Publication Cover
Mycology
An International Journal on Fungal Biology
Volume 9, 2018 - Issue 3: Plant-fungus Interactions
7,391
Views
102
CrossRef citations to date
0
Altmetric
Reviews

Chitin and chitin-related compounds in plant–fungal interactions

Pages 189-201 | Received 22 Jan 2018, Accepted 02 May 2018, Published online: 15 May 2018

References

  • Akamatsu A, Wong HL, Fujiwara M, Okuda J, Nishide K, Uno K, Imai K, Umemura K, Kawasaki T, Kawano Y, Shimamoto K.. 2013. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe. 13:465–476.
  • Akiyama K, Kawazu K, Kobayashi A. 1995. Partially N-deacetylated chitin oligomers (pentamer to heptamer) are potential elicitors for (+)-pisatin induction in pea epicotyls. Z. Naturforsch. 50:391–397.
  • Ali A, Zahid N, Manickam S, Siddiqui Y, Alderson PG, Maqbool M. 2014. Induction of lignin and pathogenesis related proteins in dragon fruit plants in response to submicron chitosan dispersions. Crop Prot. 63:83–88.
  • Anand T, Chandrasekaran A, Raguchander T, Prakasam T, Samiyappan R. 2009. Chemical and biological treatments for enhancing resistance in chili against Colletotrichum capsici and Leveillula taurica. Arch Phytopathol Plant Prot. 42:533–551.
  • Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, Minami S, Okamoto Y. 2015. Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater. 6:104–142.
  • Bautista-Baños S, Hernández-Lauzardo AN, Velázquez-Del Valle MG, Hernández-López M, Ait Barka E, Bosquez-Molina E, Wilson CL. 2006. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot. 25(2):108–118.
  • Benhamou N. 2004. Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: a comparison with the effect of chitosan. Phytopathol. 94:693–705.
  • Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen KR, Oldroydb G, Blaisea M, Radutoiu S, Stougaard J. 2017. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Nat Ac Sci USA. 114(38):E8118–E8127.
  • Bravo JM, Campo S, Murillo I, Coca M, San Segundo B. 2003. Fungus- and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize. Plant Mol Biol. 52:745–759.
  • Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JD. 2013. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol. 11:e1001732.
  • Campos-Bermudez VA, Fauguel CM, Tronconi MA, Casati P, Presello DA, Andreo CS. 2013. Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS One. 8:e61580.
  • Canet JV, Dobon A, Tornero P. 2012. Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid. Plant Cell. 24:4220–4235.
  • Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife. 3.
  • Chen X-L, Shi T, Yang J, Shi W, Gao X, Chen D, Xu X, Xu J-R, Talbot NJ, Peng Y-L. 2014. N-Glycosylation of effector proteins by an α-1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. The Plant Cell. Am Soc Plant Biol (ASPB). 26:1360–1376.
  • Coqueiro DSO, De Souza AA, Takita MA, Rodrigues CM, Kishi LT, Machado MA. 2015. Transcriptional profile of sweet orange in response to chitosan and salicylic acid. BMC Genomics. 16(1):288.
  • Cordero M, Raventos D, Segungo BS. 1994. Differential expression and induction of chitinases and B-1-3-glucanases in response to fungal infection during germination of maize seeds. Mpmi. 7(1):23–31.
  • Cord-Landwehr S, Melcher RLJ, Kolkenbrock S, Moerschbacher BM. 2016. A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells. Sci Rep. 6.
  • Cretoiu MS, Korthals GW, Visser JHM, Van Elsas JD. 2013. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Appl Environ Microbiol. 79(17):5291–5301.
  • de Jonge R, Van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, Van der Krol S, Shibuya N, Joosten MHAJ, Thomma BPHJ. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 329(5994):953–955.
  • de Wit PJGM, Van der Burgt A, Ökmen B, Stergiopoulos I, Abd-Elsalam KA, Aerts AL, et al. 2012. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. 8(11):e1003088.
