1,612
Views
35
CrossRef citations to date
0
Altmetric
Research Paper

Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes

, , , , &
Pages 618-630 | Received 10 Oct 2014, Accepted 01 Apr 2015, Published online: 07 Jul 2015

References

  • Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS-100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 1995; 8:515-48; PMID:8665468
  • Harrison TS. Cryptococcus neoformans and cryptococcosis. J Infect 2000; 41:12-7; PMID:11041708; http://dx.doi.org/10.1053/jinf.2000.0695
  • Casadevall A, Steenbergen JN, Nosanchuk JD. ‘Ready made’ virulence and ‘dual use’ virulence factors in pathogenic environmental fungi —the Cryptococcus neoformans paradigm. Curr Opin Microbiol 2003; 6:332-7; PMID:12941400; http://dx.doi.org/10.1016/S1369-5274(03)00082-1
  • Zaragoza O, Casadevall A. Experimental modulation of capsule size in Cryptococcus neoformans. Biol Proced Online 2004; 6(1):10-5; PMID:15103395; http://dx.doi.org/10.1251/bpo68
  • Bolanos B, Mitchell TG. Phagocytosis of Cryptococcus neoformans by rat alveolar macrophages. J Med Vet Mycol 1989; 27:203-17; PMID:2677298; http://dx.doi.org/10.1080/02681218980000291
  • Levitz SM, DiBenedetto DJ. Paradoxical role of capsule in murine bronchoalveolar macrophage-mediated killing of Cryptococcus neoformans. J Immunol 1989; 142:659-65; PMID:2521352
  • Vecchiarelli A, Pietrella D, Lupo P, Bistoni F, McFadden DC, Casadevall A. The polysaccharide capsule of Cryptococcus neoformans interferes with human dendritic cell maturation and activation. J Leukoc Biol 2003; 74:370-8; PMID:12949240; http://dx.doi.org/10.1189/jlb.1002476
  • Kozel TR, Highison B, Stratton CJ. Localization on encapsulated Cryptococcus neoformans of serum components opsonic for phagocytosis by macrophages and neutrophils. Infect Immun 1984; 43:574-9; PMID:6363293
  • Bulmer GS, Sans MD. Cryptococcus neoformans. II. Phagocytosis by human leukocytes. J Bacteriol 1967; 94:1480-3; PMID:4862192
  • Wang Y, Casadevall A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun 1994; 62:3004-7; PMID:8005689
  • Wang Y, Aisen P, Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 1995; 63:3131-6; PMID:7622240
  • Gomez BL, Nosanchuk JD. Melanin and fungi. Curr Opin Infect Dis 2003; 16:91-6; PMID:12734441; http://dx.doi.org/10.1097/00001432-200304000-00005
  • Kwon-Chung KJ, Bennett JE. Distribution of alpha and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol 1978; 108:337-40; PMID:364979
  • Kwon-Chung KJ. A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 1975; 67:1197-200; PMID:765816; http://dx.doi.org/10.2307/3758842
  • Kwon-Chung KJ. A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 1976; 68:943-6; PMID:790173
  • Kwon-Chung KJ, Edman JC, Wickes BL. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun 1992; 60:602-5; PMID:1730495
  • Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 2000; 13:122-43; PMID:10627494; http://dx.doi.org/10.1128/CMR.13.1.122-143.2000
  • Schmiel DH, Miller VL. Bacterial phospholipases and pathogenesis. Microbes Infect 1999; 1:1103-12; PMID:10572314; http://dx.doi.org/10.1016/S1286-4579(99)00205-1
  • Eaton K, BrooksC, MorganD, Krakowka S. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun 1991; 59:2470-2475; PMID:2050411
  • Singh A, Panting RJ, Varma A, Saijo T, Waldron KJ, Jong A, Ngamskulrungroj P, Chang YC, Rutherford JC, Kwon-Chung KJ. Factors required for activation of urease as a virulence determinant in Cryptococcus neoformans. MBio 2013; 4(3):e00220-13; PMID:23653445; http://dx.doi.org/10.1128/mBio.00220-13
