4,264
Views
49
CrossRef citations to date
0
Altmetric
Review

Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii

, &
Pages 433-440 | Received 16 Jan 2015, Accepted 26 Mar 2015, Published online: 15 Jun 2015

References

  • Anonymous, Milk and Milk Products – Detection of Enterobacter sakazakii Technical Specification. ISO/ TS 22964 ISO/ TS 22964, 2006(E) and IDF / RM 210, 2006(E), 2006; 1st edn Geneva, International Organization for Standardization
  • Bar-Oz B, Preminger A, Peleg O, Block C, Arad I. Enterobacter sakazakii infection in the newborn. Acta Paediatr 2001; 90:356-358; PMID:11332182; http://dx.doi.org/10.1080/080352501300067857
  • Centers for Disease Control and Prevention (CDC). Enterobacter sakazakii infections associated with the use of powdered infant formula—Tennessee. MMWR Morb Mortal Wkly Rep 2002; 51:297-300; PMID:12002167
  • Block C, Peleg O, Minster N, Bar-Oz B, Simhon A, Arad I, Shapiro M. Cluster of neonatal infections in Jerusalem due to unusual biochemical variant of Enterobacter sakazakii. Eur J Clin Microbiol Infect Dis 2002; 21:613-616; PMID:12226694; http://dx.doi.org/10.1007/s10096-002-0774-5
  • Mullane NR, Iversen C, Healy B, Walsh C, Whyte P, Wall PG, Quinn T, Fanning S. Enterobacter sakazakii an emerging bacterial pathogen with implications for infant health. Minerva Pediatr 2007; 59:137-148; PMID:17404564
  • Urmenyi AMC, Franklin AW. Neonatal death from pigmented coliform infection. Lancet 1961; 1:313-315; PMID:13779326
  • Gurtler JB, Kornacki JL, Beuchat LR. Enterobacter sakazakii: a coliform of increased concern to infant health. Int J Food Microbiol 2005; 104:1-34; PMID:16039742; http://dx.doi.org/10.1016/j.ijfoodmicro.2005.02.013
  • Friedemann M. Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. Eur J Clin Microbiol Infect Dis 2009; 28:1297-1304; PMID:19662446; http://dx.doi.org/10.1007/s10096-009-0779-4
  • Yan Q, Power KA, Cooney S, Fox E, Gopinath GR, Grim CJ, Tall BD, McCusker MP, Fanning S. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Front Microbiol 2013; 4:256; PMID:24032028; http://dx.doi.org/10.3389/fmicb.2013.00256
  • Iversen C, Forsythe SJ. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci Technol 2003; 14:443-454; http://dx.doi.org/10.1016/S0924-2244(03)00155-9
  • Farmer JJ III, Asbury MA, Hickman FW, Brenner DJ. The Enterobacteriaceae Study Group (USA) Enterobacter sakazakii, a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol 1980; 30: 569-584; http://dx.doi.org/10.1099/00207713-30-3-569
  • Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ. Cronobacter condimenti sp nov, isolated from spiced meat and Cronobacter universalis sp nov, a novel species designation for Cronobacter sp genomospecies 1, recovered from a leg infection, water, and food ingredients. Int J Syst Evol Microbiol 2012a; 62:1277-1283; PMID:22661070; http://dx.doi.org/10.1099/ijs.0.032292-0
  • Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 2013; 36:309-319; PMID:23632228; http://dx.doi.org/10.1016/j.syapm.2013.03.005
  • Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2013; 63:3931-3934; PMID:25795763; http://dx.doi.org/10.1099/ijs.0.058222-0
  • Masood N, Jackson E, Moore K, Farbos A, Paszkiewicz K, Dickins B, McNally A, Forsythe S. Draft genome sequence of “Candidatus Cronobacter colletis” NCTC 14934T, a new species in the genus Cronobacter. Gen Announ 2014; 2:e00585-14; PMID:24948763
