854
Views
3
CrossRef citations to date
0
Altmetric
Editorial

Lightning up the worm: How to probe fungal virulence in an alternative mini-host by bioluminescence

Pages 727-729 | Received 24 Sep 2015, Accepted 24 Sep 2015, Published online: 18 Nov 2015

References

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med 2012; 4:165rv13; PMID:23253612; http://dx.doi.org/10.1126/scitranslmed.3004404
  • Denning DW, Bromley MJ. Infectious Disease. How to bolster the antifungal pipeline. Science 2015; 347:1414-6; PMID:25814567; http://dx.doi.org/10.1126/science.aaa6097
  • Casadevall A. Cards of virulence and the global virulome for humans. Microbe 2006; 1:359-64
  • Casadevall A, Pirofski LA. Microbiology: Ditch the term pathogen. Nature 2014; 516:165-6; PMID:25503219; http://dx.doi.org/10.1038/516165a
  • Delarze E, Francoise I, Sanglard D, Coste AT. Adaptation of a Gaussia princeps luciferase reporter system in Candida albicans for in vivo detection in the Galleria mellonella infection model. Virulence 2015; 6:684-693; PMID:26305489
  • Chao CC, Hsu PC, Jen CF, Chen IH, Wang CH, Chan HC, Tsai PW, Tung KC, Lan CY, Chuang YJ. Zebrafish as a model host for Candida albicans infection. Infect Immun 2010; 78:2512-21; PMID:20308295; http://dx.doi.org/10.1128/IAI.01293-09
  • Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell 2009; 8:1750-8; PMID:19666778; http://dx.doi.org/10.1128/EC.00163-09
  • Tampakakis E, Okoli I, Mylonakis E. AC elegans-based, whole animal, in vivo screen for the identification of antifungal compounds. Nat Protoc 2008; 3:1925-31; PMID:19180076; http://dx.doi.org/10.1038/nprot.2008.193
  • Hillmann F, Novohradska S, Mattern DJ, Forberger T, Heinekamp T, Westermann M, Winckler T, Brakhage AA. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ Microbiol 2015; 17:2858-69; PMID:25684622; http://dx.doi.org/10.1111/1462-2920.12808
  • Steenbergen JN, Nosanchuk JD, Malliaris SD, Casadevall A. Cryptococcus neoformans virulence is enhanced after growth in the genetically malleable host Dictyostelium discoideum. Infect Immun 2003; 71:4862-72; PMID:12933827; http://dx.doi.org/10.1128/IAI.71.9.4862-4872.2003
  • Chrisman CJ, Alvarez M, Casadevall A. Phagocytosis of Cryptococcus neoformans by, and nonlytic exocytosis from, Acanthamoeba castellanii. Appl Environ Microbiol 2010; 76:6056-62; PMID:20675457; http://dx.doi.org/10.1128/AEM.00812-10
  • Steenbergen JN, Shuman HA, Casadevall A. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci U S A 2001; 98:15245-50; PMID:11742090; http://dx.doi.org/10.1073/pnas.261418798
  • Jacobsen ID, Grosse K, Hube B. Embryonated chicken eggs as alternative infection model for pathogenic fungi. Methods Mol Biol 2012; 845:487-96; PMID:22328397; http://dx.doi.org/10.1007/978-1-61779-539-8_34
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973-83; PMID:8808632; http://dx.doi.org/10.1016/S0092-8674(00)80172-5
  • Mortazavi PN, Goldsworthy G, Kirk R, Khan NA. Acanthamoeba produces disseminated infection in locusts and traverses the locust blood-brain barrier to invade the central nervous system. BMC Microbiol 2010; 10:186; PMID:20615207; http://dx.doi.org/10.1186/1471-2180-10-186
  • Siddiqui R, Edwards-Smallbone J, Flynn R, Khan NA. Next generation of non-mammalian blood-brain barrier models to study parasitic infections of the central nervous system. Virulence 2012; 3:159-63; PMID:21921682; http://dx.doi.org/10.4161/viru.17631
  • Diezmann S. Of caterpillars and yeasts: Introducing a new model system for the study of fungal virulence. 19th ISHAM Congress 2015. Available at: http://figshare.com/articles/Of_caterpillars_and_yeasts_Introducing_a_new_model_system_for_the_study_of_fungal_virulence/1424584; accessed September 14, 2015
  • Hanaoka N, Takano Y, Shibuya K, Fugo H, Uehara Y, Niimi M. Identification of the putative protein phosphatase gene PTC1 as a virulence-related gene using a silkworm model of Candida albicans infection. Eukaryot Cell 2008; 7:1640-8; PMID:18708562; http://dx.doi.org/10.1128/EC.00129-08
  • Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 2000; 27:163-9; PMID:10640612; http://dx.doi.org/10.1111/j.1574-695X.2000.tb01427.x