  • Desaki Y, Miyata K, Suzuki M, Shibuya N, Kaku H. 2017. Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immunity 24: 92-100. 175342591773888.
  • Dhawan R, Luo H, Foerster AM, Abuqamar S, Du HN, Briggs SD, Scheid OM, Mengisteet T. 2009. HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell. 21:1000–1019.
  • Duplan V, Rivas S. 2014. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. Front Plant Sci. 5:42.
  • Eckardt NA. 2008. Chitin signaling in plants: insights into the perception of fungal pathogens and rhizobacterial symbionts. Plant Cell. 20:241–243.
  • El Ghaouth A, Arul J, Asselin A, Benhamou N. 1992. Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol Res. 96:769–779.
  • El Ghaouth A, Smilanick JL, Wilson CL. 2000. Enhancement of the performance of Candida saitoana by the addition of glycol chitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biol Technol. 19:103–110.
  • El Ghaouth A, Wilson CL, Callahan AM. 2003. Induction of chitinase, β-1,3-glucanase, and phenylalanine ammonia lyase in peach fruit by UV-C treatment. Phytopathol. 93(3):349–355.
  • El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB. 2002. Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytologist. 156(1):103–112.
  • El Hadrami A, Adam LR, El Hadrami I, Daayf F. 2010. Chitosan in plant protection. Mar Drugs. 8:968–987.
  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5:199–206.
  • Fekete C, Fung RWM, Szabó Z, Qiu W, Chang L, Schachtman DP, Kovács LG. 2009. Up-regulated transcripts in a compatible powdery mildew–grapevine interaction. Plant Phys Biochem. 47(8):732–738.
  • Felix G, Baureithel K, Boller T. 1998. Desensitization of the perception system for chitin fragments in tomato cells. Plant Physiol. 117(2):643–650.
  • Felix G, Regenass M, Boller T. 1993. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J. 4(2):307–316.
  • Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E, Yano S, Koga H, Meshi T, Nishimura M. 2012. Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog. 8:e1002882.
  • Genre A, Russo G. 2016. Does a common pathway transduce symbiotic signals in plant–microbe interactions? Front Plant Sci. 7.
  • Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann Rev Phytopathol. 43:205–227.
  • Goñi O, Sanchez-Ballesta MT, Merodio C, Escribano MI. 2009. Regulation of defense and cryoprotective proteins by high levels of CO2 in Annona fruit stored at chilling temperature. J Plant Physiol. 166(3):246–258.
  • Ha MT, Huang JW. 2007. Control of Fusarium wilt of asparagus bean by organic soil amendment and microorganisms. Plant Pathol Bull. 16:169–180.
  • Ha X, Koopmann B, Von Tiedemann A. 2016. Wheat blast and Fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathol. 106(3):270–281.
  • Hadwiger LA, Beckman JM. 1980. Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol. 66(2):205–211.
  • Hauser F, Waadt R, Schroeder JI. 2011. Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol. 21(9):R346–55.
  • Hawkins LK, Mylroie JE, Oliveira DA, Smith JS, Ozkan S, Windham GL, Williams WP, Warburton ML. 2015. Characterization of the maize chitinase genes and their effect on Aspergillus flavus and aflatoxin accumulation resistance. PLoS One. 10:e0126185.
  • Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K, et al. 2014. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci U S A. 111:E404–13.
  • Janda M, Ruelland E. 2014. Magical mystery tour: salicylic acid signalling. Environ Experiment Bot. 114:117–128.
  • Joosten MH, De Wit PJ. 1989. Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-beta-glucanases and chitinases. Plant Physiol. 89(3):945–951.
  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A. 103:11086–11091.
  • Käsbauer CL, Pathuri IP, Hensel G, Kumlehn J, Hückelhoven R, Proels RK. 2018. Barley ADH-1 modulates susceptibility to Bgh and is involved in chitin-induced systemic resistance. Plant Physiol Biochem. 123:281–287.
  • Kauss H, Jeblick W, Domard A. 1989. The degrees of polymerization and N- acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus. Planta. 178:385–392.
  • Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K. 1999. The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci U S A. 96:10922–10926.
  • Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K. 2006. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci U S A. 103:230–235.
  • Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H. 1985. Chitosan-elicited callose synthesis in soybean cells as a Ca-dependent process. Plant Physiol. 77(3):544–551.
  • Kouzai Y, Nakajima K, Hayafune M, Ozawa K, Kaku H, Shibuya N, Minami E, Nishizawa Y. 2014. CEBiP is the major chitin oligomer-binding protein in rice and plays a main role in the perception of chitin oligomers. Plant Mol Biol. 84:519–528.
  • Kuchitsu K, Kosaka H, Shiga T, Shibuya N. 1995. EPR evidence for generation of hydroxyl radical triggered byN-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells. Protoplasma. 188(1–2):138–142.
  • Kumar V, Parkhi V, Kenerley CM, Rathore KS. 2009. Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with. Rhizoctonia Solani. Planta. 230(2):277–291.
  • Lafontaine JP, Benhamou N. 1996. Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol Sci Technol. 6:111–124.
  • Lai Z, Schluttenhofer CM, Bhide K, Shreve J, Thimmapuram J, Lee SY, Yun D-J, Mengisteet T. 2014. MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun. 5:3064.
  • Li P, Linhardt RJ, Cao Z. 2016. Structural characterization of oligochitosan elicitor from Fusarium sambucinum and its elicitation of defensive responses in Zanthoxylum bungeanum. Int J Mol Sci. 17:12.
  • Li Y, Huang F, Lu Y, Shi Y, Zhang M, Fan J, Wang W. 2013. Mechanism of plant-microbe interaction and its utilization in disease-resistance breeding for modern agriculture. Physiol Mol Plant Pathol. 83:51–58.
  • Libault M, Wan J, Czechowski T, Udvardi M, Stacey G. 2007. Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant-Microbe Interact. 20:900–911.
  • Limpens E, Van Zeijl A, Geurts R. 2015. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. Ann Rev Phytopathol. 53(1):311–334.
  • Liu J, Park CH, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, et al. 2015. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog. 11, e1004629.
  • Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J, et al. 2012. Chitin-induced dimerization activates a plant immune receptor. Science. 336(6085):1160–1164.
  • Liu Z, Gao Y, Kim YM, Faris JD, Shelver WL, De Wit PJGM, Xu SS, Friesen TL. 2016. SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual-function protein that facilitates infection while protecting from wheat-produced chitinases. New Phytologist. 211:1052–1064.
  • Marcato R, Sella L, Lucchetta M, Vincenzi S, Odorizzi S, Curioni A, Favaron F. 2017. Necrotrophic fungal plant pathogens display different mechanisms to counteract grape chitinase and thaumatin-like protein. Physiol Mol Plant Pathol. 99:7–15.
  • Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack KE, Thomma BPHJ, Rudd JJ. 2011. Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol. 156:756–769.
  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K. 2005. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 139:949–959.
  • Mejía-Teniente L, De Dalia Duran-Flores F, Chapa-Oliver A, Torres-Pacheco I, Cruz-Hernández A, González-Chavira M, Guevara-González R. 2013. Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid, and chitosan foliar applications. Int J Mol Sci. 14(5):10178–10196.
  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BPHJ, et al. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell. 24:322–335.
  • Minami E, Kuchitsu K, He DY, Kouchi H, Midoh N, Ohtsuki Y, Shibuya N. 1996. Two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-acetylchitoheptaose, a biotic elicitor for phytoalexin production. Plant Cell Physiol. 37:563–567.
  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. P Natl Acad Sci USA. 104:19613–19618.
  • Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K, Asamizu E, Okabe Y, Umehara Y, Miyamoto A, Kobae Y, et al. 2014. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55(11):1864–1872.
  • Moore KG, Price MS, Boston RS, Weissinger AK, Payne GA. 2004. A chitinase from Tex6 maize kernels inhibits growth of Aspergillus flavus. Phytopathol. 94(1):82–87.