  • Van Acker J, de Smet F, Muyldermans G, Bougatef A, Naessens A, Lauwers S. Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J Clin Microbiol 2001; 39:293-297; PMID:11136786; http://dx.doi.org/10.1128/JCM.39.1.293-297.2001
  • Bowen AB, Braden CR. Invasive Enterobacter sakazakii disease in infants. Emerg Infect Dis 2006; 12:1185-1189; PMID:16965695; http://dx.doi.org/10.3201/eid1208.051509
  • Forsythe SJ. Enterobacter sakazakii and other bacteria in powdered infant milk formula. J Matern Child Nutr 2005; 1:44-50; PMID:16881878; http://dx.doi.org/10.1111/j.1740-8709.2004.00008.x
  • Kandhai MC, Reij MW, Gorris LG, Guillaume-Gentil O, van Schothorst M. Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 2004; 363:39-40; PMID:14723994; http://dx.doi.org/10.1016/S0140-6736(03)15169-0
  • Food and Drug Administration FDA. 2002 Available from, http,//wwwfdagov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm154581htm
  • Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 2008; 58:1442-1447; PMID:18523192; http://dx.doi.org/10.1099/ijs.0.65577-0
  • Yan QQ, Condell O, Power K, Butler F, Tall BD, Fanning S. Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: a review of our current understanding of the biology of this bacterium. J Appl Microbiol 2012; 113:1-15; PMID:22420458; http://dx.doi.org/10.1111/j.1365-2672.2012.05281.x
  • Kucerova E, Clifton SW, Xia X-Q, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, et al. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One 2010; 5:e9556; PMID:20221447; http://dx.doi.org/10.1371/journal.pone.0009556
  • Chen Y, Strain EA, Allard M, Brown EW. Genome sequence of Cronobacter sakazakii E899, a strain associated with human illness. J Bacteriol 2011; 193(20):5861; PMID:21952538; http://dx.doi.org/10.1128/JB.05913-11
  • Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson C, Forsythe S. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 2009; 9:223; PMID:19852808; http://dx.doi.org/10.1186/1471-2180-9-223
  • Shin H, Lee JH, Choi Y, Ryu S. Complete genome sequence of the opportunistic food-borne pathogen Cronobacter sakazakii ES15. J Bacteriol 2012; 194(16):44438-9; PMID:22843579; http://dx.doi.org/10.1128/JB.00841-12
  • Yan Q, Power KA, Cooney S, Fox E, Gopinath GR, Grim CJ, Tall BD, McCusker MP, Fanning S. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Front Microbiol 2013; 2(4):256; PMID:24032028
  • Grim CJ, Kotewicz ML, Power KA, Gopinath G, Franco AA, Jarvis KG, Yan QQ, Jackson SA, Sathyamoorthy V, Hu L, et al. Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics 2013; 14:366; PMID:23724777; http://dx.doi.org/10.1186/1471-2164-14-366
  • Masood N, Moore K, Farbos A, Hariri S, Block C, Paszkiewicz K, Dickins B, McNally A, Forsythe S. Draft Genome Sequence of a Meningitic Isolate of Cronobacter sakazakii Clonal Complex 4, Strain 8399. Genome Announc 2013; 1(5); PMID:24115548
  • Zhao Z, Wang L, Wang B, Liang H, Ye Q, Zeng M. Complete Genome Sequence of Cronobacter sakazakii Strain CMCC 45402. Genome Announc 2014; 2(1); PMID:24435860
  • Pightling AW, Pagotto F. Draft Genome Sequence of Cronobacter sakazakii Clonal Complex 45 Strain HPB5174, Isolated from a Powdered Infant Formula Facility in Ireland. Genome Announc 2014; 2(4); PMID:25103765
  • Joseph S, Forsythe SJ. Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front Microbiol 2012; 3:397; PMID:23189075; http://dx.doi.org/10.3389/fmicb.2012.00397
