forecasting water demand. Journal of Hydrologic Engineering, 15(3), 215–222.
  • Cao, J., & Cao, S. (2006). Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis. Energy, 31(15), 3435–3445.
  • Cao, L., & Gu, Q. (2002). Dynamic support vector machines for non-stationary time series forecasting. Intelligent Data Analysis, 6(1), 67–83.
  • Cao, S., & Cao, J. (2005). Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis. Applied Thermal Engineering, 25(2–3), 161–172.
  • Carle, M. V., Halpin, P. N., & Stow, C. A. (2005). Patterns of watershed urbanization and impacts on water quality. JAWRA Journal of the American Water Resources Association, 41(3), 693–708.
  • Carlson, S., & Walburger, A. (2007). Energy index development for benchmarking water and wastewater utilities. Denver, Colorado: American Water Works Association.
  • Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 15.
  • Chandola, V., & Vatsavai, R. R. (2010). Scalable time series change detection for biomass monitoring using gaussian process. In CIDU (pp. 69–82).
  • Chandola, V., & Vatsavai, R. R. (2011). A scalable Gaussian process analysis algorithm for biomass monitoring. Statistical Analysis and Data Mining: the ASA Data Science Journal, 4(4), 430–445.
  • Chang, W.-Y. (2014). A literature review of wind forecasting methods. Journal of Power and Energy Engineering, 2, 4.
  • Chen, G., Long, T., Xiong, J., & Bai, Y. (2017). Multiple random forests modelling for urban water consumption forecasting. Water Resources Management, 31(15), 4715–4729.
  • Chen, L., & Zhang, T.-Q. (2006). Hourly water demand forecast model based on least squares support vector machine. Journal of Harbin Institute of Technology, 9, 030.
  • Chen, Q., Mei, K., Dahlgren, R. A., Wang, T., Gong, J., & Zhang, M. (2016). Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression. Science of the Total Environment, 572, 450–466.
  • Chen, S., & Chen, B. (2016). Urban energy–Water nexus: A network perspective. Applied Energy, 184, 905–914.
  • Chini, C. M., & Stillwell, A. S. (2016). Where are all the data? The case for a comprehensive water and wastewater utility database. Reston, VA, USA: ASCE.
  • Clark, I. (2018). Big data enabled intelligent influent forecasting for wastewater treatment systems.
  • Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th international conference on Machine learning (pp. 160–167). Helsinki, Finland: ACM.
  • Cook, M. A., King, C. W., Davidson, F. T., & Webber, M. E. (2015). Assessing the impacts of droughts and heat waves at thermoelectric power plants in the united states using integrated regression, thermodynamic, and climate models. Energy Reports, 1, 193–203.
  • Cosgrove, W. J., & Loucks, D. P. (2015). Water management: Current and future challenges and research directions. Water Resources Research, 51(6), 4823–4839.
  • Coulibaly, P., Anctil, F., & Bobée, B. (2000). Neural network-based long-term hydropower forecasting system. Computer-Aided Civil and Infrastructure Engineering, 15(5), 355–364.
  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. New York, NY, USA: Cambridge University Press.
  • Curram, S. P., & Mingers, J. (1994). Neural networks, decision tree induction and discriminant analysis: An empirical comparison. Journal of the Operational Research Society, 45(4), 440–450.
  • Dahl, C. M., & Hylleberg, S. (2004). Flexible regression models and relative forecast performance. International Journal of Forecasting, 20(2), 201–217.
  • Dai, J., Wu, S., Han, G., Weinberg, J., Xie, X., Wu, X., … Yang, Q. (2018). Water-energy nexus: A review of methods and tools for macro-assessment. Applied Energy, 210, 393–408.
  • Dalhuisen, J. M., Florax, R. J., De Groot, H. L., & Nijkamp, P. (2003). Price and income elasticities of residential water demand: A meta-analysis. Land Economics, 79(2), 292–308.
  • Danades, A., Pratama, D., Anggraini, D., & Anggriani, D. (2016). Comparison of accuracy level k-nearest neighbor algorithm and support vector machine algorithm in classification water quality status. In System Engineering and Technology (ICSET), 2016 6th International Conference (pp. 137–141). Bandung, Indonesia: IEEE.
  • Dash, N. B., Panda, S. N., Remesan, R., & Sahoo, N. (2010). Hybrid neural modeling for groundwater level prediction. Neural Computing and Applications, 19(8), 1251–1263.
  • Dedgaonkar, S., Patil, V., Rathod, N., Hakare, G., & Bhosale, J. (2016). Solar energy prediction using least square linear regression method. International Journal of Current Engineering and Technology, 6(5), 1549–1552.
  • Demirel, Ö. F., Zaim, S., Çalişkan, A., & Özuyar, P. (2012). Forecasting natural gas consumption in istanbul using neural networks and multivariate time series methods. Turkish Journal of Electrical Engineering & Computer Sciences, 20(5), 695–711.
  • Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference (pp. 248–255). Miami, FL, USA: IEEE.
  • Deser, C., Knutti, R., Solomon, S., & Phillips, A. S. (2012). Communication of the role of natural variability in future North American climate. Nature Climate Change, 2(11), 775.
  • Diagne, M., David, M., Lauret, P., Boland, J., & Schmutz, N. (2013). Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews, 27, 65–76.
  • Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop on multiple classifier systems (pp. 1–15). Verlag London, UK: Springer.
  • Dilaver, Ö., Dilaver, Z., & Hunt, L. C. (2014). What drives natural gas consumption in Europe? analysis and projections. Journal of Natural Gas Science and Engineering, 19, 125–136.
  • DOE (2007). Energy demands on water resources: Report to congress on the interdependencies of energy and water. Technical report. U.S. Department of Energy.
  • DOE (2014). The water-energy nexus: Challenges and opportunities. Washington, DC: US DOE. http://energy.gov/downloads/water-energy-nexus-challenges-and-opportunities
  • Donkor, E. A., Mazzuchi, T. A., Soyer, R., & Alan Roberson, J. (2012). Urban water demand forecasting: Review of methods and models. Journal of Water Resources Planning and Management, 140(2), 146–159.
