18,174
Views
423
CrossRef citations to date
0
Altmetric
Review

Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing

, &
Pages 214-229 | Received 18 Nov 2015, Accepted 16 Dec 2015, Published online: 09 Feb 2016

References

  • Scoble M. Classification of the Lepidoptera. Oxford University Press, 1995
  • Ramarao N, Nielsen-Leroux C, Lereclus D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp 2012 Dec 11;(70):e4392; PMID:23271509; http://dx.doi.org/10.3791/4392.
  • Konkel ME, Tilly K. Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2000; 2:157-66; PMID:10742688; http://dx.doi.org/10.1016/S1286-4579(00)00272-0
  • Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Migliaccio CA, Sylva GL, Musser JM. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc Natl Acad Sci U S A 2001; 98:10416-21; PMID:11517341; http://dx.doi.org/10.1073/pnas.191267598
  • Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 2013; 4:597-603; PMID:23921374; http://dx.doi.org/10.4161/viru.25906
  • Boman HG, Hultmark D. Cell-free immunity in insects. Annu Rev Microbiol 1987; 41:103-26; PMID:3318666; http://dx.doi.org/10.1146/annurev.mi.41.100187.000535
  • Tojo S, Naganuma F, Arakawa K, Yokoo S. Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J Insect Physiol 2000; 46:1129-35; PMID:10817839; http://dx.doi.org/10.1016/S0022-1910(99)00223-1
  • Pech LL, Strand MR. Granular cells are required for encapsulation of foreign targets by insect haemocytes. J Cell Sci 1996; 109 ( Pt 8):2053-60; PMID:8856501
  • Schmit AR, Ratcliffe NA. The encapsulation of foreign tissue implants in Galleria mellonella larvae. J Insect Physiol 1977; 23:175-84; PMID:323370; http://dx.doi.org/10.1016/0022-1910(77)90027-0
  • Choi JY, Whitten MM, Cho MY, Lee KY, Kim MS, Ratcliffe NA, Lee BL. Calreticulin enriched as an early-stage encapsulation protein in wax moth Galleria mellonella larvae. Dev Comp Immunol 2002; 26:335-43; PMID:11888648; http://dx.doi.org/10.1016/S0145-305X(01)00081-7
  • Bergin D, Reeves EP, Renwick J, Wientjes FB, Kavanagh K. Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 2005; 73:4161-70; PMID:15972506; http://dx.doi.org/10.1128/IAI.73.7.4161-4170.2005
  • Renwick J, Reeves EP, Wientjes FB, Kavanagh K. Translocation of proteins homologous to human neutrophil p47phox and p67phox to the cell membrane in activated hemocytes of Galleria mellonella. Dev Comp Immunol 2007; 31:347-59; PMID:16920193; http://dx.doi.org/10.1016/j.dci.2006.06.007
  • Halwani AE, Niven DF, Dunphy GB. Apolipophorin-III and the interactions of lipoteichoic acids with the immediate immune responses of Galleria mellonella. J Invertebr Pathol 2000; 76:233-41; PMID:11112367; http://dx.doi.org/10.1006/jipa.2000.4978
  • Pratt CC, Weers PM. Lipopolysaccharide binding of an exchangeable apolipoprotein, apolipophorin III, from Galleria mellonella. Biol Chem 2004; 385:1113-9; PMID:15576334; http://dx.doi.org/10.1515/BC.2004.145
  • Whitten MM, Tew IF, Lee BL, Ratcliffe NA. A novel role for an insect apolipoprotein (apolipophorin III) in β-1,3-glucan pattern recognition and cellular encapsulation reactions. J Immunol 2004; 172:2177-85; PMID:14764684; http://dx.doi.org/10.4049/jimmunol.172.4.2177