  • Joseph S, Desai P, Ji Y, Cummings CA, Shih R, Degoricija L, Rico A, Brzoska P, Hamby SE, Masood N, et al. Comparative analysis of genome sequences covering the seven cronobacter species. PLoS One 2012; 7:e49455; PMID:23166675; http://dx.doi.org/10.1371/journal.pone.0049455
  • Joseph S, Sonbol H, Hariri S, Desai P, McClelland M, Forsythe SJ. Diversity of the Cronobacter genus as revealed by multilocus sequence typing. J Clin Microbiol 2012; 50:3031-3039; PMID:22785185; http://dx.doi.org/10.1128/JCM.00905-12
  • Joseph S, Hariri S, Forsythe SJ. Lack of continuity between Cronobacter biotypes and species as determined using multilocus sequence typing. Mol Cell Probes 2013; 27:137-139; PMID:23474194; http://dx.doi.org/10.1016/j.mcp.2013.02.002
  • Sonbol H, Joseph S, McAuley C, Craven H, Forsythe SJ. Multilocus sequence typing of Cronobacter spp. from powdered infant formula and milk powder production factories. Int Dairy J 2013; 30:1-7; http://dx.doi.org/10.1016/j.idairyj.2012.11.004
  • Forsythe SJ, Dickins B, Jolley KA. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genomics 2014; 15:1121; PMID:25515150
  • Biering G, Karlsson S, Clark NC, Jonsdottir KE, Ludvigsson P, Steingrimsson O. Three cases of neonatal meningitis caused by Enterobacter sakazakii in powdered milk. J Clin Microbiol 1989; 27:2054-2056; PMID:2778070
  • Kim H, Beuchat LR. Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juice as affected by storage temperature. J Food Prot 2005; 68:2541-2552; PMID:16355824
  • Estuningsih S, Kress C, Hassan AA, Akineden O, Schneider E, Usleber E. Enterobacteriaceae in dehydrated powdered infant formula manufactured in Indonesia and Malaysia. J Food Prot 2006; 69:3013-3017; PMID:17186672
  • Friedemann M. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol 2007; 116:1-10; PMID:17331606; http://dx.doi.org/10.1016/j.ijfoodmicro.2006.12.018
  • Lin LC, Beuchat LR. Survival and growth of Enterobacter sakazakii in infant cereal as affected by composition, reconstitution liquid, and storage temperature. J Food Prot 2007; 70:1410-1422; PMID:17612071
  • Baumgartner A, Grand M, Liniger M, Iversen C. Detection and frequency of Cronobacter spp (Enterobacter sakazakii) in different categories of ready-to-eat foods other than infant formula. Int J Food Microbiol 2009; 136:189-192; PMID:19419789; http://dx.doi.org/10.1016/j.ijfoodmicro.2009.04.009
  • Jaradat ZW, Ababneh QO, Saadoun IM, Samara NA, Rashdan AM. Isolation of Cronobacter spp (formerly Enterobacter sakazakii) from infant food, herbs and environmental samples and the subsequent identification and confirmation of the isolates using biochemical, chromogenic and molecular methods. BMC Microbiol 2009; 9:225-235; PMID:19860874; http://dx.doi.org/10.1186/1471-2180-9-225
  • Belal M, Al-Mariri A, Hallab L, Hamad I. Detection of Cronobacter spp (formerly Enterobacter sakazakii) from medicinal plants and spices in Syria. J Infect Dev Ctries 2013; 17:82-89; PMID:23416653
  • Dong X, Li C, Wu Q, Zhang J, Mo S, Guo W, Yang X, Xu X. Isolation and identification of Cronobacter (Enterobacter sakazakii) strains from food. Wei Sheng Wu Xue Bao 2013; 53:429-436; PMID:23957146
  • Mozrová V, Břeňová N, Mrázek J, Lukešová D, Marounek M. Surveillance and characterisation of Cronobacter spp. in Czech retail food and environmental samples. Folia Microbiol (Praha) 2013; 5:2077-2091; PMID:23873391