  • Dragomiretskiy, K., & Zosso, D. (2014). Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3), 531–544.
  • Dunham, M. H., & Ming, D. (2003). Introductory and advanced topics. Prentice Hall.
  • Dyer, T. G. (1975). The assignment of rainfall stations into homogeneous groups: An application of principal component analysis. Quarterly Journal of the Royal Meteorological Society, 101(430), 1005–1013.
  • Efron, B. (1992). Bootstrap methods: Another look at the jackknife. In Kotz, Samuel, Johnson, & L. Norman (Eds.), Breakthroughs in statistics (pp. 569–593). Springer.
  • Eftelioglu, E., Jiang, Z., Ali, R., & Shekhar, S. (2016). Spatial computing perspective on food energy and water nexus. Journal of Environmental Studies and Sciences, 6(1), 62–76.
  • Eftelioglu, E., Jiang, Z., Tang, X., & Shekhar, S. (2017). The nexus of food, energy, and water resources: Visions and challenges in spatial computing. In D. A. Griffith, Y. Chum, & D. J. Dean (Eds.), Advances in geocomputation (pp. 5–20). Springer.
  • Egelioglu, F., Mohamad, A., & Guven, H. (2001). Economic variables and electricity consumption in northern cyprus. Energy, 26(4), 355–362.
  • EIA-DOE (2011). Improving the quality and scope of eia data. US DOE. https://www.eia.gov/analysis/requests/2011/qualityscope2011.pdf
  • Elliott, S., Decker, E., Smith, F. A., Blake, D. R., Simpson, I. J., & Rowland, F. S. (2000). Cities in the earth system. Amsterdam, Netherlands: Elsevier Science.
  • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.
  • EPSA-DOE (2017). Environment baseline vol. 4: Energy-water nexus. Technical report.
  • Erdogdu, E. (2010). Natural gas demand in turkey. Applied Energy, 87(1), 211–219.
  • Ervural, B. C., Beyca, O. F., & Zaim, S. (2016). Model estimation of arma using genetic algorithms: A case study of forecasting natural gas consumption. Procedia-Social and Behavioral Sciences, 235, 537–545.
  • Espey, M., Espey, J., & Shaw, W. D. (1997). Price elasticity of residential demand for water: A meta-analysis. Water Resources Research, 33(6), 1369–1374.
  • Evans, L., Guthrie, G., & Videbeck, S. (2008). Assessing the integration of electricity markets using principal component analysis: Network and market structure effects. Contemporary Economic Policy, 26(1), 145–161.
  • Fang, D., & Chen, B. (2017). Linkage analysis for the water–Energy nexus of city. Applied Energy, 189, 770–779.
  • Faradonbeh, R. S., Monjezi, M., & Armaghani, D. J. (2016). Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation. Engineering with Computers, 32(1), 123–133.
  • Feeley, T. J., III, Skone, T. J., Stiegel, G. J., Jr, McNemar, A., Nemeth, M., Schimmoller, B., … Manfredo, L. (2008). Water: A critical resource in the thermoelectric power industry. Energy, 33(1), 1–11.
  • Filippone, M., Camastra, F., Masulli, F., & Rovetta, S. (2008). A survey of kernel and spectral methods for clustering. Pattern Recognition, 41(1), 176–190.
  • Food, E. (2014, July). Water: Transformative research opportunities in the mathematical and physical sciences. Washington, DC: NSF.
  • Forouzanfar, M., Doustmohammadi, A., Menhaj, M. B., & Hasanzadeh, S. (2010). Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran. Applied Energy, 87(1), 268–274.
  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically weighted regression. Limited West Atrium: John Wiley & Sons.
  • Franklin, S. L., & Maidment, D. R. (1986). An evaluation of weekly and monthly time series forecasts of municipal water use. JAWRA Journal of the American Water Resources Association, 22(4), 611–621.
  • French, M. N., Krajewski, W. F., & Cuykendall, R. R. (1992). Rainfall forecasting in space and time using a neural network. Journal of Hydrology, 137(1–4), 1–31.
  • Friedman, J. H., & Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76(376), 817–823.
  • Fullerton, T. M., & Molina, A. L. (2010). Municipal water consumption forecast accuracy. Water Resources Research, 46(6).
  • Galelli, S., & Castelletti, A. (2013). Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling. Hydrology and Earth System Sciences, 17(7), 2669–2684.
  • Galloway, J., & Simoff, S. J. (2006). Network data mining: Methods and techniques for discovering deep linkage between attributes. In Proceedings of the 3rd Asia-Pacific conference on Conceptual modelling (Vol. 53, pp. 21–32). Hobart, Australia: Australian Computer Society, Inc.
  • Geem, Z. W., & Roper, W. E. (2009). Energy demand estimation of South Korea using artificial neural network. Energy Policy, 37(10), 4049–4054.
  • GEI Consultants/Navigant Consulting, Inc., U. (2010). Statewide and regional water-energy relationship. embedded energy in water studies. Technical report.
  • Gligorijevic, D., Stojanovic, J., & Obradovic, Z. (2016). Uncertainty propagation in long-term structured regression on evolving networks. In AAAI (pp. 1603–1609). Phoenix, AZ.
  • Gomes, P., & Castro, R. (2012). Wind speed and wind power forecasting using statistical models: Autoregressive moving average (arma) and artificial neural networks (ann). International Journal of Sustainable Energy Development, 1(1/2).
  • Grubert, E. A. (2016). Water consumption from hydroelectricity in the united states. Advances in Water Resources, 96, 88–94.
  • Haimi, H., Mulas, M., Corona, F., Marsili-Libelli, S., Lindell, P., Heinonen, M., & Vahala, R. (2016). Adaptive data-derived anomaly detection in the activated sludge process of a large-scale wastewater treatment plant. Engineering Applications of Artificial Intelligence, 52, 65–80.