  • Cui L, Miao J, Furuya T, Fan Q, Li X, Rathod PK, Su XZ, Cui L. Histone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro Plasmodium falciparum development. Eukaryot Cell 2008; 7:1200-10; PMID:18487348; http://dx.doi.org/10.1128/EC.00063-08
  • Lohse MB, Johnson AD. Temporal anatomy of an epigenetic switch in cell programming: the white-opaque transition of Candida albicans. Mol Microbiol 2010; 78(2):331-43; PMID:20735781; http://dx.doi.org/10.1111/j.1365-2958.2010.07331.x
  • Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 2007; 6:1656-64; PMID:17616629; http://dx.doi.org/10.1128/EC.00186-07
  • Zhang L, Ma N, Liu Q, Ma Y. Genome-wide screening for genes associated with valproic acid sensitivity in fission yeast. Plos One 2013; 8(7):e68738; PMID:23861937; http://dx.doi.org/10.1371/journal.pone.0068738
  • Robbins N, Leach MD, Cowe LE. Fungal drug resistance lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby Governing. Cell Reports 2012; 2:878-88; PMID:23041319; http://dx.doi.org/10.1016/j.celrep.2012.08.035
  • Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 2008; 135(1):174-88; PMID:18854164; http://dx.doi.org/10.1016/j.cell.2008.07.046
  • O'Meara TR, Hay C, Price MS, Giles S, Alspaugh JA. Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host. Eukaryotic Cell 2010; 1193-202; PMID:20581290; http://dx.doi.org/10.1128/EC.00098-10
  • Haynes BC, Skowyra ML, Spencer SJ, Gish SR, Williams M, Held EP, Brent MR, Doering TL. Toward an Integrated Model of Capsule Regulation in Cryptococcus neoformans. PLoS Pathog 2011; 7(12):e1002411; PMID:22174677; http://dx.doi.org/10.1371/journal.ppat.1002411
  • Wang L, Liu L, Berger SL. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev 1998; 12:640-53; PMID:9499400; http://dx.doi.org/10.1101/gad.12.5.640
  • Hebbes TR, Thorne AW, Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 1988; 5:1395-402; PMID:3409869
  • Roth, S Y, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001; 70, 81-120; PMID:11395403; http://dx.doi.org/10.1146/annurev.biochem.70.1.81
  • Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann NY Acad Sci 2003; 983, 84-100; PMID:12724214; http://dx.doi.org/10.1111/j.1749-6632.2003.tb05964.x
  • Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr 2002; 132:1012-7; PMID:11983830
  • Marks PA, Richon VM, Miller T, Kelly WK. Histone deacetylase inhibitors. Adv Cancer Res 2004; 91:137-68; PMID:15327890; http://dx.doi.org/10.1016/S0065-230X(04)91004-4
  • Dokmanovic M, Marks PA. Prospects: histone deacetylase inhibitors. J Cell Biochem 2005; 96:293-304; PMID:16088937; http://dx.doi.org/10.1002/jcb.20532
  • Klar AJS, Srikantha T, Soll DR. A histone deacetylation inhibitor and mutant promote colony type switching of the human pathogen Candida albicans. Genetics 2001; 158:919-24; PMID:11404352
  • Zacchi LF, Schulz WL, Davis DA. HOS2 and HDA1 encode histone deacetylases with opposing roles in Candida albicans morphogenesis. PLoS One 2010; 5:e12171; PMID:20730094; http://dx.doi.org/10.1371/journal.pone.0012171
  • Nguyen LN, Lopes LCL, Cordero RJB, Nosanchuk JD. Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. J Antimicrob Chemother 2011; 66:2573-80; PMID:21911344; http://dx.doi.org/10.1093/jac/dkr358
  • Hnisz D, Majer O, Frohner IE, Komnenovic V, Kuchler K. The Set3/Hos2 histone deacetylase complex attenuates cAMP/PKA signaling to regulate morphogenesis and virulence of Candida albicans. PLoS Pathog 2010; 6:e1000889; PMID:20485517; http://dx.doi.org/10.1371/journal.ppat.1000889