  • Muller A, Stephan R, Fricker-Feer C, Lehner A. Genetic diversity of Cronobacter sakazakii isolates collected from a Swiss infant formula production facility. J Food Prot 2013; 76:883-887; PMID:23643134
  • Singh N, Goel G, Raghav M, Rajani CS, Puniya AK. Indian spices as modulators of quorum sensing in Cronobacter sakazakii, a food borne pathogen. EUROBIOFILMS Third European Congress on Microbial Biofilms. Ghent; 2013
  • Siqueira Santos RF, da Silva N, Amstalden Junqueira VC, Kajsik M, Forsythe S, Pereira JL. Screening for Cronobacter Species in Powdered and Reconstituted Infant Formulas and from Equipment Used in Formula Preparation in Maternity Hospitals. Ann Nutr Metab 2013; 63:62-68; PMID:23941974; http://dx.doi.org/10.1159/000353137
  • Gallaher PG, Ball WS. Cerebral infarcations due to CNS infection with Enterobacter sakazakii. Pediatr Radiol 1991; 21:135-136; PMID:2027718; http://dx.doi.org/10.1007/BF02015629
  • Hamilton JV, Lehane MJ, Braig HR. Isolation of Enterobacter sakazakii from midgut of Stomoxys calcitrans. Emerg Infect Dis 2003; 9:1355-1356; PMID:14626227; http://dx.doi.org/10.3201/eid0910.030218
  • Raghav M, Aggarwal PK. Isolation and characterization of Enterobacter sakazakii from milk foods and environment. Milchwissenchaft 2007a; 62:266-269
  • Goel G, Raghav M, Kaushik S, Puniya AK, Singh K. Tannic acid degradation by Cronobacter sakazakii isolated from Goat. 4th International Conference on Environmental, Industrial and Applied Microbiology Spain 2011
  • CDC. Cronobacter species isolation in two infants – New Mexico, 2008. MMWR Morb Mortal Wkly Rep 2009; 58:1179-1183; PMID:19875980
  • Food Safety Authority of Ireland. Pregestimil infant formula recall. Available at: http://www.fsai.ie/alerts/archive/fa20050120.asp. Accessed 13 February 2006
  • FAO/WHO. Enterobacter sakazakii (Cronobacter spp.) in Powdered Follow-Up Formulae. Microbiological Risk Assessment Series 15. Rome: Food and Agriculture Organization of the United Nations/World Health Organization. 2008
  • Jarvis C. Fatal Enterobacter sakazakii infection associated with powdered infant formula in a neonatal intensive care unit in New Zealand. Am J Infect Control 2005; 33:e19; http://dx.doi.org/10.1016/j.ajic.2005.04.012
  • Himelright I, Harris E, Lorch V, Anderson M. Enterobacter sakazakii infections associated with the use of powdered infant formula – Tennessee, 2001. J Am Med Assoc 2002; 7:204-2205
  • Ray P, Das A, Gautam V, Jain N, Narang A, Sharma M. Enterobacter sakazakii in infants: novel phenomenon in India. A case report in. Ind J Medical Microbio 2007; 25:408-410; PMID:18087097; http://dx.doi.org/10.4103/0255-0857.37351
  • Noriega FR, Kotloff KL, Martin MA, Schwalbe RS. Nosocomial bacteremia caused by Enterobacter sakazakii and Leuconostoc mesenteroides resulting from extrinsic contamination of infant formula. Pediatr Infect Dis J 1990; 9:447-449; PMID:2114609; http://dx.doi.org/10.1097/00006454-199006000-00018
  • Simmons BP, Gelfand MS, Haas M, Metts L, Ferguson J. Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powdered infant formula. Infect Control Hosp Epidemiol 1989; 10:398-401; PMID:2794464; http://dx.doi.org/10.2307/30144207
  • Nazarowec-White M, Farber JM. Enterobacter sakazakii: a review. Int J Food Microbiol 1997; 34:103-111; PMID:9039558; http://dx.doi.org/10.1016/S0168-1605(96)01172-5
  • Muytjens HL, Zanen HC, Sonderkamp HJ, Kollee LA, Wachsmuth IK, Farmer JJ III. Analysis of eight cases of neonatal meningitis and sepsis due to Enterobacter sakazakii. J Clin Microbiol 1983; 18:115-20; PMID:6885983