  • Hallegatte, S., Green, C., Nicholls, R. J., & Corfee-Morlot, J. (2013). Future flood losses in major coastal cities. Nature Climate Change, 3(9), 802.
  • Halstead, M., Kober, T., & Zwaan, B. C. C. (2014). Understanding the energy-water nexus. Petten, the Netherlands: ECN.
  • Hammid, A. T., Sulaiman, M. H. B., & Abdalla, A. N. (2018). Prediction of small hydropower plant power production in himreen lake dam (hld) using artificial neural network. Alexandria Engineering Journal, 57(1), 211–221.
  • Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Amsterdam, Netherlands: Elsevier.
  • Hardisty, F., & Klippel, A. (2010). Analysing spatio-temporal autocorrelation with lista-viz. International Journal of Geographical Information Science, 24(10), 1515–1526.
  • Härdle, W., Liang, H., & Gao, J. (2012). Partially linear models. Berlin, Germany: Springer Science & Business Media.
  • Harris, M. A., & Diehl, T. H. (2017). A comparison of three federal datasets for thermoelectric water withdrawals in the united states for 2010. JAWRA Journal of the American Water Resources Association, 53(5), 1062–1080.
  • Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge, UK: Cambridge university press.
  • Hastie, T., & Tibshirani, R. (1990). Generalized additive models. Hokoben, NJ, USA: Wiley Online Library.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2014). Spatial pyramid pooling in deep convolutional networks for visual recognition. In European conference on computer vision (pp. 346–361).  Zurich, Switzerland: Springer.
  • Healy, R. W., Alley, W. M., Engle, M. A., McMahon, P. B., & Bales, J. D. (2015). The water-energy nexus: an earth science perspective. Technical report. US Geological Survey.
  • Helmbrecht, J., Pastor, J., & Moya, C. (2017). Smart solution to improve water-energy nexus for water supply systems. Procedia Engineering, 186, 101–109.
  • Herbert, J. H., Sitzer, S., & Eades-Pryor, Y. (1987). A statistical evaluation of aggregate monthly industrial demand for natural gas in the USA. Energy, 12(12), 1233–1238.
  • Herrera, M., Torgo, L., Izquierdo, J., & Pérez-Garca, R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, 387(1), 141–150.
  • Hervás-Martnez, C., Gutiérrez, P. A., Fernández, J. C., Salcedo-Sanz, S., Portilla-Figueras, A., Pérez-Bellido, A., & Prieto, L. (2009). Hyperbolic tangent basis function neural networks training by hybrid evolutionary programming for accurate short-term wind speed prediction. In Intelligent Systems Design and Applications, 2009. ISDA’09. Ninth International Conference (pp. 193–198). Pisa, Italy: IEEE.
  • Hill, D. C., McMillan, D., Bell, K. R., & Infield, D. (2012). Application of auto-regressive models to UK wind speed data for power system impact studies. IEEE Transactions on Sustainable Energy, 3(1), 134–141.
  • Hoff, H. (2011). Understanding the nexus: Background paper for the bonn2011 nexus conference. Bonn, Germany.
  • Hong, W.-C. (2008). Rainfall forecasting by technological machine learning models. Applied Mathematics and Computation, 200(1), 41–57.
  • Hossain, M. R., Oo, A. M. T., & Ali, A. S. (2012). Hybrid prediction method of solar power using different computational intelligence algorithms. In Power Engineering Conference (AUPEC), 2012 22nd Australasian Universities (pp. 1–6). Bali, Indonesia: IEEE.
  • Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference (Vol 2, pp. 985–990). Budapest, Hungary: IEEE.
  • Huang, R., Huang, T., Gadh, R., & Li, N. (2012). Solar generation prediction using the arma model in a laboratory-level micro-grid. In Smart Grid Communications (SmartGridComm), 2012 IEEE Third International Conference (pp. 528–533). Tainan City, Taiwan: IEEE.
  • Hussain, S., & AlAlili, A. (2017). A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks. Applied Energy, 208, 540–550.
  • Iglesias, G., Kale, D. C., & Liu, Y. (2015). An examination of deep learning for extreme climate pattern analysis. In The 5th International Workshop on Climate Informatics. Boulder, CO, USA.
  • Jain, A., & Kumar, A. M. (2007). Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 7(2), 585–592.
  • Jain, D. A., Joshi, U. C., & Varshney, A. K. (2000). Short-term water demand forecasting using artificial neural networks: IIT Kanpur experience. In Pattern Recognition, 2000. Proceedings. 15th International Conference (Vol. 2, pp. 459–462). Barcelona, Spain: IEEE.
  • Javi, S. T., Malekmohammadi, B., & Mokhtari, H. (2014). Application of geographically weighted regression model to analysis of spatiotemporal varying relationships between groundwater quantity and land use changes (case study: Khanmirza plain, Iran). Environmental Monitoring and Assessment, 186(5), 3123–3138.
  • Johnson, M. J., & Willsky, A. S. (2013). Bayesian nonparametric hidden semi-Markov models. Journal of Machine Learning Research, 14(Feb), 673–701.
  • Jordan, M. I. (1986). Attractor dynamics and parallellism in a connectionist sequential machine. Piscataway, NJ, USA: IEEE Press.
  • Jowitt, P. W., & Xu, C. (1992). Demand forecasting for water distribution systems. Civil Engineering Systems, 9(2), 105–121.
  • Karatzoglou, A. (2006). Kernel methods software, algorithms and applications. na.
  • Karatzoglou, A., Meyer, D., & Hornik, K. (2005). Support vector machines in r. Department of Statistics and Mathematics, WU Vienna University of Economics and Business.
  • Kariniotakis, G., Stavrakakis, G., & Nogaret, E. (1996). Wind power forecasting using advanced neural networks models. IEEE Transactions on Energy Conversion, 11(4), 762–767.
  • Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., … Kumar, V. (2017). Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering, 29(10), 2318–2331.
  • Kechriotis, G., Zervas, E., & Manolakos, E. S. (1994). Using recurrent neural networks for adaptive communication channel equalization. IEEE Transactions on Neural Networks, 5(2), 267–278.