  • Mak P, Zdybicka-Barabas A, Cytrynska M. A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. Dev Comp Immunol 2010; 34:1129-36; PMID:20558200; http://dx.doi.org/10.1016/j.dci.2010.06.005
  • Dunphy GB, Oberholzer U, Whiteway M, Zakarian RJ, Boomer I. Virulence of Candida albicans mutants toward larval Galleria mellonella (Insecta, Lepidoptera, Galleridae). Can J Microbiol 2003; 49:514-24; PMID:14608387; http://dx.doi.org/10.1139/w03-064
  • Brennan M, Thomas DY, Whiteway M, Kavanagh K. Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 2002; 34:153-7; PMID:12381467; http://dx.doi.org/10.1111/j.1574-695X.2002.tb00617.x
  • Kelly J, Kavanagh K. Caspofungin primes the immune response of the larvae of Galleria mellonella and induces a non-specific antimicrobial response. J Med Microbiol 2011; 60:189-96; PMID:20947665; http://dx.doi.org/10.1099/jmm.0.025494-0
  • Mylonakis E, Moreno R, El Khoury JB, Idnurm A, Heitman J, Calderwood SB, Ausubel FM, Diener A. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 2005; 73:3842-50; PMID:15972469; http://dx.doi.org/10.1128/IAI.73.7.3842-3850.2005
  • Slater JL, Gregson L, Denning DW, Warn PA. Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice. Med Mycol 2011; 49 Suppl 1:S107-13; PMID:20950221; http://dx.doi.org/10.3109/13693786.2010.523852
  • Amorim-Vaz S, Delarze E, Ischer F, Sanglard D, Coste AT. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models. Front Microbiol 2015; 6:367; PMID:25999923
  • Brock M. Application of bioluminescence imaging for in vivo monitoring of fungal infections. Int J Microbiol 2012; 2012:956794; PMID:22121368; http://dx.doi.org/10.1155/2012/956794
  • Donat S, Hasenberg M, Schafer T, Ohlsen K, Gunzer M, Einsele H, Löffler J, Beilhack A, Krappmann S. Surface display of Gaussia princeps luciferase allows sensitive fungal pathogen detection during cutaneous aspergillosis. Virulence 2012; 3:51-61; PMID:22286700; http://dx.doi.org/10.4161/viru.3.1.18799
  • Enjalbert B, Rachini A, Vediyappan G, Pietrella D, Spaccapelo R, Vecchiarelli A, Brown AJ, d'Enfert C. A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect Immun 2009; 77:4847-58; PMID:19687206; http://dx.doi.org/10.1128/IAI.00223-09
  • Galiger C, Brock M, Jouvion G, Savers A, Parlato M, Ibrahim-Granet O. Assessment of efficacy of antifungals against Aspergillus fumigatus: value of real-time bioluminescence imaging. Antimicrob Agents Chemother 2013; 57:3046-59; PMID:23587947; http://dx.doi.org/10.1128/AAC.01660-12
  • Ibrahim-Granet O, Jouvion G, Hohl TM, Droin-Bergere S, Philippart F, Kim OY, Adib-Conquy M, Schwendener R, Cavaillon JM, Brock M. In vivo bioluminescence imaging and histopathopathologic analysis reveal distinct roles for resident and recruited immune effector cells in defense against invasive aspergillosis. BMC Microbiol 2010; 10:105; PMID:20377900; http://dx.doi.org/10.1186/1471-2180-10-105
  • Kucharíková S, Vande Velde G, Himmelreich U, Van Dijck P. Candida albicans biofilm development on medically-relevant foreign bodies in a mouse subcutaneous model followed by bioluminescence imaging. J Vis Exp 2015; 95:e52239
  • Mosci P, Pericolini E, Gabrielli E, Kenno S, Perito S, Bistoni F, d'Enfert C, Vecchiarelli A. A novel bioluminescence mouse model for monitoring oropharyngeal candidiasis in mice. Virulence 2013; 4:250-4; PMID:23334179; http://dx.doi.org/10.4161/viru.23529
  • Papon N, Courdavault V, Lanoue A, Clastre M, Brock M. Illuminating fungal infections with bioluminescence. PLoS Pathog 2014; 10:e1004179; PMID:25010008; http://dx.doi.org/10.1371/journal.ppat.1004179
  • Vande Velde G, Kucharikova S, Schrevens S, Himmelreich U, Van Dijck P. Towards non-invasive monitoring of pathogen-host interactions during Candida albicans biofilm formation using in vivo bioluminescence. Cell Microbiol 2014; 16:115-30; PMID:23962311; http://dx.doi.org/10.1111/cmi.12184
  • Francis KP, Yu J, Bellinger-Kawahara C, Joh D, Hawkinson MJ, Xiao G, Purchio TF, Caparon MG, Lipsitch M, Contag PR. Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun 2001; 69:3350-8; PMID:11292758; http://dx.doi.org/10.1128/IAI.69.5.3350-3358.2001