  • Hunter CJ, Bean JF. Cronobacter: an emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. J Perinatol 2013; 33:581-585; PMID:23538645; http://dx.doi.org/10.1038/jp.2013.26
  • Communicable Disease Centre. CDC update: Investigation of Cronobacter infections among infants in the United States. Atlanta: CDC; 2011
  • Stoll BJ, Hansen N, Fanaroff AA, Lemons JA. Enterobacter sakazakii is a rare cause of neonatal septicemia or meningitis in VLBW infants. J Pediatr 2004; 144:821-823; PMID:15192634
  • Food and Drug Administration FDA. Investigation of Cronobacter Bacteria Illness in Infants. 2012; Available from, http,//wwwfdagov/NewsEvents/PublicHealthFocus/ucm285401htm
  • Nair MK, Venkitanarayanan K. Role of bacterial OmpA and host cytoskeleton in the invasion of human intestinal epithelial cells by Enterobacter sakazakii. Pediatr Res 2007; 62:664-669; PMID:17957161; http://dx.doi.org/10.1203/PDR.0b013e3181587864
  • Singamsetty VK, Wang Y, Shimada H, Prasadarao NV. Outer membrane protein A expression in Enterobacter sakazakii is required to induce microtubule condensation in human brain microvascular endothelial cells for invasion. Microb Pathog 2008; 45:181-191; PMID:18606523; http://dx.doi.org/10.1016/j.micpath.2008.05.006
  • Nair MK, Venkitanarayanan K, Silbart LK, Kim KS. Outer membrane protein A (OmpA) of Cronobacter sakazakii binds fibronectin and contributes to invasion of human brain microvascular endothelial cells. Foodborne Pathog Dis 2009; 6:495-501; PMID:19415974; http://dx.doi.org/10.1089/fpd.2008.0228
  • Mittal R, Wang Y, Hunter CJ, Gonzalez-Gomez I, Prasadarao NV. Brain damage in newborn rat model of meningitis by Enterobacter sakazakii, a role for outer membrane protein. Lab Invest 2009; 89:263-277; PMID:19139724; http://dx.doi.org/10.1038/labinvest.2008.164
  • Kim K, Kim KP, Choi J, Lim JA, Lee J, Hwang S, Ryu S. Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Appl Environ Microbiol 2010; 76:5188-5198; PMID:20543055; http://dx.doi.org/10.1128/AEM.02498-09
  • Pagotto FJ, Nazarowec-White M, Bidawid S, Farber JM. Enterobacter sakazakii, infectivity and enterotoxin production in vitro and in vivo. J Food Prot 2003; 66:370-375; PMID:12636287
  • Raghav M, Aggarwal PK. Purification and characterisation of Enterobacter sakazakii Enterotoxin. Can J Microbiol 2007b; 5:750-755; PMID:17668035
  • Franco AA, Hu L, Grim CJ, Gopinath G, Sathyamoorthy V, Jarvis KG, Lee C, Sadowski J, Kim J, Kothary MH, et al. Characterization of putative virulence genes encoded on the related RepFIB plasmids harboured by Cronobacter spp. Appl Environ Microbiol 2011a; 77:3255-3267; PMID:21421789; http://dx.doi.org/10.1128/AEM.03023-10
  • Cruz A, Xicohtencatl-Cortes J, González-Pedrajo B, Bobadilla M, Eslava C, Rosas I. Virulence traits in Cronobacter species isolated from different sources. Can J Microbiol 2011; 57:735-744; PMID:21859256; http://dx.doi.org/10.1139/w11-063
  • Franco AA, Kothary MH, Gopinath G, Jarvis KG, Grim CJ, Hu L, Datta AR, McCardell BA, Tall BD. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect Immun 2011b; 79:1578-1587; PMID:21245266; http://dx.doi.org/10.1128/IAI.01165-10
  • Wang B. Sialic acid is an essential nutrient for brain development and cognition. Ann Rev Nutr 2009; 29: 177-222; PMID:19575597; http://dx.doi.org/10.1146/annurev.nutr.28.061807.155515