  • Khan, M. S., & Coulibaly, P. (2006). Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 11(3), 199–205.
  • Khan, Z., Linares, P., Rutten, M., Parkinson, S., Johnson, N., & Garca-González, J. (2018). Spatial and temporal synchronization of water and energy systems: Towards a single integrated optimization model for long-term resource planning. Applied Energy, 210, 499–517.
  • Khotanzad, A., & Elragal, H. (1999a). Natural gas load forecasting with combination of adaptive neural networks. In Neural Networks, 1999. IJCNN’99. International Joint Conference (Vol. 6, pp. 4069–4072). Washington, DC: IEEE.
  • Khotanzad, A., & Elragal, H. (1999b). Natural gas load forecasting with combination of adaptive neural networks. In Neural Networks, 1999. IJCNN’99. International Joint Conference (Vol. 6, pp. 4069–4072). Washington, DC: IEEE.
  • Khotanzad, A., Elragal, H., & Lu, T.-L. (2000). Combination of artificial neural-network forecasters for prediction of natural gas consumption. IEEE Transactions on Neural Networks, 11(2), 464–473.
  • Kim, B. S., Kang, B. G., Choi, S. H., & Kim, T. G. (2017). Data modeling versus simulation modeling in the big data era: Case study of a greenhouse control system. Simulation, 93(7), 579–594.
  • Kinnebrew, J. S., Segedy, J. R., & Biswas, G. (2017). Integrating model-driven and data-driven techniques for analyzing learning behaviors in open-ended learning environments. IEEE Transactions on Learning Technologies, 10(2), 140–153.
  • Kolter, J. Z., & Jaakkola, T. (2012). Approximate inference in additive factorial hmms with application to energy disaggregation. In N. D. Lawrence & M. Girolami (Eds.), Artificial intelligence and statistics (pp. 1472–1482).
  • Koperski, K., Adhikary, J., & Han, J. (1996). Spatial data mining: Progress and challenges survey paper. In M. J. Zaki & C. C. Agarwal (Eds.), Proc. ACM SIGMOD workshop on research issues on data mining and knowledge discovery (pp. 1–10). Montreal, Canada: Citeseer.
  • Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging Artificial Intelligence Applications in Computer Engineering, 160, 3–24.
  • Krasnopolsky, V. M., & Fox-Rabinovitz, M. S. (2006). Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Networks, 19(2), 122–134.
  • Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221–232.
  • Kulis, B., et al. (2013). Metric learning: A survey. Foundations and Trends in Machine Learning, 5(4), 287–364.
  • L’vov, V. S., Pomyalov, A., & Procaccia, I. (2001). Outliers, extreme events, and multiscaling. Physical Review E, 63(5), 056118.
  • Lahouar, A., & Slama, J. B. H. (2017). Hour-ahead wind power forecast based on random forests. Renewable Energy, 109, 529–541.
  • Lam, J. C., Wan, K. K., Cheung, K., & Yang, L. (2008). Principal component analysis of electricity use in office buildings. Energy and USbuildings, 40(5), 828–836.
  • Lee, R.-S., & Singh, N. (1994). Patterns in residential gas and electricity consumption: An econometric analysis. Journal of Business & Economic Statistics, 12(2), 233–241.
  • Li, G., & Shi, J. (2010). On comparing three artificial neural networks for wind speed forecasting. Applied Energy, 87(7), 2313–2320.
  • Li, Q., Pan, F., Zhao, Z., & Yu, J. (2018). Process modeling and monitoring with incomplete data based on robust probabilistic partial least square method. IEEE Access, 6, 10160–10168.
  • Liaw, A., Wiener, M. (2002). Classification and regression by random forest. R News, 2(3), 18–22.
  • Lin, G.-F., & Chen, L.-H. (2004). A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology, 289(1), 1–8.
  • Lin, Y., Kruger, U., Zhang, J., Wang, Q., Lamont, L., & El Chaar, L. (2015). Seasonal analysis and prediction of wind energy using random forests and arx model structures. IEEE Transactions on Control Systems Technology, 23(5), 1994–2002.
  • Liu, B., Xiao, Y., Cao, L., Hao, Z., & Deng, F. (2013). Svdd-based outlier detection on uncertain data. Knowledge and Information Systems, 34(3), 597–618.
  • Liu, B., Xiao, Y., Philip, S. Y., Hao, Z., & Cao, L. (2014). An efficient approach for outlier detection with imperfect data labels. IEEE Transactions on Knowledge and Data Engineering, 26(7), 1602–1616.
  • Liu, H., Tian, H.-Q., Chen, C., & Li, Y.-F. (2010). A hybrid statistical method to predict wind speed and wind power. Renewable Energy, 35(8), 1857–1861.
  • Liu, Y., Racah, E., Correa, J., Khosrowshahi, A., Lavers, D., Kunkel, K., … Collins, W. (2016). Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv preprint, abs/1605.01156.
  • Longo, S., D Antoni, B. M., Bongards, M., Chaparro, A., Cronrath, A., Fatone, F., … Hospido, A. (2016). Monitoring and diagnosis of energy consumption in wastewater treatment plants. a state of the art and proposals for improvement. Applied Energy, 179, 1251–1268.
  • Luk, K., Ball, J. E., & Sharma, A. (2000). A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology, 227(1), 56–65.
  • Luskova, M., Leitner, B., Sventekova, E., & Dvorak, Z. (2018). Research of extreme weather impact on critical infrastructure. Bánki Közlemények (Bánki Reports), 1(1), 43–48.
  • Ma, J., & Cheng, J. C. (2016). Identifying the influential features on the regional energy use intensity of residential buildings based on random forests. Applied Energy, 183, 193–201.
  • Maidment, D. R., Miaou, S.-P., & Crawford, M. M. (1985). Transfer function models of daily urban water use. Water Resources Research, 21(4), 425–432.
  • Maidment, D. R., & Parzen, E. (1984). Time patterns of water use in six texas cities. Journal of Water Resources Planning and Management, 110(1), 90–106.
