4,827
Views
26
CrossRef citations to date
0
Altmetric
Original Research Article

The application of ResU-net and OBIA for landslide detection from multi-temporal Sentinel-2 images

ORCID Icon, ORCID Icon & ORCID Icon
Pages 961-985 | Received 13 Sep 2021, Accepted 13 Jan 2022, Published online: 14 Feb 2022

References

  • Aimaiti, Y., Liu, W., Yamazaki, F., & Maruyama, Y. (2019). Earthquake-induced landslide mapping for the 2018 Hokkaido Eastern Iburi Earthquake Using PALSAR-2 data. Remote Sensing, 11(20), 2351.
  • Baatz, M., Hoffmann, C., & Willhauck, G. (2008). Progressing from object-based to object-oriented image analysis. In Object-based image analysis (pp. 29–42). Berlin, Heidelberg: Springer.
  • Bacha, A. S., Van Der Werff, H., Shafique, M., & Khan, H. (2020). Transferability of object-based image analysis approaches for landslide detection in the Himalaya Mountains of northern Pakistan. International Journal of Remote Sensing, 41(9), 3390–3410.
  • Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258.
  • Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., … Tiede, D. (2014). Geographic object-based image analysis–towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180–191.
  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.
  • Chen, T., Trinder, J. C., & Niu, R. (2017). Object-oriented landslide mapping using ZY-3 satellite imagery, random forest and mathematical morphology, for the Three-Gorges Reservoir, China. Remote Sensing, 9(4), 333.
  • Chen, Y., Ming, D., & Lv, X. (2019). Superpixel based land cover classification of VHR satellite image combining multi-scale CNN and scale parameter estimation. Earth Science Informatics, 12(3), 341–363.
  • Dabiri, Z., Hölbling, D., Abad, L., Helgason, J. K., Sæmundsson, Þ., & Tiede, D. (2020). Assessment of landslide-induced geomorphological changes in Hítardalur Valley, Iceland, using sentinel-1 and sentinel-2 data. Applied Sciences, 10(17), 5848.
  • Definiens, A. (2006). Definiens professional 5 user guide. Definiens AG, Munich.
  • Doshida, S. (2020). Evaluation of secondary landslide susceptibility for the rescue activity using LiDAR UAV data. In Workshop on world landslide forum (pp. 283–287). Cham: Springer.
  • Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S. R., Tiede, D., & Aryal, J. (2019, Jan). Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. (In English), Remote Sens-Basel, 11(2), 196. doi: ARTN 196
  • Ghorbanzadeh, O., Crivellari, A., Ghamisi, P., Shahabi, H., & Blaschke, T. (2021). A comprehensive transferability evaluation of U-net and ResU-Net for landslide detection from Sentinel-2 data. Scientific Reports, 11(1), 1–20.
  • Ghorbanzadeh, O., Tiede, D., Wendt, L., Sudmanns, M., & Lang, S. (2020). Transferable instance segmentation of dwellings in a refugee camp - integrating CNN and OBIA. European Journal of Remote Sensing, 1–14. doi:10.1080/22797254.2020.1759456
  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomo, 31(1–4), 181–216.
  • Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1–2), 42–66.
  • Hay, G., & Blaschke, T. (2010). Special issue on Geographic Object-Based Image Analysis (GEOBIA). PE&RS, Photogrammetric Engineering & Remote Sensing, 76(2), 99–202.
  • Hölbling, D., Füreder, P., Antolini, F., Cigna, F., Casagli, N., & Lang, S. (2012). A semi-automated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories. Remote Sensing, 4(5), 1310–1336.
  • Kawamura, S., Kawajiri, S., Hirose, W., & Watanabe, T. (2019). Slope failures/landslides over a wide area in the 2018 Hokkaido Eastern Iburi earthquake. Soils and Foundations, 59(6), 2376–2395.
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv Preprint arXiv:1412.6980.
  • Lang, S., Hay, G. J., Baraldi, A., Tiede, D., & Blaschke, T. (2019). Geobia achievements and spatial opportunities in the era of big earth observation data. ISPRS International Journal of Geo-Information, 8(11), 474.
  • Lei, T., Xue, D., Lv, Z., Li, S., Zhang, Y., & Nandi, A. K. (2018). Unsupervised change detection using fast fuzzy clustering for landslide mapping from very high-resolution images. Remote Sens-Basel, 10(9), 1381.
  • Liu, P., Wei, Y., Wang, Q., Chen, Y., & Xie, J. (2020). Research on post-earthquake landslide extraction algorithm based on improved U-Net model. Remote Sensing, 12(5), 894.
  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440.
  • Lu, H., Ma, L., Fu, X., Liu, C., Wang, Z., Tang, M., & Li, N. (2020). Landslides information extraction using object-oriented image analysis paradigm based on deep learning and transfer learning. Remote Sensing, 12(5), 752.
  • Ma, L., Zhu, X., Qiu, C., Blaschke, T., & Li, M. (2021). Advances of local climate zone mapping and its practice using object-based image analysis. Atmosphere, 12(9), 1146. [2021]. Available. https://www.mdpi.com/2073-4433/12/9/1146
  • Melis, M. T., Da Pelo, S., Erbì, I., Loche, M., Deiana, G., Demurtas, V., & Scaringi, G. (2020). Thermal remote sensing from UAVs: A review on methods in coastal cliffs prone to landslides. Remote Sens-Basel, 12(12), 1971.
  • Mondini, A. C., Chang, K.-T., & Yin, H.-Y. (2011). Combining multiple change detection indices for mapping landslides triggered by typhoons. Geomorphology, 134(3–4), 440–451.