  • Lewis AL, Lewis WG. Host sialoglycans and bacterial sialidases, a mucosal perspective. Cell Microbiol 2012; 14:1174-1182; PMID:22519819; http://dx.doi.org/10.1111/j.1462-5822.2012.01807.x
  • Sprenger N, Duncan PI. Sialic acid utilization. Adv Nutr 2012; 3:92S-97S; PMID:22585917; http://dx.doi.org/10.3945/an.111.001479
  • Joseph S, Hariri S, Masood N, Forsythe S. Sialic acid utilization by Cronobacter sakazakii. Microb Inform Exp 2013; 3(1):3; PMID:23706082
  • Negre VL, Bonacorsi S, Schubert S, Bidet P, Nassif X, Bingen E. The siderophore receptor iron, but not the high- pathogenicity island or the hemin receptor ChuA, contributes to the bacteremic step of Escherichia coli neonatal meningitis. Infect Immun 2004; 72:1216-1220; PMID:14742579; http://dx.doi.org/10.1128/IAI.72.2.1216-1220.2004
  • Grim CJ, Kothary MH, Gopinath G, Jarvis KG, Beaubrun JJ, McClelland M, Tall BD, Franco AA. Identification and characterization of Cronobacter iron acquisition systems. Appl Environ Microbiol 2012; 78:6035-6050; PMID:22706064; http://dx.doi.org/10.1128/AEM.01457-12
  • Miethke M, Marahiel MA. Siderophores-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 2007; 71:413-451; PMID:17804665; http://dx.doi.org/10.1128/MMBR.00012-07
  • Touze T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol 2004; 53:697-706; PMID:15228545; http://dx.doi.org/10.1111/j.1365-2958.2004.04158.x
  • Franke S, Grass G, Rensing C, Nies DH. Molecular analysis of the copper-transporting efflux system Cus CFBA of Escherichia coli. J Bacteriol 2003; 185:3804-3812; PMID:12813074; http://dx.doi.org/10.1128/JB.185.13.3804-3812.2003
  • Donlan RM, Costerton JW. Biofilms, survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15:167-193; PMID:11932229; http://dx.doi.org/10.1128/CMR.15.2.167-193.2002
  • Kim H, Ryu JH, Beuchat LR. Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl Environ Microbiol 2006; 72:5846-5856; PMID:16957203; http://dx.doi.org/10.1128/AEM.00654-06
  • Beuchat LR, Kim H, Gurtler JB, Lin LC, Ryu JH, Richards GM. Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. Int J Food Microbiol 2009; 136: 204-213; PMID:19346021; http://dx.doi.org/10.1016/j.ijfoodmicro.2009.02.029
  • Hartmann I, Carrranza P, Lehner A, Stephan R, Eberl L, Riedel K. Genes involved in Cronobacter sakazakii biofilm formation. Appl Environ Microbiol 2010; 76:2251-2261; PMID:20118366; http://dx.doi.org/10.1128/AEM.00930-09
  • Iversen C, Lane M, Forsythe SJ. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula. Lett Appl Microbiol 2004; 38:378-382; PMID:15059207; http://dx.doi.org/10.1111/j.1472-765X.2004.01507.x
  • Scheepe-Leberkuhne, Wagner F. Optimization and preliminary characterization of an exopolysaccharide synthesized by Enterobacter sakazakii. Biotechnol Lett 1986; 8:695-700; http://dx.doi.org/10.1007/BF01032564
  • Kothary MH, McCardell BA, Frazar CD, Deer D, Tali BD. Characterization of the zinc-containing metalloprotaese encoded by zpx and development of a species-specific detection method for Enterobacter sakazakii. Appl Environ Microbiol 2007; 73:4142-4151; PMID:17483271; http://dx.doi.org/10.1128/AEM.02729-06
  • Hamby SE, Joseph S, Forsythe SJ, Chuzhanova N. In Silico identification of pathogenic strains of Cronobacter from biochemical reveals association of inositol fermentation with pathogenicity. BMC Microbiol 2011; 11:204; PMID:21933417; http://dx.doi.org/10.1186/1471-2180-11-204