  • Carvalho MD, Tobias VE, Vendrame CM, Shimabukuro AF, Gidlund M, Quintao EC. Lipoproteins modify the macrophage uptake of triacylglycerol emulsion and of zymosan particles by similar mechanisms. Lipids 2000; 35:55-9; PMID:10695924; http://dx.doi.org/10.1007/s11745-000-0494-1
  • Riddell DR, Graham A, Owen JS. Apolipoprotein E inhibits platelet aggregation through the L-arginine:nitric oxide pathway. Implications for vascular disease. J Biol Chem 1997; 272:89-95; PMID:8995232; http://dx.doi.org/10.1074/jbc.272.1.89
  • Niere M, Meisslitzer C, Dettloff M, Weise C, Ziegler M, Wiesner A. Insect immune activation by recombinant Galleria mellonella apolipophorin III(1). Biochim Biophys Acta 1999; 1433:16-26; PMID:10446356; http://dx.doi.org/10.1016/S0167-4838(99)00148-X
  • Park SY, Kim CH, Jeong WH, Lee JH, Seo SJ, Han YS, Lee IH. Effects of two hemolymph proteins on humoral defense reactions in the wax moth, Galleria mellonella. Dev Comp Immunol 2005; 29:43-51; PMID:15325522; http://dx.doi.org/10.1016/j.dci.2004.06.001
  • Zdybicka-Barabas A, Staczek S, Mak P, Skrzypiec K, Mendyk E, Cytrynska M. Synergistic action of Galleria mellonella apolipophorin III and lysozyme against Gram-negative bacteria. Biochim Biophys Acta 2013; 1828:1449-56; PMID:23419829; http://dx.doi.org/10.1016/j.bbamem.2013.02.004
  • Dziarski R, Gupta D. The peptidoglycan recognition proteins (PGRPs). Genome Biol 2006; 7:232; PMID:16930467; http://dx.doi.org/10.1186/gb-2006-7-8-232
  • Seitz V, Clermont A, Wedde M, Hummel M, Vilcinskas A, Schlatterer K, Podsiadlowski L. Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol 2003; 27:207-15; PMID:12590972; http://dx.doi.org/10.1016/S0145-305X(02)00097-6
  • Kim CH, Shin YP, Noh MY, Jo YH, Han YS, Seong YS, Lee IH. An insect multiligand recognition protein functions as an opsonin for the phagocytosis of microorganisms. J Biol Chem 2010; 285:25243-50; PMID:20519517; http://dx.doi.org/10.1074/jbc.M110.134940
  • Yu XQ, Kanost MR. Binding of hemolin to bacterial lipopolysaccharide and lipoteichoic acid. An immunoglobulin superfamily member from insects as a pattern-recognition receptor. Eur J Biochem 2002; 269:1827-34; PMID:11952784; http://dx.doi.org/10.1046/j.1432-1033.2002.02830.x
  • Shaik HA, Sehnal F. Hemolin expression in the silk glands of Galleria mellonella in response to bacterial challenge and prior to cell disintegration. J Insect Physiol 2009; 55:781-7; PMID:19414015; http://dx.doi.org/10.1016/j.jinsphys.2009.04.010
  • Mowlds P, Coates C, Renwick J, Kavanagh K. Dose-dependent cellular and humoral responses in Galleria mellonella larvae following β-glucan inoculation. Microbes Infect 2010; 12:146-53; PMID:19925881; http://dx.doi.org/10.1016/j.micinf.2009.11.004
  • Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol 2009; 39:792-800; PMID:19786100; http://dx.doi.org/10.1016/j.ibmb.2009.09.004
  • Lee YS, Yun EK, Jang WS, Kim I, Lee JH, Park SY, Ryu KS, Seo SJ, Kim CH, Lee IH. Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol Biol 2004; 13:65-72; PMID:14728668; http://dx.doi.org/10.1111/j.1365-2583.2004.00462.x
  • Sowa-Jasilek A, Zdybicka-Barabas A, Staczek S, Wydrych J, Mak P, Jakubowicz T, Cytryńska M. Studies on the role of insect hemolymph polypeptides: Galleria mellonella anionic peptide 2 and lysozyme. Peptides 2014; 53:194-201; PMID:24472857; http://dx.doi.org/10.1016/j.peptides.2014.01.012