  • Maier, H., & Dandy, G. (2000). Application of artificial neural networks to forecasting of surface water quality variables: Issues, applications and challenges. In Artificial neural networks in hydrology (pp. 287–309). Dordrecht: Springer.
  • Martini, A., Troncossi, M., & Rivola, A. (2015). Automatic leak detection in buried plastic pipes of water supply networks by means of vibration measurements. Shock and Vibration, 2015, 1–13.
  • Martini, A., Troncossi, M., Rivola, A., & Nascetti, D. (2014). Preliminary investigations on automatic detection of leaks in water distribution networks by means of vibration monitoring. In G. Dalpiaz, R. Rubini, G. D'Elia, M. Cocconcelli, F. Chaari, R. Zimroz, … M. Haddar. (Eds.), Advances in condition monitoring of machinery in non-stationary operations (pp. 535–544). Springer.
  • Maupin, M. A., Kenny, J. F., Hutson, S. S., Lovelace, J. K., Barber, N. L., & Linsey, K. S. (2014). Estimated use of water in the united states in 2010. Technical report. US Geological Survey.
  • McLachlan, G. J., & McGiffin, D. (1994). On the role of finite mixture models in survival analysis. Statistical Methods in Medical Research, 3(3), 211–226.
  • McManamay, R. A. (2014). Quantifying and generalizing hydrologic responses to dam regulation using a statistical modeling approach. Journal of Hydrology, 519, 1278–1296.
  • McManamay, R. A., Nair, S. S., DeRolph, C. R., Ruddell, B. L., Morton, A. M., Stewart, R. N., … Bhaduri, B. L. (2017). US cities can manage national hydrology and biodiversity using local infrastructure policy. Proceedings of the National Academy of Sciences, 201706201.
  • Mentch, L., & Hooker, G. (2016). Quantifying uncertainty in random forests via confidence intervals and hypothesis tests. The Journal of Machine Learning Research, 17(1), 841–881.
  • Miaou, S.-P. (1990). A class of time series urban water demand models with nonlinear climatic effects. Water Resources Research, 26(2), 169–178.
  • Michalek, J. E., & Tripathi, R. C. (1980). The effect of errors in diagnosis and measurement on the estimation of the probability of an event. Journal of the American Statistical Association, 75(371), 713–721.
  • Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (2013). Machine learning: An artificial intelligence approach. Berlin, Germany: Springer Science & Business Media.
  • Mohandes, M. A., Halawani, T. O., Rehman, S., & Hussain, A. A. (2004). Support vector machines for wind speed prediction. Renewable Energy, 29(6), 939–947.
  • Mohtar, R. H., & Daher, B. (2012).Water, energy, and food: The ultimate nexus. In D. R. Heldman & C. I. Moraru (Eds.), Encyclopedia of agricultural, food, and biological engineering. CRC Press, Taylor and Francis Group.
  • Moisen, G. G., & Frescino, T. S. (2002). Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157(2), 209–225.
  • Molinos-Senante, M., Sala-Garrido, R., & Iftimi, A. (2018). Energy intensity modeling for wastewater treatment technologies. Science of the Total Environment, 630, 1565–1572.
  • Msiza, I. S., Nelwamondo, F. V., & Marwala, T. (2007). Artificial neural networks and support vector machines for water demand time series forecasting. In Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference (pp. 638–643). Montreal, Que., Canada: IEEE.
  • Munoz-Diaz, D., & Rodrigo, F. S. (2004). Spatio-temporal patterns of seasonal rainfall in Spain (1912-2000) using cluster and principal component analysis: Comparison. Annales Geophysicae, 22, 1435–1448.
  • Nanduri, V., & Saavedra-Antolnez, I. (2013). A competitive markov decision process model for the energy–Water–Climate change nexus. Applied Energy, 111, 186–198.
  • Nash, J. C., & Walker-Smith, M. (1987). Nonlinear parameter estimation. New York: Marcel Decker.
  • Ndiaye, D., & Gabriel, K. (2011). Principal component analysis of the electricity consumption in residential dwellings. Energy and Buildings, 43(2), 446–453.
  • Nexus, E.-W. (2009). Improvements to federal water use data would increase understanding of trends in power plant water use. US General Accounting Office.
  • Nguwi, -Y.-Y., & Cho, S.-Y. (2010). An unsupervised self-organizing learning with support vector ranking for imbalanced datasets. Expert Systems with Applications, 37(12), 8303–8312.
  • Nguyen, A.-T., Reiter, S., & Rigo, P. (2014a). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043–1058.
  • Nguyen, K. A., Stewart, R. A., & Zhang, H. (2013a). An intelligent pattern recognition model to automate the categorisation of residential water end-use events. Environmental Modelling & Software, 47, 108–127.
  • Nguyen, K. A., Stewart, R. A., & Zhang, H. (2014b). An autonomous and intelligent expert system for residential water end-use classification. Expert Systems with Applications, 41(2), 342–356.
  • Nguyen, K. A., Stewart, R. A., & Zhang, H. (2017). Water end-use classification with contemporaneous water-energy data and deep learning network. World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 12(1), 1–6.
  • Nguyen, K. A., Stewart, R. A., Zhang, H., & Jones, C. (2015). Intelligent autonomous system for residential water end use classification: Autoflow. Applied Soft Computing, 31, 118–131.
  • Nguyen, K. A., Zhang, H., & Stewart, R. A. (2013b). Development of an intelligent model to categorise residential water end use events. Journal of Hydro-Environment Research, 7(3), 182–201.
  • Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., Chan-Hilton, A., … Singh, A., et al. (2009). State of the art for genetic algorithms and beyond in water resources planning and management. Journal of Water Resources Planning and Management, 136(4), 412–432.
  • Noiva, K., Fernández, J. E., & Wescoat, J. L., Jr. (2016). Cluster analysis of urban water supply and demand: Toward large-scale comparative sustainability planning. Sustainable Cities and Society, 27, 484–496.