  • Choi Y, Kim S, Hwang H, Kim KP, Kang DH, Ryu S. Plasmid-encoded MCP is involved in virulence, motility, and biofilm formation of Cronobacter sakazakii ATCC 29544. Infect Immun 2015; 83:197-204; PMID:25332122; http://dx.doi.org/10.1128/IAI.02633-14
  • Maddocks SE, Oyston PCF. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology (SGM) 2008; 154: 3609-3623; PMID:19047729; http://dx.doi.org/10.1099/mic.0.2008/022772-0
  • MacLean AM, Anstey MI, Finan TM. Binding site determinants for the LysR-type transcriptional regulator PcaQ in the legume endosymbiont Sinorhizobium meliloti. J Bacteriol 2008; 190:1237-1246; PMID:18055594; http://dx.doi.org/10.1128/JB.01456-07
  • Choi Y, Kim KP, Kim K, Choi J, Shin H, Kang DH, Ryu S. Possible roles of LysR-type transcriptional regulator (LTTR) homolog as a global regulator in Cronobacter sakazakii ATCC 29544. Int J Med Microbiol 2012; 302:270-275; PMID:22770741; http://dx.doi.org/10.1016/j.ijmm.2012.06.001
  • Baida GE, Kuzmin NP. Mechanism of action of hemolysin III from Bacillus cereus. Biochim Biophys Acta 1996; 1284:122-124; PMID:8962879; http://dx.doi.org/10.1016/S0005-2736(96)00168-X
  • Chen YC, Chang MC, Chuang YC, Jeang CL. Characterization and virulence of hemolysin III from Vibrio vulnifucus. Curr Microbiol 2004; 49:175-179; PMID:15386100; http://dx.doi.org/10.1007/s00284-004-4288-5
  • Hunter CJ, Singasmetty VK, Chokshi NK, Boyle P, Camerini V, Grishin AV, Upperman JS, Ford HR, Prasadrao VN. Enterobacter sakazakii enhances epithelial cell injury by inducing apoptosis in a rat model of necrotizing enterocolitis. J Infect Dis 2008; 198:586-593; PMID:18588483; http://dx.doi.org/10.1086/590186
  • Hotta T, Yoshida N, Yoshikawa T, Sugino S, Kondo M. Lipopolysaccharide induced colitis in rabbits. Res Exp Med (Berl) 1986; 186:61-69; PMID:3961278; http://dx.doi.org/10.1007/BF01851834
  • Feng J, El-Assal ON, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) and necrotizing enterocolitis. Semin Pediatr Surg 2005; 14:167-174; PMID:16084404; http://dx.doi.org/10.1053/j.sempedsurg.2005.05.005
  • Feng J, Besner GE. Heparin-binding epidermal growth factor-like growth factor promotes enterocyte migration and proliferation in neonatal rats with necrotizing enterocolitis. J Pediatr Surg 2007; 42:214-220; PMID:17208569; http://dx.doi.org/10.1016/j.jpedsurg.2006.09.055
  • Kruis W, Schussler P, Weinzierl M, Galanos C, Eisenburg J. Circulating lipid A antibodies despite absence of systemic endotoxemia in patients with Crohn's disease. Dig Dis Sci 1984; 29:502-507; PMID:6144475; http://dx.doi.org/10.1007/BF01296269
  • Caradonna L, Amati L, Lella P, Jirillo E, Caccavo D. Phagocytosis, killing, lymphocyte-mediated antibacterial activity, serum autoantibodies, and plasma endotoxins in inflammatory bowel disease. Am J Gastroenterol 2000; 95:1495-1502; PMID:10894586; http://dx.doi.org/10.1111/j.1572-0241.2000.02085.x
  • Noerr B. Current controversies in the understanding of necrotizing enterocolitis. Adv Neonatal Care 2003; 3:107-120; PMID:12891835; http://dx.doi.org/10.1016/S1536-0903(03)00072-9
  • Sharma R, Tepas JJ III, Hudak ML, Mollitt DL, Wludyka PS, Teng RJ, Premachandra BR. Neonatal gut barrier and multiple organ failure: role of endotoxin and proinflammatory cytokines in sepsis and necrotizing enterocolitis. J Pediatr Surg 2007; 42:454-461; PMID:17336180; http://dx.doi.org/10.1016/j.jpedsurg.2006.10.038