  • Kim CH, Lee JH, Kim I, Seo SJ, Son SM, Lee KY, Lee IH. Purification and cDNA cloning of a cecropin-like peptide from the great wax moth, Galleria mellonella. Mol Cells 2004; 17:262-6; PMID:15179040
  • Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. The discovery and analysis of a diverged family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella. Insect Biochem Mol Biol 2008; 38:201-12; PMID:18207081; http://dx.doi.org/10.1016/j.ibmb.2007.10.009
  • Hoffmann JA, Reichhart JM, Hetru C. Innate immunity in higher insects. Curr Opin Immunol 1996; 8:8-13; PMID:8729440; http://dx.doi.org/10.1016/S0952-7915(96)80098-7
  • Cytrynska M, Mak P, Zdybicka-Barabas A, Suder P, Jakubowicz T. Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 2007; 28:533-46; PMID:17194500; http://dx.doi.org/10.1016/j.peptides.2006.11.010
  • Kawaoka S, Katsuma S, Daimon T, Isono R, Omuro N, Mita K, Shimada T. Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch Insect Biochem Physiol 2008; 67:87-96; PMID:18076111; http://dx.doi.org/10.1002/arch.20223
  • Langen G, Imani J, Altincicek B, Kieseritzky G, Kogel KH, Vilcinskas A. Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biol Chem 2006; 387:549-57; PMID:16740126; http://dx.doi.org/10.1515/BC.2006.071
  • Girard PA, Boublik Y, Wheat CW, Volkoff AN, Cousserans F, Brehelin M, Escoubas JM. X-tox: an atypical defensin derived family of immune-related proteins specific to Lepidoptera. Dev Comp Immunol 2008; 32:575-84; PMID:17988734; http://dx.doi.org/10.1016/j.dci.2007.09.004
  • Tang H. Regulation and function of the melanization reaction in Drosophila. Fly (Austin) 2009; 3:105-11; PMID:19164947; http://dx.doi.org/10.4161/fly.3.1.7747
  • Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 1998; 10:23-8; PMID:9523106; http://dx.doi.org/10.1016/S0952-7915(98)80026-5
  • Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, Luan YX, Ling E. Insect prophenoloxidase: the view beyond immunity. Front Physiol 2014; 5:252; PMID:25071597
  • Altincicek B, Linder M, Linder D, Preissner KT, Vilcinskas A. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun 2007; 75:175-83; PMID:17074843; http://dx.doi.org/10.1128/IAI.01385-06
  • Zdybicka-Barabas A, Mak P, Jakubowicz T, Cytrynska M. Lysozyme and defense peptides as suppressors of phenoloxidase activity in Galleria mellonella. Arch Insect Biochem Physiol 2014; 87:1-12; PMID:25044335; http://dx.doi.org/10.1002/arch.21175
  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004; 303:1532-5; PMID:15001782; http://dx.doi.org/10.1126/science.1092385
  • Altincicek B, Stotzel S, Wygrecka M, Preissner KT, Vilcinskas A. Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. J Immunol 2008; 181:2705-12; PMID:18684961; http://dx.doi.org/10.4049/jimmunol.181.4.2705
  • Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 2000; 27:163-9; PMID:10640612; http://dx.doi.org/10.1111/j.1574-695X.2000.tb01427.x
  • Fedhila S, Buisson C, Dussurget O, Serror P, Glomski IJ, Liehl P, Lereclus D, Nielsen-LeRoux C. Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J Invertebr Pathol 2010; 103:24-9; PMID:19800349; http://dx.doi.org/10.1016/j.jip.2009.09.005
