679
Views
2
CrossRef citations to date
0
Altmetric
Editorial

Teaching old drugs new tricks: Addressing resistance in Francisella

&
Pages 414-416 | Received 15 May 2015, Accepted 15 May 2015, Published online: 09 Jul 2015

References

  • Pavlovich NV, Tynkevich NK, Ryzhko IV, Danilevskaia GI. Detection of persistent resistance to antibacterial drugs in various strains of Francisella tularensis. Antibiotik Khimioter 1992; 37:29-31.
  • Pavlovich NV, Danilevskaia GI, Khodova VA, Ryzhko IV, Mishan'kin BN. Pleiotropic nature of mutation of resistance to 2,3,5-triphenyl- tetrazolium chloride of Francisella tularensis. Antibiotik Khimioter 1992; 37:28-31.
  • Sutera V, Levert M, Burmeister WP, Schneider D, Maurin M. Evolution toward high-level fluoroquinolone resistance in Francisella species. J Antimicrob Chemother 2014; 69:101-10; PMID:23963236; http://dx.doi.org/10.1093/jac/dkt321
  • Furlani RE, Yeagley AA, Melander C. A flexible approach to 1,4-di-substituted 2-aminoimidazoles that inhibit and disperse biofilms and potentiate the effects of β-lactams against multi-drug resistant bacteria. Eur J Med Chem 2013; 62:59-70; PMID:23353733; http://dx.doi.org/10.1016/j.ejmech.2012.12.005
  • Rogers SA, Huigens RW, 3rd, Cavanagh J, Melander C. Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother 2010; 54:2112-8; PMID:20211901; http://dx.doi.org/10.1128/AAC.01418-09
  • Su Z, Peng L, Worthington RJ, Melander C. Evaluation of 4,5-disubstituted-2-aminoimidazole-triazole conjugates for antibiofilm/antibiotic resensitization activity against MRSA and Acinetobacter baumannii. Chem Med Chem 2011; 6:2243-51; PMID:21928438; http://dx.doi.org/10.1002/cmdc.201100316
  • Worthington RJ, Bunders CA, Reed CS, Melander C. Small molecule suppression of carbapenem resistance in NDM-1 producing Klebsiella pneumoniae. ACS Med Chem Lett 2012; 3:357-61; PMID:22844552; http://dx.doi.org/10.1021/ml200290p
  • Yeagley AA, Su Z, McCullough KD, Worthington RJ, Melander C. N-substituted 2-aminoimidazole inhibitors of MRSA biofilm formation accessed through direct 1,3-bis(tert-butoxycarbonyl)guanidine cyclization. Org Biomol Chem 2013; 11:130-7; PMID:23076976; http://dx.doi.org/10.1039/C2OB26469B
  • Barrett JF, Goldschmidt RM, Lawrence LE, Foleno B, Chen R, Demers JP, Johnson S, Kanojia R, Fernandez J, Bernstein J, et al. Antibacterial agents that inhibit two-component signal transduction systems. Proc Natl Acad Sci U S A 1998; 95:5317-22; PMID:9560273; http://dx.doi.org/10.1073/pnas.95.9.5317
  • Fabret C, Hoch JA. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 1998; 180:6375-83; PMID:9829949
  • Macielag MJ, Demers JP, Fraga-Spano SA, Hlasta DJ, Johnson SG, Kanojia RM, Russell RK, Sui Z, Weidner-Wells MA, Werblood H, et al. Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. J Med Chem 1998; 41:2939-45; PMID:9685233; http://dx.doi.org/10.1021/jm9803572
  • Lukat GS, McCleary WR, Stock AM, Stock JB. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci U S A 1992; 89:718-22; PMID:1731345; http://dx.doi.org/10.1073/pnas.89.2.718
  • Stephenson K, Hoch JA. Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr Opin Pharmacol 2002; 2:507-12; PMID:12324251; http://dx.doi.org/10.1016/S1471-4892(02)00194-7
  • Stephenson K, Hoch JA. Virulence- and antibiotic resistance-associated two-component signal transduction systems of Gram-positive pathogenic bacteria as targets for antimicrobial therapy. Pharmacol Ther 2002; 93:293-305; PMID:12191621; http://dx.doi.org/10.1016/S0163-7258(02)00198-5
  • Stephenson K, Hoch JA. Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms. Curr Med Chem 2004; 11:765-73; PMID:15032730; http://dx.doi.org/10.2174/0929867043455765
  • Tang YT, Gao R, Havranek JJ, Groisman EA, Stock AM, Marshall GR. Inhibition of bacterial virulence: drug-like molecules targeting the Salmonella enterica PhoP response regulator. Chem Biol Drug Des 2012; 79:1007-17; PMID:22339993; http://dx.doi.org/10.1111/j.1747-0285.2012.01362.x
  • Harris TL, Worthington RJ, Melander C. Potent small-molecule suppression of oxacillin resistance in methicillin-resistant Staphylococcus aureus. Angew Chem Int Ed Engl 2012; 51:11254-7; PMID:23047322; http://dx.doi.org/10.1002/anie.201206911
  • Harris TL, Worthington RJ, Hittle LE, Zurawski DV, Ernst RK, Melander C. Small molecule downregulation of PmrAB reverses lipid A modification and breaks colistin resistance. ACS Chem Biol 2014; 9:122-7; PMID:24131198; http://dx.doi.org/10.1021/cb400490k