  • Duffy LC, Zielezny MA, Carrion V, Griffiths E, Dryja D, Hilty M, Rook C, Morin F III. Concordance of bacterial cultures with endotoxin and interleukin-6 in necrotizing enterocolitis. Dig Dis Sci 1997; 42:359-365; PMID:9052520; http://dx.doi.org/10.1023/A:1018826204819
  • Leaphart CL, Cavallo JC, Gribar SC, Cetin S, Li J, Branca MF, Dubowski TD, Sodhi CP, Hackam DJ. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol 2007; 179:4808-4820; PMID:17878380; http://dx.doi.org/10.4049/jimmunol.179.7.4808
  • Townsend S, Barron JC, Loc-Carrillo C, Forsythe S. The presence of endotoxin in powdered infant formula milk and the influence of endotoxin and Enterobacter sakazakii on bacterial translocation in the infant rat. Food Microbiol 2007; 24:67-74; PMID:16943096; http://dx.doi.org/10.1016/j.fm.2006.03.009
  • Moriez R, Salvador-Cartier C, Theodorou V, Fioramonti J, Eutamene H, Bueno L. Myosin light chain kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats. Am J Pathol 2005; 267:1071-1079; PMID:16192642; http://dx.doi.org/10.1016/S0002-9440(10)61196-0
  • Mange JP, Stephan R, Borel N, Wild P, Kim KS, Pospischil A, Lehner A. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells. BMC Microbiol 2006; 6:58; PMID:16800879; http://dx.doi.org/10.1186/1471-2180-6-58
  • Kim S, Hwang H, Kim KP, Yoon H, Kang DH, Ryu S. The hfq plays important roles in virulence and stress adaptation in Cronobacter sakazakii ATCC 29544. Infect Immun 2015; 8:2089-98; PMID:25754196; http://dx.doi.org/10.1128/IAI.03161-14
  • Guillier M, Gottesman S, Storz G. Modulating the outer membrane with small RNAs. Genes Dev 2006; 20:2338-2348; PMID:16951250; http://dx.doi.org/10.1101/gad.1457506
  • Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 2004; 118:69-82; PMID:15242645; http://dx.doi.org/10.1016/j.cell.2004.06.009
  • Repoila F, Majdalani N, Gottesman S. 2003. Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 2003; 48:855-861; PMID:12753181; http://dx.doi.org/10.1046/j.1365-2958.2003.03454.x
  • Christiansen JK, Larsen MH, Ingmer H, Sogaard-Andersen L, Kallipolitis BH. The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol 2004; 186:3355-3362; PMID:15150220; http://dx.doi.org/10.1128/JB.186.11.3355-3362.2004
  • Schiano CA, Bellows LE, Lathem WW. The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect Immun 2010; 78:2034-2044; PMID:20231416; http://dx.doi.org/10.1128/IAI.01046-09
  • Meibom KL, Forslund AL, Kuoppa K, Alkhuder K, Dubail I, Dupuis M, Forsberg A, Charbit A. Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun 2009; 77:1866-1880; PMID:19223477; http://dx.doi.org/10.1128/IAI.01496-08
  • Sittka A, Pfeiffer V, Tedin K, Vogel J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 2007; 63:193-217; PMID:17163975; http://dx.doi.org/10.1111/j.1365-2958.2006.05489.x
  • Kulesus RR, Diaz-Perez K, Slechta ES, Eto DS, Mulvey MA. Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect Immun 2008; 76:3019-3026; PMID:18458066; http://dx.doi.org/10.1128/IAI.00022-08
  • Townsend SM, Hurrell E, Gonzalez-Gomez I, Lowe J, Frye JG, Forsythe S, Badger JL. Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiology 2007b; 153:3538-3547; PMID:17906151; http://dx.doi.org/10.1099/mic.0.2007/009316-0
  • Emami CN, Mittal R, Wang L, Ford HR, Prasadarao NV. Role of neutrophils and macrophages in the pathogenesis of necrotizing enterocolitis caused by Cronobacter sakazakii. J Surg Res 2012; 172:18-28; PMID:21601887; http://dx.doi.org/10.1016/j.jss.2011.04.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.