  • Desbois AP, Coote PJ. Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chemother 2011; 66:1785-90; PMID:21622972; http://dx.doi.org/10.1093/jac/dkr198
  • Vilmos P, Kurucz E. Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol Lett 1998; 62:59-66; PMID:9698099; http://dx.doi.org/10.1016/S0165-2478(98)00023-6
  • Wand ME, McCowen JW, Nugent PG, Sutton JM. Complex interactions of Klebsiella pneumoniae with the host immune system in a Galleria mellonella infection model. J Med Microbiol 2013; 62:1790-8; PMID:24000226; http://dx.doi.org/10.1099/jmm.0.063032-0
  • Loh JM, Adenwalla N, Wiles S, Proft T. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence 2013; 4:419-28; PMID:23652836; http://dx.doi.org/10.4161/viru.24930
  • La Rosa SL, Casey PG, Hill C, Diep DB, Nes IF, Brede DA. In vivo assessment of growth and virulence gene expression during commensal and pathogenic lifestyles of luxABCDE-tagged Enterococcus faecalis strains in murine gastrointestinal and intravenous infection models. Appl Environ Microbiol 2013; 79:3986-97; PMID:23603680; http://dx.doi.org/10.1128/AEM.00831-13
  • La Rosa SL, Diep DB, Nes IF, Brede DA. Construction and application of a luxABCDE reporter system for real-time monitoring of Enterococcus faecalis gene expression and growth. Appl Environ Microbiol 2012; 78:7003-11; PMID:22843522; http://dx.doi.org/10.1128/AEM.02018-12
  • Olsen RJ, Watkins ME, Cantu CC, Beres SB, Musser JM. Virulence of serotype M3 Group A Streptococcus strains in wax worms (Galleria mellonella larvae). Virulence 2011; 2:111-9; PMID:21258213; http://dx.doi.org/10.4161/viru.2.2.14338
  • Evans BA, Rozen DE. A Streptococcus pneumoniae infection model in larvae of the wax moth Galleria mellonella. Eur J Clin Microbiol Infect Dis 2012; 31:2653-60; PMID:22466968; http://dx.doi.org/10.1007/s10096-012-1609-7
  • Benachour A, Ladjouzi R, Le Jeune A, Hebert L, Thorpe S, Courtin P, Chapot-Chartier MP, Prajsnar TK, Foster SJ, Mesnage S. The lysozyme-induced peptidoglycan N-acetylglucosamine deacetylase PgdA (EF1843) is required for Enterococcus faecalis virulence. J Bacteriol 2012; 194:6066-73; PMID:22961856; http://dx.doi.org/10.1128/JB.00981-12
  • Gaca AO, Abranches J, Kajfasz JK, Lemos JA. Global transcriptional analysis of the stringent response in Enterococcus faecalis. Microbiology 2012; 158:1994-2004; PMID:22653948; http://dx.doi.org/10.1099/mic.0.060236-0
  • Gaspar F, Teixeira N, Rigottier-Gois L, Marujo P, Nielsen-LeRoux C, Crespo MT, Lopes Mde F, Serror P. Virulence of Enterococcus faecalis dairy strains in an insect model: the role of fsrB and gelE. Microbiology 2009; 155:3564-71; PMID:19696101; http://dx.doi.org/10.1099/mic.0.030775-0
  • Hanin A, Sava I, Bao Y, Huebner J, Hartke A, Auffray Y, Sauvageot N. Screening of in vivo activated genes in Enterococcus faecalis during insect and mouse infections and growth in urine. PLoS One 2010; 5:e11879; PMID:20686694; http://dx.doi.org/10.1371/journal.pone.0011879
  • Lebreton F, Riboulet-Bisson E, Serror P, Sanguinetti M, Posteraro B, Torelli R, Hartke A, Auffray Y, Giard JC. ace, Which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 2009; 77:2832-9; PMID:19433548; http://dx.doi.org/10.1128/IAI.01218-08
