Publication Cover
Mycology
An International Journal on Fungal Biology
Volume 15, 2024 - Issue 2
695
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimisation of hypocrellin production in Shiraia-like fungi via genetic modification involving a transcription factor gene and a putative monooxygenase gene

ORCID Icon, , , , ORCID Icon, & show all
Pages 272-281 | Received 26 Jul 2023, Accepted 11 Dec 2023, Published online: 25 Dec 2023

References

  • Alberti F, Foster GD, Bailey AM. 2017. Natural products from filamentous fungi and production by heterologous expression. Appl Microbiol Biotechnol. 101:493–500. doi: 10.1007/s00253-016-8034-2.
  • Aly AH, Debbab A, Proksch P. 2011. Fifty years of drug discovery from fungi. Fungal Divers. 50(1):3–19. doi: 10.1007/s13225-011-0116-y.
  • Cai YJ, Liao XR, Liang XH, Ding YR, Sun J, Zhang DB. 2011. Induction of hypocrellin production by Triton X-100 under submerged fermentation with Shiraia sp. SUPER-H168. New Biotechnol. 28(6):588–592. doi: 10.1016/j.nbt.2011.02.001.
  • Chen YN, Xu CL, Yang HL, Liu ZY, Zhang ZB, Yan RM, Zhu D. 2022. L-arginine enhanced perylenequinone production in the endophytic fungus Shiraia sp. Slf14(w) via NO signaling pathway. Appl Microbiol Biotechnol. 106(7):2619–2636. doi: 10.1007/s00253-022-11877-3.
  • Deng HX, Gao RJ, Liao XR, Cai YJ. 2017. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system. J Biotechnol. 259:228–234. doi: 10.1016/j.jbiotec.2017.06.1204.
  • Deng HX, Liang WY, Fan TP, Zheng XH Cai YJ. 2020. Modular engineering of Shiraia bambusicola for hypocrellin production through an efcient CRISPR system. Int J Biol Macromol. 165:796–803. doi: 10.1016/j.ijbiomac.2020.09.208.
  • Du W, Liang ZQ, Zou X, Han YF, Liang JD, Yu JP, Chen WH, Wang YR, Sun CL. 2013. Effects of microbial elicitor on production of hypocrellin by Shiraia bambusicola. Folia Microbiol (Praha). 58(4):283–289. doi: 10.1007/s12223-012-0203-9.
  • Gao L, Fei JB, Zhao J, Li H, Cui Y, Li JB. 2012. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. Acs Nano. 6(9):8030–8040. doi: 10.1021/nn302634m.
  • Gao RJ, Xu ZC, Deng HX, Guan ZB, Liao XR, Zhao Y, Zheng XH, Cai YJ. 2018. Influences of light on growth, reproduction and hypocrellin production by Shiraia sp. SUPER-H168. Arch Microbiol. 200:1–9. doi: 10.1007/s00203-018-1529-8.
  • Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 42(2):182–192. doi: 10.1093/sysbio/42.2.182.
  • Jones DA, Rybak K, Bertazzoni S, Tan K, Phan HT, Hane JK 2021. Pathogenicity effector candidates and accessory genome revealed by pan-genomic analysis of Parastagonospora nodorum. bioRxiv. [accessed on 1 September 2021]. doi: 10.1101/2021.09.01.458590.
  • Lei XY, Zhang MY, Ma YJ, Wang JW. 2017. Transcriptomic responses involved in enhanced production of hypocrellin a by addition of Triton X-100 in submerged cultures of Shiraia bambusicola. J Ind Microbiol Biotechnol. 44(10):1415–1429. doi: 10.1007/s10295-017-1965-5.
  • Li D, Zhao N, Guo BJ, Lin X, Chen SL, Yan SZ. 2019. Gentic overexpression increases production of hypocrellin a in Shiraia bambusicola S4201. J Microbiol. 57(2):154–162. doi: 10.1007/s12275-019-8259-8.
  • Li YT, Yang C, Wu Y, Lv JJ, Feng X, Tian X, Zhou Z, Pan X, Liu S, Tian LW. 2021. Axial chiral binaphthoquinone and perylenequinones from the stromata of hypocrella bambusae are SARS-CoV-2 entry inhibitors. J Nat Prod. 84(2):436–443. doi: 10.1021/acs.jnatprod.0c01136.
  • Liang XH, Cai YJ, Liao XR, Wu K, Wang L, Zhang DB, Meng Q. 2009. Isolation and identification of a new hypocrellin A-producing strain Shiraia sp. SUPER-H168. Microbiol Res. 164(1):9–17. doi: 10.1016/j.micres.2008.08.004.
