820
Views
0
CrossRef citations to date
0
Altmetric
Original Research Article

A new implementation of FLEXPART with Enviro-HIRLAM meteorological input, and a case study during a heavy air pollution event

ORCID Icon, , , , , , , , , , , , , , , , , , , & show all
Pages 397-434 | Received 01 Sep 2023, Accepted 15 Jan 2024, Published online: 23 Feb 2024

References

  • Ahrens, C. D., & Henson, R. (2021). Meteorology Today: An introduction to weather, climate and the environment. Cengage Learning.
  • Baklanov, A. (2008). Integrated meteorological and atmospheric chemical transport modeling: Perspectives and strategy for HIRLAM/HARMONIE. HIRLAM Newsletter, 53, 68–78.
  • Baklanov, A., Molina, L., & Gauss, M. (2016). Megacities, air quality and climate. Atmospheric Environment, 126, 235–249. https://doi.org/10.1016/j.atmosenv.2015.11.059
  • Baklanov, A. A., & Nuterman, R. B. (2009). Multi-scale atmospheric environment modelling for urban areas. Advances in Science and Research, 3(1), 53–57. https://doi.org/10.5194/asr-3-53-2009
  • Baklanov, A., Smith Korsholm, U., Nuterman, R., Mahura, A., Nielsen, K. P., Sass, B. H., Rasmussen, A., Zakey, A., Kaas, E., Kurganskiy, A., Sørensen, B., & González-Aparicio, I. (2017). Enviro-HIRLAM online integrated meteorology–chemistry modelling system: Strategy, methodology, developments and applications (v7.2). Geoscientific Model Development, 10(8), 2971–2999. https://doi.org/10.5194/gmd-10-2971-2017
  • Bei, N., Li, X., Tie, X., Zhao, L., Wu, J., Li, X., Liu, L., Shen, Z., & Li, G. (2020). Impact of synoptic patterns and meteorological elements on the wintertime haze in the Beijing-Tianjin-Hebei region, China from 2013 to 2017. Science of the Total Environment, 704, 135210. https://doi.org/10.1016/j.scitotenv.2019.135210
  • Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., & Wotawa, G. (2013). The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geoscientific Model Development, 6(6), 1889–1904. https://doi.org/10.5194/gmd-6-1889-2013
  • Carrassi, A., Bocquet, M., Bertino, L., & Evensen, G. (2018). Data assimilation in the geosciences: An overview of methods, issues, and perspectives. WIREs Climate Change, 9(5), e535. https://doi.org/10.1002/wcc.535
  • Cassiani, M., Stohl, A., Olivié, D., Seland, Ø., Bethke, I., Pisso, I., & Iversen, T. (2016). The offline Lagrangian particle model FLEXPART–NorESM/CAM (v1): Model description and comparisons with the online NorESM transport scheme and with the reference FLEXPART model. Geoscientific Model Development, 9(11), 4029–4048. https://doi.org/10.5194/gmd-9-4029-2016
  • Cheng, Y., He, K., Du, Z., Zheng, M., Duan, F., & Ma, Y. (2015). Humidity plays an important role in the PM2.5 pollution in Beijing. Environmental Pollution, 197, 68–75. https://doi.org/10.1016/j.envpol.2014.11.028
  • Chen, D., Xavier, C., Clusius, P., Nieminen, T., Roldin, P., Qi, X., & Boy, M. (2021). A modelling study of OH, NO3 and H2SO4 in 2007–2018 at SMEAR II, Finland: Analysis of long-term trends. Environmental Science: Atmospheres, 1(6), 449–472. https://doi.org/10.1039/D1EA00020A
  • CSC – IT Center for Science. Technical details about Mahti. (2021). Retrieved November 25, 2022 https://docs.csc.fi/computing/systems-mahti/
  • CSC – IT Center for Science. Technical details about Puhti. (2022). Retrieved November 25, 2022 https://docs.csc.fi/computing/systems-puhti/,
  • ElShafeey, N., Eid, M. M., Mahmoud, A. S., & Zakey, A. S. Risk assessment of possible hazards of El Dabaa nuclear power plant using FLEXPART Model. Engineering Proceedings, 31, 86. https://doi.org/10.3390/ASEC2022-13964. (2023).