  • Simonetti G, Passariello C, Rotili D, Mai A, Garaci E, Palamara AT. Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans. FEMS Yeast Res 2007; 7:1371-80; PMID:17627775; http://dx.doi.org/10.1111/j.1567-1364.2007.00276.x
  • Smith WL, Edlind TD. Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob Agents Chemother 2002; 46(11):3532-9; PMID:12384361; http://dx.doi.org/10.1128/AAC.46.11.3532-3539.2002
  • Pfaller MA, Messer SA, Georgopapadakou N, Martell LA, Besterman JM, Diekema DJ. Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol 2009; 47(12):3797-804; PMID:19794038; http://dx.doi.org/10.1128/JCM.00618-09
  • Lamoth F, Juvvadi PR, Soderblom EJ, Moseley MA, Asfaw YG, Steinbach WJ. Identification of a key lysine residue in heat shock protein 90 required for azole and echinocandin resistence in Aspergillus fumigatus. Antimicrob Agents Chemother 2014; 58(4):1889-6; PMID:24395240; http://dx.doi.org/10.1128/AAC.02286-13
  • Groth A, Rocha W, Verreault A, Almouzni G. Chromatin challenges during DNA replication and repair. Cell 2007; 128:721-33; PMID:17320509; http://dx.doi.org/10.1016/j.cell.2007.01.030
  • Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 2007; 76:75-100; PMID:17362198; http://dx.doi.org/10.1146/annurev.biochem.76.052705.162114
  • Ramos MG, Rabelo FL, Duarte T, Gazzinelli RT, Alvarez-Leite JI. Butyrate induces apoptosis im murine macrophages via caspase-3, but independente of autocrine synthesis of tumor necrosis factor and nitric oxide. Braz J Med Biol Res 2002; 35(2):161-73; PMID:11847519; http://dx.doi.org/10.1590/S0100-879X2002000200004
  • Ververis K, Hiong A, Karagiannis TC, Licciardi PV. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 2013; 7:47-60; PMID:23459471
  • Perfect JR. Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Res 2006; 6(4):463-8; PMID:16696642; http://dx.doi.org/10.1111/j.1567-1364.2006.00051.x
  • Aksenov SI, Babyeva IP, Golubev VI. On the mechanism of adaptation of microorganisms to conditions of extreme low humidity. Life Sci Space Res 1973; 11:55-61; PMID:12523380
  • Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A. The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol 2009; 68:133-216; PMID:19426855; http://dx.doi.org/10.1016/S0065-2164(09)01204-0
  • Tucker SC, Casadevall A. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci USA 2002; 99(5):3165-70; PMID:11880650; http://dx.doi.org/10.1073/pnas.052702799
  • Zaragoza O, Casadevall A. Experimental modulation of capsule size in Cryptococcus neoformans. Biol Proced Online 2004; 6(1):10-5; PMID:15103395; http://dx.doi.org/10.1251/bpo68
  • García-Rodas R, Cordero RJ, Trevijano-Contador N, Janbon G, Moyrand F, Casadevall A, Zaragoza O. Capsule growth in Cryptococcus neoformans is coordinated with cell cycle progression. MBio 2014; 5(3):e00945-14; PMID:24939886
  • Chen SCA, Wright LC, Santangelo RT, Muller M, Moran VR, Kuchel PW, Sorrell TC. Identification of extracellular phospholipase B, lysophospholipase, and acyltransferase produced by Cryptococcus neoformans. Infection and Immunity 1997; 405-11; PMID:9009289
  • Nielsen K, Cox GM, Litvintseva AP, Mylonakis E, Malliaris SD, Benjamin DK Jr, Giles SS, Mitchell TG, Casadevall A, Perfect JR, et al. Cryptococcus neoformans α strains preferentially disseminate to the central nervous system during coinfection. Infect Immun 2005; 73:4922-33; PMID:16041006; http://dx.doi.org/10.1128/IAI.73.8.4922-4933.2005
  • Eisenman HC, Chow SK, Tsé KK, McClelland EE, Casadevall A. The effect of L-DOPA on Cryptococcus neoformans growth and gene expression. Virulence 2011; 2(4):329-36; PMID:21705857; http://dx.doi.org/10.4161/viru.2.4.16136
  • Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, Casadevall A. Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. MBio 2013 Dec 31; 5(1):e00986-13; PMID:24381301
  • Darzynkiewicz Z, Traganos F, Xue SB, Melamed MR. Effect of n-butyrate on cell cycle progression and in situ chromatin structure of L1210 cells. Exp Cell Res 1981; 136:279-93; PMID:7308309; http://dx.doi.org/10.1016/0014-4827(81)90006-9
  • Siavoshian S, Blottière HM, Cherbut C, Galmiche JP. Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase expression in HT-29 colonic epithelial cells. Biochem Biophys Res Commun 1997; 232:169-72; PMID:9125124; http://dx.doi.org/10.1006/bbrc.1997.6255
  • Yoshida M, Beppu T. Reversible arrest of proliferation of rat 3Y1 fibroblasts in both the G1 and G2 phases by trichostatin A. Exp Cell Res 1988; 117:122-31; PMID:3134246; http://dx.doi.org/10.1016/0014-4827(88)90030-4
  • Siavoshian S, Segain J-P, Kornprobst M, Bonnet C, Cherbut C, Galmiche J-P, Blottière HM. Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut 2000; 46(4):507-14; PMID:10716680; http://dx.doi.org/10.1136/gut.46.4.507
  • Yamashita Y, Shimada M, Harimoto N, Rikimaru T, Shirabe K, Tanaka S, Sugimachi K. Histone deacetylase inhibitor trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte differentiation in human hepatomacells. Int J Cancer 2003; 103(5):572-6; PMID:12494463; http://dx.doi.org/10.1002/ijc.10699
  • Lallemand F, Courilleau D, Buquet-Fagot C, Atfi A, Montagne MN, Mester J. Sodium butyrate induces G2 arrest in the human breast cancer cells MDA-MB-231 and renders them competent for DNA rereplication. Exp Cell Res 1999; 247(2):432-40; PMID:10066371; http://dx.doi.org/10.1006/excr.1998.4370
  • Mylonakis E, Moreno R, El Khoury JB, Idnurm A, Heitman J, Calderwood SB, Ausubel FM, Diener A. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 2005; 73:3842-50; PMID:15972469; http://dx.doi.org/10.1128/IAI.73.7.3842-3850.2005
  • Chang YC, Wickes BL, Miller GF, Penoyer LA, Kwon-Chung KJ. Cryptococcus neoformans STE12α regulates virulence but is not essential for mating. J Exp Med 2000; 191(5):871-82; PMID:10704467; http://dx.doi.org/10.1084/jem.191.5.871
  • Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 2007; 26:5310-8; PMID:17694074; http://dx.doi.org/10.1038/sj.onc.1210599
  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and coregulates major cellular functions. Science 2009; 325:834-40; PMID:19608861; http://dx.doi.org/10.1126/science.1175371
  • Patel J, Pathak RR, Mujtaba S. The biology of lysine acetylation integrates transcriptional programming and metabolism. Nutr Metab (Lond) 2011; 8:12; PMID:21371315; http://dx.doi.org/10.1186/1743-7075-8-12
  • Arts J, Lansink M, Grimbergen J, Toet KH, Kooistra T. Stimulation of tissue type plasminogen activator gene expression by sodium butyrate and trichostatin A in human endothelial cells involves histone acetylation. Biochem J 1995; 310:171-6; PMID:7646441
  • Waterborg JH. Steady-state levels of histone acetylation in Saccharomyces cerevisiae. J Biol Chem 2000; 275:13007-11; PMID:10777603; http://dx.doi.org/10.1074/jbc.275.17.13007
  • Waterborg JH. Dynamics of histone acetylation in Saccharomyces cerevisiae. Biochemistry 2001; 40:2599-605; PMID:11327883; http://dx.doi.org/10.1021/bi002480c
  • Prince MF, Wilkinson ID, Gentry LO. Plate Methods for detection of phospholipase activity in Candida albicans. Sabouraudia 1982; 20:15-20; PMID:7038928

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.