  • Martini C, Michaux C, Bugli F, Arcovito A, Iavarone F, Cacaci M, Paroni Sterbini F, Hartke A, Sauvageot N, Sanguinetti M, et al. The polyamine N-acetyltransferase-like enzyme PmvE plays a role in the virulence of Enterococcus faecalis. Infect Immun 2015; 83:364-71; PMID:25385793; http://dx.doi.org/10.1128/IAI.02585-14
  • Michaux C, Sanguinetti M, Reffuveille F, Auffray Y, Posteraro B, Gilmore MS, Hartke A, Giard JC. SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. Infect Immun 2011; 79:2638-45; PMID:21536798; http://dx.doi.org/10.1128/IAI.01132-10
  • Park SY, Kim KM, Lee JH, Seo SJ, Lee IH. Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect Immun 2007; 75:1861-9; PMID:17261598; http://dx.doi.org/10.1128/IAI.01473-06
  • Zhao C, Hartke A, La Sorda M, Posteraro B, Laplace JM, Auffray Y, Sanguinetti M. Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect Immun 2010; 78:3889-97; PMID:20566694; http://dx.doi.org/10.1128/IAI.00165-10
  • Chibebe Junior J, Fuchs BB, Sabino CP, Junqueira JC, Jorge AO, Ribeiro MS, Gilmore MS, Rice LB, Tegos GP, Hamblin MR, et al. Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model. PLoS One 2013; 8:e55926; PMID:23457486; http://dx.doi.org/10.1371/journal.pone.0055926
  • Lebreton F, Le Bras F, Reffuveille F, Ladjouzi R, Giard JC, Leclercq R, Cattoir V. Galleria mellonella as a model for studying Enterococcus faecium host persistence. J Mol Microbiol Biotechnol 2011; 21:191-6; PMID:22286046; http://dx.doi.org/10.1159/000332737
  • Lebreton F, van Schaik W, Sanguinetti M, Posteraro B, Torelli R, Le Bras F, Verneuil N, Zhang X, Giard JC, Dhalluin A, et al. AsrR is an oxidative stress sensing regulator modulating Enterococcus faecium opportunistic traits, antimicrobial resistance, and pathogenicity. PLoS Pathog 2012; 8:e1002834; PMID:22876178; http://dx.doi.org/10.1371/journal.ppat.1002834
  • Peleg AY, Monga D, Pillai S, Mylonakis E, Moellering RC, Jr., Eliopoulos GM. Reduced susceptibility to vancomycin influences pathogenicity in Staphylococcus aureus infection. J Infect Dis 2009; 199:532-6; PMID:19125671; http://dx.doi.org/10.1086/596511
  • Quiblier C, Seidl K, Roschitzki B, Zinkernagel AS, Berger-Bachi B, Senn MM. Secretome analysis defines the major role of SecDF in Staphylococcus aureus virulence. PLoS One 2013; 8:e63513; PMID:23658837; http://dx.doi.org/10.1371/journal.pone.0063513
  • Joyce SA, Gahan CG. Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. Microbiology 2010; 156:3456-68; PMID:20688820; http://dx.doi.org/10.1099/mic.0.040782-0
  • Mukherjee K, Abu Mraheil M, Silva S, Muller D, Cemic F, Hemberger J, Hain T, Vilcinskas A, Chakraborty T. Anti-Listeria activities of Galleria mellonella hemolymph proteins. Appl Environ Microbiol 2011; 77:4237-40; PMID:21531838; http://dx.doi.org/10.1128/AEM.02435-10
  • Mukherjee K, Altincicek B, Hain T, Domann E, Vilcinskas A, Chakraborty T. Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol 2010; 76:310-7; PMID:19897755; http://dx.doi.org/10.1128/AEM.01301-09
  • Mukherjee K, Raju R, Fischer R, Vilcinskas A. Galleria mellonella as a model host to study gut microbe homeostasis and brain infection by the human pathogen listeria monocytogenes. Adv Biochem Eng Biotechnol 2013; 135:27-39; PMID:23708825