  • Giannaros, T. M., Melas, D., & Ziomas, I. (2017). Performance evaluation of the weather research and forecasting (WRF) model for assessing wind resource in Greece. Renewable Energy, 102-A, 190–198. https://doi.org/10.1016/j.renene.2016.10.033
  • Grell, G. A., Dudhia, J., & Stauffer, D. (1994). A description of the fifth generation Penn State/NCAR mesoscale Model (MM5). NCAR Technical Note Ncar/TN-398+str. https://doi.org/10.5065/D60Z716B
  • Guo, L., Chen, B., Zhang, H., & Zhang, Y. (2020). A new approach combining a simplified FLEXPART model and a bayesian-RAT method for forecasting PM10 and PM2.5. Environmental Science and Pollution Research, 27, 2165–2183. https://doi.org/10.1007/s11356-019-06605-w
  • Hakala, S., Vakkari, V., Bianchi, F., Dada, L., Deng, C., Dällenbach, K. R., Fu, Y., Jiang, J., Kangasluoma, J., Kujansuu, J., Liu, Y., Petäjä, T., Wang, L., Yan, C., Kulmala, M., & Paasonen, P. (2022). Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing. Environmental Science: Atmospheres, 2(2), 146–164. https://doi.org/10.1039/D1EA00089F
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J. … Villaume, S. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
  • He, J., Zhao, M., Zhang, B., Wang, P., Zhang, D., Wang, M., Liu, B., Li, N., Yu, K., Zhang, Y., Zhou, T., & RJing, B. (2020). The impact of steel emissions on air quality and pollution control strategy in Caofeidian, North China. Atmospheric Pollution Research, 11(7), 1238–1247. https://doi.org/10.1016/j.apr.2020.04.012
  • Kalverla, P., Steeneveld, G.-J., Ronda, R., & Holtslag, A. A. M. (2019). Evaluation of three mainstream numerical weather prediction models with observations from meteorological mast IJmuiden at the North Sea. Wind Energy, 22, 34–48. https://doi.org/10.1002/we.2267
  • Katharopoulos, I., Brunner, D., Emmenegger, L., Leuenberger, M., & Henne, S. (2022). Lagrangian particle dispersion models in the Grey Zone of turbulence: Adaptations to FLEXPART-COSMO for simulations at 1 km grid resolution. Boundary-Layer Meteorology, 185(1), 129–160. https://doi.org/10.1007/s10546-022-00728-3
  • Liu, Y., Yan, C., Feng, Z., Zheng, F., Fan, X., Zhang, Y., Li, C., Zhou, Y., Lin, Z., Guo, Y., Zhang, Y., Ma, L., Zhou, W., Liu, Z., Dada, L., Dällenbach, K., Kontkanen, J., Cai, R. … Kulmala, M. (2020). Continuous and comprehensive atmospheric observations in Beijing: A station to understand the complex urban atmospheric environment. Big Earth Data, 4(3), 295–321. https://doi.org/10.1080/20964471.2020.1798707
  • Madala, S., Prasad, K. B. R. R. H., Srinivas, C. V., & Satyanarayana, A. N. V. (2016). Air quality simulation of NOX over the tropical coastal city Chennai in southern India with FLEXPART-WRF. Atmospheric Environment, 128, 65–81. https://doi.org/10.1016/j.atmosenv.2015.12.052
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. (2000). Department of Commerce: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6M043C6
  • Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., & Upstill-Goddard, R. C. (2000). In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1), 373–387. https://doi.org/10.1029/1999GB900091
  • Paris, J.-D., Stohl, A., Nédélec, P., Arshinov, M. Y., Panchenko, M. V., Shmargunov, V. P., Law, K. S., Belan, B. D., & Ciais, P. (2009). Wildfire smoke in the Siberian Arctic in summer: Source characterization and plume evolution from airborne measurements. Atmospheric Chemistry & Physics, 9(23), 9315–9327. https://doi.org/10.5194/acp-9-9315-2009
  • Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J. … Stohl, A. (2019). The Lagrangian particle dispersion model FLEXPART version 10.4. Geoscientific Model Development, 12(12), 4955–4997. https://doi.org/10.5194/gmd-12-4955-2019
  • Randriamampianina, R., & Storto, A. (2008). Aladin-HARMONIE/Norway and its assimilation system—the implementation phase. HIRLAM Newsletter, 54, 20–30.