  • Mulder L, Lefebvre B, Cullimore J, Imberty A. 2006. LysM domains of Medicago truncatula NFP protein involved in Nod factor perception. Glycosylation state, molecular modeling and docking of chitooligosaccharides and Nod factors. Glycobiol. 16(9):801–809.
  • Nampally M, Rajulu MBG, Gillet D, Suryanarayanan TS, Moerschbacher BB. 2015. A high diversity in chitinolytic and chitosanolytic species and enzymes and their oligomeric products exist in soil with a history of chitin and chitosan exposure. BioMed Res Int. 2015,857639.
  • Naumann TA, Wicklow DT. 2010. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis. Phytopathol. 100:645–654.
  • Naumann TA, Wicklow DT, Kendra DF. 2009. Maize seed chitinase is modified by a protein secreted by Bipolaris zeicola. Physiol Mol Plant Pathol. 74:134–141.
  • Naumann TA, Wicklow DT, Price NPJ. 2011. Identification of a chitinase-modifying protein from Fusarium verticillioides. J Biol Chem. 286(41):35358–35366.
  • Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T. 1996. Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol. 110(2):387–392.
  • Nürnberger T, Brunner F. 2002. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol. 5:318–324.
  • Okmen B, Collemare J, Griffiths S, Van Der Burgt A, Cox R, De Wit PJGM. 2014. Functional analysis of the conserved transcriptional regulator CfWor1 in Cladosporium fulvum reveals diverse roles in the virulence of plant pathogenic fungi. Mol Microbiol. 92:10–27.
  • Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K. 2001. Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A. 98:759–764.
  • Phukan UJ, Jeena GS, Tripathi V, Shukla RK. 2017. Regulation of Apetala2/Ethylene response factors in plants. Front Plant Sci. 8:150.
  • Pillai CKS, Paul W, Sharma CP. 2009. Chitin and chitosan polymers: chemistry, solubility, and fiber formation. Prog Polymer Sci. 34(7):641–678.
  • Quarantin A, Glasenapp A, Schäfer W, Favaron F, Sella L. 2016. Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection. Plant Physiol Biochem. 109:220–229.
  • Rawat S, Ali S, Mittra B, Grover A. 2017. Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea. Biotechnol Reports. 13:72–79.
  • Ren YY, West CA. 1992. Elicitation of diterpene biosynthesis in rice (Oyza sativa L.) by chitin. Plant Physiol. 99:1169–1178.
  • Ride JP, Barber MS. 1990. Purification and characterization of multiple forms of endochitinase from wheat leaves. Plant Sci. 71:185–197.
  • Roby D, Gadelle A, Toppan A. 1987. Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochem Biophys Res Commun. 143:885–892.
  • Rooney HC, Van’t Klooster JW, Van Der Hoorn RA, Joosten MH, Jones JD, De Wit PJ. 2005. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science. 308:1783–1786.
  • Sahai AS, Manocha MS. 1993. Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev. 11:317–338.
  • Sánchez-Vallet A, Mesters JR, Thomma BPHJ. 2015. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol Rev. 39(2):171–183.
  • Sánchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg DJ, Thomma BP, Mesters JR. 2013. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. Elife. 2:e00790.
  • Sanz-Martín JM, Pacheco-Arjona JR, Bello-Rico V, Vargas WA, Monod M, Díaz-Mínguez JM, Thon MR, Sukno SA. 2016. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola. Mol Plant Pathol. 17(7):1048–1062.
  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64:204–214.
  • Shinya T, Nakagawa T, Kaku H, Shibuya N. 2015. Chitin-mediated plant–fungal interactions: catching, hiding and handshaking. Curr Opin Plant Biol. 26:64–71.
  • Shoresh M, Harman GE. 2010. Differential expression of maize chitinases in the presence or absence of Trichoderma harzianum strain T22 and indications of a novel exo- endo-heterodimeric chitinase activity. BMC Plant Biol. 10:136.
  • Singh K, Foley RC, Oñate-Sánchez L. 2002. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol. 5:430–436.