  • Mondini, A. C., Guzzetti, F., Chang, K.-T., Monserrat, O., Martha, T. R., & Manconi, A. (2021). Landslide failures detection and mapping using synthetic aperture radar: Past, present and future. Earth-Science Reviews, 1, 103574.
  • Mondini, A., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., & Ardizzone, F. (2011). Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sensing of Environment, 115(7), 1743–1757.
  • Munyati, C. (2018). Optimising multiresolution segmentation: Delineating savannah vegetation boundaries in the Kruger National Park, South Africa, using Sentinel 2 MSI imagery. International Journal of Remote Sensing, 39(18), 5997–6019.
  • Naboureh, A., Bian, J., Lei, G., & Li, A. (2021). A review of land use/land cover change mapping in the China-Central Asia-West Asia economic corridor countries. Big Earth Data, 5(2), 237–257.
  • Nava, L., Monserrat, O., & Catani, F. (2021). Improving landslide detection on sar data through deep learning. arXiv Preprint arXiv:2105.00782.
  • Nhu, V.-H., Mohammadi, A., Shahabi, H., Ahmad, B. B., Al-Ansari, N., Shirzadi, A., … Nguyen, H. (2020). Landslide detection and susceptibility modeling on Cameron Highlands (Malaysia): A comparison between random forest, logistic regression and logistic model tree algorithms. Forests, 11(8), 830.
  • Osanai, N., Yamada, T., Hayashi, S.-I., Kastura, S., Furuichi, T., Yanai, S., … Miyazaki, M. (2019). Characteristics of landslides caused by the 2018 Hokkaido Eastern Iburi Earthquake. Landslides, 16(8), 1517–1528.
  • Ozaki, M., & Taku, K. (2014). 1: 200,000 land geological map in the Ishikari depression and its surrounding area with explanatory note. Seamless Geoinformation of Coastal Zone “Southern Coastal Zone of the Ishikari Depression”, Seamless Geological Map of Costal Zone S-4, Geological Survey of Japan ALST.
  • Ozturk, U., Saito, H., Matsushi, Y., Crisologo, I., & Schwanghart, W. (2021). Can global rainfall estimates (satellite and reanalysis) aid landslide hindcasting? Landslides, 18(9), 3119–3133.
  • Pourghasemi, H. R., & Rahmati, O. (2018). Prediction of the landslide susceptibility: Which algorithm, which precision? Catena, 162, 177–192.
  • Prakash, N., Manconi, A., Loew, S., Heřmánková, B., Bubová, K., Komarc, M., … Tomčík, M. (2021). A new strategy to map landslides with a generalized convolutional neural network. Scientific Reports, 11(1), 1–15.
  • Qi, W., Wei, M., Yang, W., Xu, C., & Ma, C. (2020). Automatic mapping of landslides by the ResU-Net. Remote Sens-Basel, 12(15), 2487.
  • Rahman, M., Ningsheng, C., Mahmud, G. I., Islam, M. M., Pourghasemi, H. R., Ahmad, H., … Dewan, A. (2021). Flooding and its relationship with land cover change, population growth, and road density. Geoscience Frontiers, 12(6), 101224.
  • Ronneberger, O., Fischer, P., & Brox, T., “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, 2015: Cham: Springer, pp. 234–241.
  • Shahabi, H., Jarihani, B., Tavakkoli Piralilou, S., Chittleborough, D., Avand, M., & Ghorbanzadeh, O. (2019). A semi-automated object-based gully networks detection using different machine learning models: A case study of bowen catchment, Queensland, Australia. Sensors, 19(22), 4893.
  • Soares, L. P., Dias, H. C., & Grohmann, C. H. (2020). Landslide segmentation with U-Net: Evaluating different sampling methods and patch sizes. arXiv Preprint arXiv:2007.06672.
  • Su, Z., Chow, J. K., Tan, P. S.,Wu, J., Ho, Y. K., & Wang, Y.-H. (2020). Deep convolutional neural network–based pixel-wise landslide inventory mapping. Landslides, 18(4), 1421–1443.
  • Tavakkoli Piralilou, S., Shahabi, H., Jarihani, B., Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., and Aryal, J. (2019). Landslide detection using multi-scale image segmentation and different machine learning models in the Higher Himalayas. Remote Sens-Basel, 11(21), 2575. [2019]. Available. https://www.mdpi.com/2072-4292/11/21/2575
  • Tehrani, F. S., Santinelli, G., & Herrera Herrera, M. (2021). Multi-regional landslide detection using combined unsupervised and supervised machine learning. Geomatics, Natural Hazards and Risk, 12(1), 1015–1038.
  • Xu, Q., Ouyang, C., Jiang, T., Fan, X., & Cheng, D. (2019). DFPENet-geology: A deep learning framework for high precision recognition and segmentation of co-seismic landslides. arXiv Preprint arXiv:1908.10907.
  • Yamagishi, H., & Yamazaki, F. (2018). Landslides by the 2018 Hokkaido Iburi-Tobu earthquake on september 6. Landslides, 15(12), 2521–2524.
  • Ye, C., Li, Y., Cui, P., Liang, L., Pirasteh, S., Marcato, J., … Li, J. (2019). Landslide detection of hyperspectral remote sensing data based on deep learning with constrains. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12), 5047–5060.
  • Yi, Y., & Zhang, W. (2020). A new deep-learning-based approach for earthquake-triggered landslide detection from single-temporal rapideye satellite imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6166–6176.
  • Zhang, C., Atkinson, P. M., George, C., Wen, Z., Diazgranados, M., & Gerard, F. (2020). Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 280–291.
  • Zhang, S., Li, R., Wang, F., & Iio, A. (2019). Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake, Northern Japan. Landslides, 16(9), 1691–1708.
  • Zhang, Z., Liu, Q., & Wang, Y. (2018). Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters, 15(5), 749–753.
  • Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36.