  • Seifart Gomes C, Izar B, Pazan F, Mohamed W, Mraheil MA, Mukherjee K, Billion A, Aharonowitz Y, Chakraborty T, Hain T. Universal stress proteins are important for oxidative and acid stress resistance and growth of Listeria monocytogenes EGD-e in vitro and in vivo. PLoS One 2011; 6:e24965; PMID:21980369; http://dx.doi.org/10.1371/journal.pone.0024965
  • Andrejko M, Cytrynska M, Jakubowicz T. Apolipophorin III is a substrate for protease IV from Pseudomonas aeruginosa. FEMS Microbiol Lett 2005; 243:331-7; PMID:15686832; http://dx.doi.org/10.1016/j.femsle.2004.12.024
  • Andrejko M, Mizerska-Dudka M. Elastase B of Pseudomonas aeruginosa stimulates the humoral immune response in the greater wax moth, Galleria mellonella. J Invertebr Pathol 2011; 107:16-26; PMID:21236262; http://dx.doi.org/10.1016/j.jip.2010.12.015
  • Andrejko M, Mizerska-Dudka M. Effect of Pseudomonas aeruginosa elastase B on level and activity of immune proteins/peptides of Galleria mellonella hemolymph. J Insect Sci 2012; 12:88; PMID:23421724; http://dx.doi.org/10.1673/031.012.8801
  • Andrejko M, Zdybicka-Barabas A, Cytrynska M. Diverse effects of Galleria mellonella infection with entomopathogenic and clinical strains of Pseudomonas aeruginosa. J Invertebr Pathol 2014; 115:14-25; PMID:24513029; http://dx.doi.org/10.1016/j.jip.2013.10.006
  • Hill L, Veli N, Coote PJ. Evaluation of Galleria mellonella larvae for measuring the efficacy and pharmacokinetics of antibiotic therapies against Pseudomonas aeruginosa infection. Int J Antimicrob Agents 2014; 43:254-61; PMID:24361354; http://dx.doi.org/10.1016/j.ijantimicag.2013.11.001
  • Jander G, Rahme LG, Ausubel FM. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 2000; 182:3843-5; PMID:10851003; http://dx.doi.org/10.1128/JB.182.13.3843-3845.2000
  • Kropinski AM, Chadwick JS. The pathogenicity of rough strains of Pseudomonas aeruginosa for Galleria mellonella. Can J Microbiol 1975; 21:2084-8; PMID:814978; http://dx.doi.org/10.1139/m75-297
  • McLaughlin HP, Caly DL, McCarthy Y, Ryan RP, Dow JM. An orphan chemotaxis sensor regulates virulence and antibiotic tolerance in the human pathogen Pseudomonas aeruginosa. PLoS One 2012; 7:e42205; PMID:22870303; http://dx.doi.org/10.1371/journal.pone.0042205
  • Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E. Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 2003; 71:2404-13; PMID:12704110; http://dx.doi.org/10.1128/IAI.71.5.2404-2413.2003
  • Mizerska-Dudka M, Andrejko M. Galleria mellonella hemocytes destruction after infection with Pseudomonas aeruginosa. J Basic Microbiol 2014; 54:232-46; PMID:23456635; http://dx.doi.org/10.1002/jobm.201200273
  • Pustelny C, Brouwer S, Musken M, Bielecka A, Dotsch A, Nimtz M, Häussler S. The peptide chain release factor methyltransferase PrmC is essential for pathogenicity and environmental adaptation of Pseudomonas aeruginosa PA14. Environ Microbiol 2013; 15:597-609; PMID:23278968; http://dx.doi.org/10.1111/1462-2920.12040
  • Ryan RP, Lucey J, O'Donovan K, McCarthy Y, Yang L, Tolker-Nielsen T, Dow JM. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ Microbiol 2009; 11:1126-36; PMID:19170727; http://dx.doi.org/10.1111/j.1462-2920.2008.01842.x