  • Oe-Doe, U. (2013). Comparing the impacts of northeast hurricanes on energy infrastructure. Technical report. https://www.energy.gov/sites/prod/files/2013/04/f0/Northeast%20Storm%20Comparison_FINAL_041513b.pdf.
  • Ogallo, L. (1989). The spatial and temporal patterns of the east African seasonal rainfall derived from principal component analysis. International Journal of Climatology, 9(2), 145–167.
  • Oh, H.-S., & Yamauchi, H. (1974). An economic analysis of the patterns and trends in water consumption within the service area of the Honolulu board of water supply (pp. 84). Honolulu: Univ. of Honolulu Rep.
  • Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068–1072.
  • Oyebode, O. K., Otieno, F. A. O., & Adeyemo, J. (2014). Review of three data-driven modelling techniques for hydrological modelling and forecasting. http://hdl.handle.net/10321/2381.
  • Pai, P.-F., & Lin, C.-S. (2005). Using support vector machines to forecast the production values of the machinery industry in Taiwan. The International Journal of Advanced Manufacturing Technology, 27(1), 205–210.
  • Pan, T., & Wang, R. (2004). State space neural networks for short term rainfall-runoff forecasting. Journal of Hydrology, 297(1), 34–50.
  • Pan, Z., Chen, Y., Kang, L., & Zhang, Y. (1995). Parameter estimation by genetic algorithms for nonlinear regression. High Technology, 946, 953.
  • Parikh, J., Purohit, P., & Maitra, P. (2007). Demand projections of petroleum products and natural gas in India. Energy, 32(10), 1825–1837.
  • Parinet, B., Lhote, A., & Legube, B. (2004). Principal component analysis: An appropriate tool for water quality evaluation and management? Application to a tropical lake system. Ecological Modelling, 178(3), 295–311.
  • Parson, O., Ghosh, S., Weal, M., & Rogers, A. (2014). An unsupervised training method for non-intrusive appliance load monitoring. Artificial Intelligence, 217, 1–19.
  • Pastor-Jabaloyes, L., Arregui, F., & Cobacho, R. (2018). Water end use disaggregation based on soft computing techniques. Water, 10(1), 46.
  • Pelikan, E., & Simunek, M. (2005). Risk management of the natural gas consumption using genetic algorithms. Neural Network World, 15(5), 425–436.
  • Peng, T., Zhou, J., Zhang, C., & Zheng, Y. (2017). Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and adaboost-extreme learning machine. Energy Conversion and Management, 153, 589–602.
  • Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532–1543). Doha, Qatar.
  • Piga, D., Cominola, A., Giuliani, M., Castelletti, A., Rizzoli, A. E., et al. (2016). Sparse optimization for automated energy end use disaggregation. IEEE Transactions on Control Systems and Technology, 24(3), 1044–1051.
  • Qin, Y., Curmi, E., Kopec, G. M., Allwood, J. M., & Richards, K. S. (2015). China’s energy-water nexus–Assessment of the energy sector’s compliance with the ?3 red lines? industrial water policy. Energy Policy, 82, 131–143.
  • Ralaivola, L. (2004). Dynamical modeling with kernels for nonlinear time series prediction. In Advances in neural information processing systems (pp. 129–136). Vancouver, BC.
  • Ramirez, M. C. V., de Campos Velho, H. F., & Ferreira, N. J. (2005). Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. Journal of Hydrology, 301(1), 146–162.
  • Rani, D., Jain, S. K., Srivastava, D. K., & Perumal, M. (2013). Genetic algorithms and their applications to water resources systems. In Metaheuristics in Water, Geotechnical and Transport Engineering (pp. 43–78). Amsterdam, Netherlands: Elsevier.
  • Rani, D., & Moreira, M. M. (2010). Simulation–Optimization modeling: A survey and potential application in reservoir systems operation. Water Resources Management, 24(6), 1107–1138.
  • Ranjan, M., & Jain, V. (1999). Modelling of electrical energy consumption in Delhi. Energy, 24(4), 351–361.
  • Rasul, G. (2014). Food, water, and energy security in south Asia: A nexus perspective from the Hindu Kush Himalayan region? Environmental Science & Policy, 39, 35–48.
  • Rasul, G. (2016). Managing the food, water, and energy nexus for achieving the sustainable development goals in south Asia. Environmental Development, 18, 14–25.
  • Ren, Y., Suganthan, P., & Srikanth, N. (2015). Ensemble methods for wind and solar power forecasting? A state-of-the-art review. Renewable and Sustainable Energy Reviews, 50, 82–91.
  • Reynolds, A. P., Richards, G., de la Iglesia, B., & Rayward-Smith, V. J. (2006). Clustering rules: A comparison of partitioning and hierarchical clustering algorithms. Journal of Mathematical Modelling and Algorithms, 5(4), 475–504.
  • Reynolds, K., & Madden, L. (1988). Analysis of epidemics using spatio-temporal autocorrelation. Phytopathology, 78(2), 240–246.
  • Rothausen, S. G., & Conway, D. (2011). Greenhouse-gas emissions from energy use in the water sector. Nature Climate Change, 1(4), 210.
  • Rue, H., & Held, L. (2005). Gaussian Markov random fields: Theory and applications. Boca Raton, FL: CRC press.
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533.
  • Sabo, K., Scitovski, R., Vazler, I., & Zekić-Sušac, M. (2011). Mathematical models of natural gas consumption. Energy Conversion and Management, 52(3), 1721–1727.
  • Sahoo, S., & Jha, M. K. (2013). Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeology Journal, 21(8), 1865–1887.
  • Sahoo, S., Russo, T., Elliott, J., & Foster, I. (2017). Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US. Water Resources Research, 53(5), 3878–3895.
  • SAS Institute Inc. (2003). S/STAT user’s guide. Cary: SAS Institute Inc.
  • Sauhats, A., Petrichenko, R., Broka, Z., Baltputnis, K., & Sobolevskis, D. (2016). Ann-based forecasting of hydropower reservoir inflow. In Power and Electrical Engineering of Riga Technical University (RTUCON), 2016 57th International Scientific Conference (pp. 1–6). Riga, Latvia: IEEE.