  • Schlager, C., Kirchengast, G., Fuchsberger, J., Kann, A., & Truhetz, H. (2019). A spatial evaluation of high-resolution wind fields from empirical and dynamical modeling in hilly and mountainous terrain. Geoscientific Model Development, 12(7), 2855–2873. https://doi.org/10.5194/gmd-12-2855-2019
  • Schulzweida, U. (2022). CDO User Guide (2.1.0). Zenodo. https://doi.org/10.5281/zenodo.7112925
  • Seibert, P. (2001). Inverse modelling with a Lagrangian particle dispersion model: Application to point releases over limited time intervals. Air Pollution Modeling and Its Application, XIV, 381–389. https://doi.org/10.1007/0-306-47460-3_38
  • Seibert, P., & Frank, A. (2004). Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmospheric Chemistry & Physics, 4(1), 51–63. https://doi.org/10.5194/acp-4-51-2004
  • Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., Koskinen, J., & Kukkonen, J. (2009). An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmospheric Chemistry & Physics, 9(18), 6833–6847. https://doi.org/10.5194/acp-9-6833-2009
  • Solbakken, K., & Birkelund, Y. Evaluation of the Weather Research and Forecasting (WRF) model with respect to wind in complex terrain. Journal of Physics: Conference Series, 1102 012011. https://doi.org/10.1088/1742-6596/1102/1/012011. (2018)
  • Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., & Petzold, A. (2005). The aerosol-climate model ECHAM5-HAM. Atmospheric Chemistry & Physics, 5(4), 1125–1156. https://doi.org/10.5194/acp-5-1125-2005
  • Stier, P., Feichter, J., Kloster, S., Vignati, E., & Wilson, J. (2006). Emission-induced nonlinearities in the global aerosol system: Results from the ECHAM5-HAM aerosol-climate model. Journal of Climate, 19(16), 3845–3862. https://doi.org/10.1175/JCLI3772.1
  • Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U. … Zhu, T. (2015). Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chemistry & Physics, 15(18), 10529–10566. https://doi.org/10.5194/acp-15-10529-2015
  • Stohl, A., Eckhardt, S., Forster, C., James, P., Spichtinger, N., & Seibert, P. (2002). A replacement for simple back trajectory calculations in the interpretation of atmospheric trace substance measurements. Atmospheric Environment, 36(29), 4635–4648. https://doi.org/10.1016/S1352-2310(02)00416-8
  • Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical Note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry & Physics, 5(9), 2461–2474. https://doi.org/10.5194/acp-5-2461-2005
  • Stohl, A., Hittenberger, M., & Wotawa, G. (1998). Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiments. Atmospheric Environment, 32(24), 4245–4264. https://doi.org/10.1016/S1352-2310(98)00184-8
  • Stohl, A., Seibert, P., & Forster, C. The FLEXPART Particle Dispersion Model Version 6.1 User Guide. (2005). Retrieved December 12, 2023. https://folk.nilu.no/~andreas/flexpart/flexpart61.pdf
  • Stohl, A., & Thomson, D. J. (1999). A density correction for Lagrangian particle dispersion models. Boundary-Layer Meteorology, 90, 155–167. https://doi.org/10.1023/A:1001741110696
  • Stohl, A., Wotawa, G., Seibert, P., & Kromp-Kolb, H. (1995). Interpolation errors in wind fields as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories. Journal of Applied Meteorology, 34(10), 2149–2165. https://doi.org/10.1175/1520-0450(1995)034<2149:IEIWFA>2.0.CO;2
  • Sun, B., & Wang, H. (2014). Moisture sources of semiarid grassland in China using the lagrangian particle Model FLEXPART. Journal of Climate, 27(6), 2457–2474. https://doi.org/10.1175/JCLI-D-13-00517.1
  • Tipka, A., Haimberger, L., & Seibert, P. (2020). Flex_extract v7.1.2 – a software package to retrieve and prepare ECMWF data for use in FLEXPART. Geoscientific Model Development, 13(11), 5277–5310. https://doi.org/10.5194/gmd-13-5277-2020
  • Undén, P., Rontu, L., Jarvinen, H., Lynch, P., Calvo Sánchez, F. J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., García-Moya, J. A., & Jones, C. (2002). HIRLAM-5 scientific documentation.