  • Stergiopoulos I, Van Den Burg HA, Okmen B, Beenen HG, Van Liere S, Kema GH, deWit PJ. 2010. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc Natl Acad Sci U S A. 107(16):7610–7615.
  • Tayeh C, Randoux B, Tisserant B, Khong G, Jacques P, Reignault P. 2015. Are ineffective defence reactions potential target for induced resistance during the compatible wheat-powdery mildew interaction? Plant Physiol Biochem. 96:9–19.
  • Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JD. 1997. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell. 9:2209–2224.
  • Thomma BPHJ, Van Esse HP, Crous PW, De Wit PJGM. 2005. Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol. 6(4):379–393.
  • Ton J, Van Pelt JA, Van Loon LC, Pieters CMJ. 2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant-Microbe Interact MPMI. 15(1):27–34.
  • Trouvelot S, Héloir M-C, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M. 2014. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front Plant Sci. 5:592.
  • Van den Burg HA, Harrison SJ, Joosten MH, Vervoort J, De Wit PJ. 2006. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant-Microbe Interact. 19:1420–1430.
  • Van der Ent S, Van Wees SCM, Pieterse CMJ. 2009. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochem. 70(13–14):1581–1588.
  • Van Esse HP, Van’t Klooster JW, Bolton MD, Yadeta KA, Van Baarlen P, Boeren S, Vervoort J, De Wit PJ, Thomma BPHJ. 2008. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. The Plant Cell. 20(7):1948–1963.
  • Van Loon LC, Rep M, Pieterse CMJ. 2006. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 44:135–162.
  • Van Loon LC, Van Strien EA. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol. 55(2):85–97.
  • Velásquez CLPirela MR. (2016) Biochemical Aspects of the Chitin Fungicidal Activity in Agricultural Uses. In: Chitosan in the Preservation of Agricultural Commodities. Elsevier p. 279–98
  • Walker-Simmons M, Ryan CA. 1984. Proteinase inhibitor synthesis in tomato leaves: induction by chitosan oligomers and chemically modified chitosan and chitin. Plant Physiology. 76(3):787–790.
  • Wan J, Tanaka K, Zhang X.-C, Son G.H, Brechenmacher L, Nguyen T.H.NStacey G. 2012. Lyk4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in arabidopsis. Plant Physiology. 160(1):396– 406.
  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell. 20:471–481.
  • Wang C, Du X, Mou Z. 2016. The mediator complex subunits MED14, MED15, and MED16 are involved in defense signaling crosstalk in Arabidopsis. Front Plant Sci. 7:1947.
  • Wasternack C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot. 100(4):681–697.
  • Winkler A, Dominguez-Nuñez J, Aranaz I, Poza-Carrión C, Ramonell K, Somerville S, Berrocal-Lobo M. 2017. Short-chain chitin oligomers: promoters of plant growth. Marine Drugs. 15(2):40.
  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, et al. 2007. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell. 19:4022–4034.
  • Yamada A, Shibuya N, Kodama O, Akatsuka T. 1993. Induction of phytoalexin formation in suspension cultured rice cells by N-acetylchitooligosaccharides. Biosci Biotechnol Biochem. 57:405–409.
  • Yin H, Du YDong Z. 2016. Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Front Plant Sci. 7:522.
  • Yu J, Tehrim S, Zhang F, Tong C, Huang J, Cheng X, Dong C, Zhou Y, Qin R, Hua W, et al. 2014. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics. 15:3.
  • Zhang X, Wang C, Zhang Y, Sun Y, Mou Z. 2012. The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell. 24:4294–4309.
  • Zhang X, Yao J, Zhang Y, Sun Y, Mou Z. 2013. The Arabidopsis mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defense gene expression in plant immune responses. Plant J. 75:484–497.
  • Zhang Y, Gao Y, Liang Y, Dong Y, Yang X, Yuan J, Qiu D. 2017. The Verticillium dahliae SnodProt1-Like protein VdCP1 contributes to virulence and triggers the plant immune system. Front Plant Sci. 8:1880.