  • Liu B, Bao JY, Zhang ZB, Yan RM, Wang Y, Yang HL, Zhu D 2018. Enhanced production of perylenequinones in the endophytic fungus shiraia sp Slf14 by calcium/calmodulin signal transduction. Appl Microbiol Biotechnol. 102(1):153–163. doi: 10.1007/s00253-017-8602-0.
  • Liu XY, Shen XY, Fan L, Gao J, Hou CL. 2016. High-efficiency biosynthesis of hypocrellin a in Shiraia sp. using gamma-ray mutagenesis. Appl Microbiol Biotechnol. 100(11):4875–4883. doi: 10.1007/s00253-015-7222-9.
  • Mesny F, Miyauchi S, Thiergart T, Pickel B, Atanasova L, Karlsson M, Hüttel B, Barry KW, Haridas S, Chen C, et al. 2021. Genetic determinants of endophytism in the Arabidopsis root amycobiome. Nat Commun. 12:7227. doi: 10.1038/s41467-021-27479-y.
  • Morakotkarn D, Kawasaki H, Tanaka K, Okane I, Seki T, Tanaka K. 2008. Taxonomic characterization of Shiraia-like fungi isolated from bamboos in Japan. Myconscience. 49:258–265. doi: 10.1007/s10267-008-0419-3.
  • Mulrooey CA, EM O, Morgan BJ, Kozlowski MC 2012. Perylenequinones: isolation, synthesis, and biological activity. Eur J Org Chem. 21:3887–3904. 201200184. doi: 10.1002/ejoc201200184.
  • Newman AG, Townsend CA. 2016. Molecular characterization of the cercosporin biosynthetic pathway in the fungal plant pathogen Cercospora nicotianae. J Am Chem Soc. 138(12):4219–4228. doi: 10.1021/jacs.6b00633.
  • Obermaier S, Thiele W, Furtges L, Muller M. 2019. Enantioselective phenol coupling by laccases in the biosynthesis of fungal dimeric naphthopyrones. Angew Chem Int Ed. 58(27):9125–9128. doi: 10.1002/anie.201903759.
  • Qiao R, Zhou L, Zhou JH, Wei SH, Shen J, Zhang BW, Wang XS. 2012. The synthesis and characterization of ethylenediamine-modified elsinochrome a. Dyes Pigm. 94(1):99–102. doi: 10.1016/j.dyepig.2010.03.004.
  • Shen XY, Hu YJ, Song L, Hou CL. 2016. Improvement of hypocrellin production by a new fungal source and optimization of cultivation conditions. Biotechnol Biotechnol Equip. 30(4):819–826. doi: 10.1080/13102818.2016.1178077.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12):2725–2729. doi: 10.1093/molbev/mst197.
  • Tang LJ, Bao JY, Yan RM, Wang Y, Yang HL, Zhang ZB, Zhu D. 2019. Effects of different carbon sources on perylenequinone pigments produced by the endophytic fungus Shiraia sp. slf14. J Jiangxi Normal Univ: Nat Sci Ed. 43:6. doi: 10.16357/j.cnki.issn1000-5862.2019.05.09.
  • Tong X, Wang QT, Shen XY, Hou CL, Cannon PF. 2021. Phylogenetic position of Shiraia-like endophytes on bamboos and the diverse biosynthesis of hypocrellin and hypocrellin derivatives. J Fungi. 7(7):563. doi: 10.3390/jof7070563.
  • Tong ZW, Mao LW, Liang HL, Zhang Z, Wang Y, Yan RM, Zhu D. 2017. Simultaneous determination of six perylenequinones in Shiraia sp. Slf14 by HPLC. J Liq Chromatogr Relat Technol. 40(10):536–540. doi: 10.1080/10826076.2017.1331172.
  • Yang HL, Xiao CX, Ma W, He GQ. 2009. The production of hypocrellin colorants by submerged cultivation of the medicinal fungus Shiraia bambusicola. Dyes Pigm. 82(2):142–146. doi: 10.1016/j.dyepig.2008.12.012.
  • Zhao N, Li D, Guo BJ, Tao X, Lin X, Yan SZ, Chen SL. 2020. Genome sequencing and analysis of the hypocrellin-producing fungus shiraia bambusicola S4201. Front Microbiol. 11:643. doi: 10.3389/fmicb.2020.00643.
  • Zhao N, Lin X, Qi SS, Luo ZM, Chen SL, Yan SZ. 2016. De Novo transcriptome assembly in Shiraia bambusicola to investigate putative genes involved in the biosynthesis of hypocrellin a. Int J Mol Sci. 17(3):311. doi: 10.3390/ijms17030311.
  • Zheng XL, Ge JC, Wu JS, Liu WM, Guo L, Jia QY, Ding Y, Zhang HY, Wang PF. 2018. Biodegradable hypocrellin derivative nanovesicle as a near-infrared light-driven theranostic for dually photoactive cancer imaging and therapy. Biomaterials. 185:133–141. doi: 10.1016/j.biomaterials.2018.09.021.