  • Schleich, J., & Hillenbrand, T. (2009). Determinants of residential water demand in Germany. Ecological Economics, 68(6), 1756–1769.
  • Scott, C. A., Kurian, M., & Wescoat, J. L. (2015). The water-energy-food nexus: Enhancing adaptive capacity to complex global challenges. In  M. Kurian & R. Ardakanian (Eds.), Governing the nexus (pp. 15–38). Springer.
  • Scott, C. A., Pierce, S. A., Pasqualetti, M. J., Jones, A. L., Montz, B. E., & Hoover, J. H. (2011). Policy and institutional dimensions of the water–Energy nexus. Energy Policy, 39(10), 6622–6630.
  • Sharma, N., Sharma, P., Irwin, D., & Shenoy, P. (2011). Predicting solar generation from weather forecasts using machine learning. In Smart Grid Communications (SmartGridComm), 2011 IEEE International Conference (pp. 528–533). Brussels, Belgium: IEEE.
  • Shekhar, S., Jiang, Z., Ali, R. Y., Eftelioglu, E., Tang, X., Gunturi, V., & Zhou, X. (2015). Spatiotemporal data mining: A computational perspective. ISPRS International Journal of Geo-Information, 4(4), 2306–2338.
  • Shuckburgh, E., Mitchell, D., & Stott, P. (2017). Hurricanes Harvey, Irma and Maria: How natural were these? Natural disasters? Weather, 72(11), 353–354.
  • Siddiqi, A., Kajenthira, A., & Anadón, L. D. (2013). Bridging decision networks for integrated water and energy planning. Energy Strategy Reviews, 2(1), 46–58.
  • Smith, J. A. (1988). A model of daily municipal water use for short-term forecasting. Water Resources Research, 24(2), 201–206.
  • Smith, R. C. (2013). Uncertainty quantification: Theory, implementation, and applications (Vol. 12). Philadelphia, PA, USA: Siam.
  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.
  • Solomatine, D. P., & Ostfeld, A. (2008). Data-driven modelling: Some past experiences and new approaches. Journal of Hydroinformatics, 10(1), 3–22.
  • Solomatine, D. P., & Shrestha, D. L. (2004). Adaboost. rt: A boosting algorithm for regression problems. Neural Networks, 2, 1163–1168.
  • Spang, E. S., & Loge, F. J. (2015). A high-resolution approach to mapping energy flows through water infrastructure systems. Journal of Industrial Ecology, 19(4), 656–665.
  • Spruston, S., Kolesov, A., & Main, D. (2012). Leveraging the energy of the group to manage the energy of the utility: The nwwbi adopts industry tools to improve energy performance. Proceedings of the Water Environment Federation, 2012(14), 2383–2402.
  • Storlie, C. B., & Helton, J. C. (2008a). Multiple predictor smoothing methods for sensitivity analysis: Description of techniques. Reliability Engineering & System Safety, 93(1), 28–54.
  • Suh, D., Kim, H., & Kim, J. (2015). Estimation of water demand in residential building using machine learning approach. In IT Convergence and Security (ICITCS), 2015 5th International Conference (pp. 1–2). Kuala Lumpur, Malaysia: IEEE.
  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). Cambridge, Massachusetts: MIT Press Cambridge.
  • Suykens, J., Lemmerling, P., Favoreel, W., De Moor, B., Crepel, M., & Briol, P. (1996). Modelling the Belgian gas consumption using neural networks. Neural Processing Letters, 4(3), 157–166.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A. (2015). Going deeper with convolutions. Boston, Massachusetts: CVPR.
  • Tabor, J., & Spurek, P. (2014). Cross-entropy clustering. Pattern Recognition, 47(9), 3046–3059.
  • Tang, L., Wang, Z., Li, X., Yu, L., & Zhang, G. (2015). A novel hybrid fa-based lssvr learning paradigm for hydropower consumption forecasting. Journal of Systems Science and Complexity, 28(5), 1080–1101.
  • Taspnar, F., Celebi, N., & Tutkun, N. (2013). Forecasting of daily natural gas consumption on regional basis in turkey using various computational methods. Energy and Buildings, 56, 23–31.
  • Tayebiyan, A., Ali, T. A. M., Ghazali, A. H., & Malek, M. (2016). Optimization of exclusive release policies for hydropower reservoir operation by using genetic algorithm. Water Resources Management, 30(3), 1203–1216.
  • Tidwell, V. C., & Pebbles, V. (2015). The water-energy-environment nexus in the great lakes region: The case for integrated resource planning. Energy and Environment Research, 5(2), 1.
  • Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L., … Somerville, C., et al. (2009). Beneficial biofuels? The food, energy, and environment trilemma. Science, 325(5938), 270–271.
  • Tinker, A., Bame, S., Burt, R., & Speed, M. (2005). Impact of “non-behavioral fixed effects” on water use: Weather and economic construction differences on residential water use in Austin, Texas. Electronic Green Journal, 1, 22.
  • Tiwari, M. K., & Adamowski, J. F. (2014). Medium-term urban water demand forecasting with limited data using an ensemble wavelet–Bootstrap machine-learning approach. Journal of Water Resources Planning and Management, 141(2), 04014053.
  • Tiwari, M. K., & Adamowski, J. F. (2017). An ensemble wavelet bootstrap machine learning approach to water demand forecasting: A case study in the city of Calgary, Canada. Urban Water Journal, 14(2), 185–201.
  • Tiwari, M. K., & Chatterjee, C. (2010). Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (banns). Journal of Hydrology, 382(1), 20–33.
  • Torres, M. E., Colominas, M. A., Schlotthauer, G., & Flandrin, P. (2011). A complete ensemble empirical mode decomposition with adaptive noise. In Acoustics, speech and signal processing (ICASSP), 2011 IEEE international conference (pp. 4144–4147). Prague, Czech Republic: IEEE.