  • Thompson RJ, Bobay BG, Stowe SD, Olson AL, Peng L, Su Z, Actis LA, Melander C, Cavanagh J. Identification of BfmR, a response regulator involved in biofilm development, as a target for a 2-Aminoimidazole-based antibiofilm agent. Biochemistry 2012; 51:9776-8; PMID:23186243; http://dx.doi.org/10.1021/bi3015289
  • Mohapatra NP, Soni S, Bell BL, Warren R, Ernst RK, Muszynski A, Carlson RW, Gunn JS. Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun 2007; 75:3305-14; PMID:17452468; http://dx.doi.org/10.1128/IAI.00351-07
  • Dai S, Mohapatra NP, Schlesinger LS, Gunn JS. Regulation of francisella tularensis virulence. Front Microb 2010; 1:144; PMID:21687801
  • Barker JR, Chong A, Wehrly TD, Yu JJ, Rodriguez SA, Liu J, Celli J, Arulanandam BP, Klose KE. The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microb 2009; 74:1459-70; PMID:20054881; http://dx.doi.org/10.1111/j.1365-2958.2009.06947.x
  • de Bruin OM, Duplantis BN, Ludu JS, Hare RF, Nix EB, Schmerk CL, Robb CS, Boraston AB, Hueffer K, Nano FE. The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. Microbiology 2011; 157:3483-91; PMID:21980115; http://dx.doi.org/10.1099/mic.0.052308-0
  • Santic M, Molmeret M, Klose KE, Jones S, Kwaik YA. The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol 2005; 7:969-79; PMID:15953029; http://dx.doi.org/10.1111/j.1462-5822.2005.00526.x
  • Bell BL, Mohapatra NP, Gunn JS. Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: role of phosphorylation and evidence of MglA/SspA interaction. Infect Immun 2010; 78:2189-98; PMID:20231408; http://dx.doi.org/10.1128/IAI.00021-10
  • Lauriano CM, Barker JR, Yoon SS, Nano FE, Arulanandam BP, Hassett DJ, Klose KE. MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A 2004; 101:4246-9; PMID:15010524; http://dx.doi.org/10.1073/pnas.0307690101
  • Barrett JF, Hoch JA. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob Agents Chemother 1998; 42:1529-36; PMID:9660978
  • Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 2010; 13:232-9; PMID:20138000; http://dx.doi.org/10.1016/j.mib.2010.01.008
  • Durham-Colleran MW, Verhoeven AB, van Hoek ML. Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb Ecol 2010; 59:457-65; PMID:19763680; http://dx.doi.org/10.1007/s00248-009-9586-9
  • Weiss DS, Brotcke A, Henry T, Margolis JJ, Chan K, Monack DM. In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A 2007; 104:6037-42; PMID:17389372; http://dx.doi.org/10.1073/pnas.0609675104
  • Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon YH, et al. Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Proc Natl Acad Sci U S A 2010; 107:10902-7; PMID:20498088; http://dx.doi.org/10.1073/pnas.1001656107
  • Xie W, Dickson C, Kwiatkowski W, Choe S. Structure of the cytoplasmic segment of histidine kinase receptor QseC, a key player in bacterial virulence. Protein Pept Lett 2010; 17:1383-91; PMID:20594156; http://dx.doi.org/10.2174/0929866511009011383
  • Gonzalez Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 2006; 188:305-16; PMID:16352847; http://dx.doi.org/10.1128/JB.188.1.305-316.2006
  • Clarke MB, Sperandio V. Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). Mol Microbiol 2005; 58:441-55; PMID:16194231; http://dx.doi.org/10.1111/j.1365-2958.2005.04819.x
  • Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 2006; 103:10420-5; PMID:16803956; http://dx.doi.org/10.1073/pnas.0604343103
  • Rasko DA, Moreira CG, Li de R, Reading NC, Ritchie JM, Waldor MK, Williams N, Taussig R, Wei S, Roth M, et al. Targeting QseC signaling and virulence for antibiotic development. Science 2008; 321:1078-80; PMID:18719281; http://dx.doi.org/10.1126/science.1160354
  • Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Dis 2010; 9:117-28; PMID:20081869; http://dx.doi.org/10.1038/nrd3013
  • Curtis MM, Russell R, Moreira CG, Adebesin AM, Wang C, Williams NS, Taussig R, Stewart D, Zimmern P, Lu B, et al. QseC inhibitors as an antivirulence approach for Gram-negative pathogens. mBio 2014; 5:e02165; PMID:25389178; http://dx.doi.org/10.1128/mBio.02165-14
  • Dean SN, van Hoek ML. Screen of FDA-approved drug library identifies maprotiline, an antibiofilm and antivirulence compound with QseC sensor-kinase dependent activity in Francisella novicida. Virulence 2015; 6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.