  • Verreyken, B., Brioude, J., & Evan, S. (2019). Development of turbulent scheme in the FLEXPART-AROME v1.2.1 lagrangian particle dispersion model. Geoscientific Model Development, 12(10), 4245–4259. https://doi.org/10.5194/gmd-12-4245-2019
  • Vignati, E., Wilson, J., & Stier, P. (2004). M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. Journal of Geophysical Research, 109(D22), D22202. https://doi.org/10.1029/2003JD004485
  • Wang, Y., Dörner, S., Donner, S., Böhnke, S., De Smedt, I., Dickerson, R. R., Dong, Z., He, H., Li, Z., Li, Z., Li, D., Liu, D., Ren, X., Theys, N., Wang, Y., Wang, Y., Wang, Z., Xu, H., Xu, J., & Wagner, T. (2019). Vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China plain and their relation to emission sources and effects of regional transport. Atmospheric Chemistry & Physics, 19(8), 5417–5449. 10.5194/acp-19-5417-2019
  • Wang, Y., Ma, Y., Yan, C., Yao, L., Cai, R., Li, S., Lin, Z., Zhao, X., Yin, R., Deng, C., Kangasluoma, J., He, X. C., Hakala, S., Fan, X., Chen, S., Ma, Q., Kerminen, V. M., Petäjä, T. … Kulmala, M. (2023). Sulfur dioxide transported from the residual Layer drives atmospheric nucleation during haze periods in Beijing. Geophysical Research Letters 50, 50(6). https://doi.org/10.1029/2022GL100514
  • Wang, Y., Yu, M., Wang, Y., Tang, G., Song, T., Zhou, P., Liu, Z., Hu, B., Ji, D., Wang, L., Zhu, X., Yan, C., Ehn, M., Gao, W., Pan, Y., Xin, J., Sun, Y., Kerminen, V.-M., Kulmala, M., & Petäjä, T. (2020). Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmospheric Chemistry & Physics, 20, 45–53. https://doi.org/10.5194/acp-20-45-2020
  • World Meteorological Organization (WMO). FM 92 GRIB edition 1. (2020). Retrieved November 19, 2022. https://community.wmo.int/activity-areas/wis/grib-edition-1
  • Xavier, C., Baykara, M., Wollesen de Jonge, R., Altstädter, B., Clusius, P., Vakkari, V., Thakur, R., Beck, L., Becagli, S., Severi, M., Traversi, R., Krejci, R., Tunved, P., Mazzola, M., Wehner, B., Sipilä, M., Kulmala, M., Boy, M., & Roldin, P. (2022). Secondary aerosol formation in marine Arctic environments: a model measurement comparison at Ny-Ålesund. Atmospheric Chemistry & Physics, 22(15), 10023–10043. https://doi.org/10.5194/acp-22-10023-2022
  • Zhang, H., Li, H., Zhang, Q., Zhang, Y., Zhang, W., Wang, X., Bi, F., Chai, F., Gao, J., Meng, L., Yang, T., Chen, Y., Cheng, Q., & Xia, F. (2017). Atmospheric Volatile Organic Compounds in a Typical Urban Area of Beijing. Pollution Characterization, Health Risk Assessment and Source Apportionment Atmosphere, 8(3), 61. https://doi.org/10.3390/atmos8030061
  • Zhao, D., Xin, J., Gong, C., Quan, J., Liu, G., Zhao, W., Liu, Z., & Song, T. (2019). The formation mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol radiative forcing and the atmospheric boundary layer stability. Science of the Total Environment, 692, 371–381. https://doi.org/10.1016/j.scitotenv.2019.07.255
  • Zhao, X. J., Zhao, P. S., Xu, J., Meng, W., Pu, W. W., Dong, F., He, D., & Shi, Q. F. (2013). Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmospheric Chemistry & Physics, 13(11), 5685–5696. https://doi.org/10.5194/acp-13-5685-2013
  • Zheng, G., Duan, F., Ma, Y., Zhang, Q., Huang, T., Kimoto, T., Cheng, Y., Su, H., & He, K. (2016). Episode-based evolution pattern analysis of haze pollution: Method Development and Results from Beijing, China. Environmental Science & Technology, 50(9), 4632–4641. https://doi.org/10.1021/acs.est.5b05593
  • Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Pöschl, U., Cheng, Y. F., & He, K. B. (2015). Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry & Physics, 15(6), 2969–2983. https://doi.org/10.5194/acp-15-2969-2015
  • Zheng, X. Y., Fu, Y. F., Yang, Y. J., & Liu, G. S. (2015). Impact of atmospheric circulations on aerosol distributions in autumn over eastern China: Observational evidence. Atmospheric Chemistry & Physics, 15, 12115–12138. https://doi.org/10.5194/acp-15-12115-2015
  • Zhu, C., Kanaya, Y., Takigawa, M., Ikeda, K., Tanimoto, H., Taketani, F., Miyakawa, T., Kobayashi, H., & Pisso, I. (2020). FLEXPART v10.1 simulation of source contributions to Arctic black carbon. Atmospheric Chemistry and Physics, 20(3), 1641–1656. https://doi.org/10.5194/acp-20-1641-2020
  • Zuo, C., Chen, J., Zhang, Y., Jiang, Y., Liu, M., Liu, H., Zhao, W., & Yan, X. (2023). Evaluation of four meteorological reanalysis datasets for satellite-based PM2.5 retrieval over China. Atmospheric Environment, 305, 119795. https://doi.org/10.1016/j.atmosenv.2023.119795