  • Tso, G. K., & Yau, K. K. (2003). A study of domestic energy usage patterns in Hong Kong. Energy, 28(15), 1671–1682.
  • Tso, G. K., & Yau, K. K. (2007). Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy, 32(9), 1761–1768.
  • Tsoi, A. C., & Back, A. D. (1994). Locally recurrent globally feedforward networks: A critical review of architectures. IEEE Transactions on Neural Networks, 5(2), 229–239.
  • Tu-Qiao, C. L. Z. (2006). Hourly water demand forecast model based on Bayesian least squares support vector machine [j]. Journal of Tianjin University, 9, 005.
  • UNDP (2017). Regional overview: Impact of hurricanes Irma and Maria. Technical report. https://reliefweb.int/sites/reliefweb.int/files/resources/UNDP%20%20Regional%20Overview%20Impact%20of%20Hurricanes%20Irma%20and%20Maria.pdf.
  • van Vliet, M. T., Sheffield, J., Wiberg, D., & Wood, E. F. (2016). Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environmental Research Letters, 11(12), 124021.
  • Vapnik, V. (2013). The nature of statistical learning theory. Berlin, Germany: Springer Science & Business Media.
  • Vapnik, V. N., & Vapnik, V. (1998). Statistical learning theory (Vol. 1). Hokoben, NJ, USA: Wiley New York.
  • Verbeke, G. (1997). Linear mixed models for longitudinal data. In Linear mixed models in practice (pp. 63–153). New York, NY: Springer.
  • Vitter, J., & Webber, M. (2018). A non-intrusive approach for classifying residential water events using coincident electricity data. Environmental Modelling & Software, 100, 302–313.
  • Wafae E. H., Driss O., Bouziane A., & Hasnaoui M. D. (2016). Genetic algorithm applied to reservoir operation optimization with emphasis on the Moroccan context. In Logistics Operations Management (GOL), 2016 3rd International Conference (pp. 1–4). Fez, Morocco: IEEE.
  • Wang, J.-X., Wu, J.-L., & Xiao, H. (2017). Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Physical Review Fluids, 2(3), 034603.
  • Wang, W., Xu, Z., & Weizhen, L. J. (2003). Three improved neural network models for air quality forecasting. Engineering Computations, 20(2), 192–210.
  • Wang, W.-C., Xu, D.-M., Chau, K.-W., & Chen, S. (2013). Improved annual rainfall-runoff forecasting using pso–Svm model based on eemd. Journal of Hydroinformatics, 15(4), 1377–1390.
  • Wang, Y., & Chen, L. (2014). Multi-exemplar based clustering for imbalanced data. In Control Automation Robotics & Vision (ICARCV), 2014 13th International Conference (pp. 1068–1073). Singapore, Singapore: IEEE.
  • Wani, O., Beckers, J. V., Weerts, A. H., & Solomatine, D. P. (2017). Residual uncertainty estimation using instance-based learning with applications to hydrologic forecasting. Hydrology and Earth System Sciences, 21(8), 4021–4036.
  • Webber, M. E. (2013). Effect of drought on the energy sector. Technical report. https://www.energy.senate.gov/public/index.cfm/files/serve?File_id=D0B0A3ED-6C12-46DB-B87D-3762DE9A1AF0.
  • Welch, R. L., Ruffing, S. M., & Venayagamoorthy, G. K. (2009). Comparison of feedforward and feedback neural network architectures for short term wind speed prediction. In Neural Networks, 2009. IJCNN 2009. International Joint Conference (pp. 3335–3340). Atlanta, GA, USA: IEEE.
  • Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1(4), 339–356.
  • Wheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161–187.
  • Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1(2), 270–280.
  • Witten, D. M. (2013). Penalized unsupervised learning with outliers. Statistics and Its Interface, 6(2), 211.
  • Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Burlington, Massachusetts: Morgan Kaufmann.
  • Yan, Y. Y. (1998). Climate and residential electricity consumption in Hong Kong. Energy, 23(1), 17–20.
  • Yang, X.-S., & He, X. (2013). Firefly algorithm: Recent advances and applications. International Journal of Swarm Intelligence, 1(1), 36–50.
  • Yazdekhasti, S., Piratla, K. R., Atamturktur, S., & Khan, A. A. (2017). Novel vibration-based technique for detecting water pipeline leakage. Structure and Infrastructure Engineering, 13(6), 731–742.
  • Yin, Z., Jia, B., Wu, S., Dai, J., & Tang, D. (2018). Comprehensive forecast of urban water-energy demand based on a neural network model. Water, 10(4), 385.
  • Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818–833). Zurich, Switzerland: Springer.
  • Zeng, J., & Qiao, W. (2011). Support vector machine-based short-term wind power forecasting. In Power Systems Conference and Exposition (PSCE), 2011 IEEE/PES (pp. 1–8). Phoenix, AZ, USA: IEEE.
  • Zeng, R., Cai, X., Ringler, C., & Zhu, T. (2017). Hydropower versus irrigation? An analysis of global patterns. Environmental Research Letters, 12(3), 034006.
  • Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501–514.
  • Zhang, H., Du, Q., Yao, M., & Ren, F. (2016). Evaluation and clustering maps of groundwater wells in the red beds of Chengdu, Sichuan, China. Sustainability, 8(1), 87.
  • Zhang, H. H., & Brown, D. F. (2005). Understanding urban residential water use in Beijing and Tianjin, China. Habitat International, 29(3), 469–491.
  • Zhang, J., & Yang, Y. (2003). Robustness of regularized linear classification methods in text categorization. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval (pp. 190–197). Toronto, Canada: ACM.
  • Zhang, W., & Yang, J. (2015). Forecasting natural gas consumption in China by Bayesian model averaging. Energy Reports, 1, 216–220.
  • Zhou, Z.-H. (2009). Ensemble Learning (pp. 270–273). Boston, MA: Springer US.
  • Zou, H., Zou, Z., & Wang, X. (2015). An enhanced k-means algorithm for water quality analysis of the Haihe River in China. International Journal of Environmental Research and Public Health, 12(11), 14400–14413.