  • Sonnleitner E, Hagens S, Rosenau F, Wilhelm S, Habel A, Jager KE, Bläsi U. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog 2003; 35:217-28; PMID:14521880; http://dx.doi.org/10.1016/S0882-4010(03)00149-9
  • Whiley RA, Sheikh NP, Mushtaq N, Hagi-Pavli E, Personne Y, Javaid D, Waite RD. Differential potentiation of the virulence of the Pseudomonas aeruginosa cystic fibrosis liverpool epidemic strain by oral commensal Streptococci. J Infect Dis 2014; 209:769-80; PMID:24158959; http://dx.doi.org/10.1093/infdis/jit568
  • Alghoribi MF, Gibreel TM, Dodgson AR, Beatson SA, Upton M. Galleria mellonella infection model demonstrates high lethality of ST69 and ST127 uropathogenic E. coli. PLoS One 2014; 9:e101547; PMID:25061819; http://dx.doi.org/10.1371/journal.pone.0101547
  • Ciesielczuk H, Betts J, Phee L, Doumith M, Hope R, Woodford N, Wareham DW. Comparative virulence of urinary and bloodstream isolates of extra-intestinal pathogenic Escherichia coli in a Galleria mellonella model. Virulence 2015; 6:145-51; PMID:25853733; http://dx.doi.org/10.4161/21505594.2014.988095
  • Leuko S, Raivio TL. Mutations that impact the enteropathogenic Escherichia coli Cpx envelope stress response attenuate virulence in Galleria mellonella. Infect Immun 2012; 80:3077-85; PMID:22710873; http://dx.doi.org/10.1128/IAI.00081-12
  • Morgan JK, Ortiz JA, Riordan JT. The role for TolA in enterohemorrhagic Escherichia coli pathogenesis and virulence gene transcription. Microb Pathog 2014; 77:42-52; PMID:25448467; http://dx.doi.org/10.1016/j.micpath.2014.10.010
  • Williamson DA, Mills G, Johnson JR, Porter S, Wiles S. In vivo correlates of molecularly inferred virulence among extraintestinal pathogenic Escherichia coli (ExPEC) in the wax moth Galleria mellonella model system. Virulence 2014; 5:388-93; PMID:24518442; http://dx.doi.org/10.4161/viru.27912
  • Diago-Navarro E, Chen L, Passet V, Burack S, Ulacia-Hernando A, Kodiyanplakkal RP, Levi MH, Brisse S, Kreiswirth BN, Fries BC. Carbapenem-resistant Klebsiella pneumoniae exhibit variability in capsular polysaccharide and capsule associated virulence traits. J Infect Dis 2014; 210:803-13; PMID:24634498; http://dx.doi.org/10.1093/infdis/jiu157
  • Insua JL, Llobet E, Moranta D, Perez-Gutierrez C, Tomas A, Garmendia J, et al. Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun 2013; 81:3552-65; PMID:23836821; http://dx.doi.org/10.1128/IAI.00391-13
  • McLaughlin MM, Advincula MR, Malczynski M, Barajas G, Qi C, Scheetz MH. Quantifying the clinical virulence of Klebsiella pneumoniae producing carbapenemase Klebsiella pneumoniae with a Galleria mellonella model and a pilot study to translate to patient outcomes. BMC Infect Dis 2014; 14:31; PMID:24428847; http://dx.doi.org/10.1186/1471-2334-14-31
  • Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN, Frankel G, Flieger A. The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem 2013; 288:11080-92; PMID:23457299; http://dx.doi.org/10.1074/jbc.M112.426049
  • Harding CR, Schroeder GN, Reynolds S, Kosta A, Collins JW, Mousnier A, Frankel G. Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infect Immun 2012; 80:2780-90; PMID:22645286; http://dx.doi.org/10.1128/IAI.00510-12
  • Harding CR, Stoneham CA, Schuelein R, Newton H, Oates CV, Hartland EL, Schroeder GN, Frankel G. The Dot/Icm effector SdhA is necessary for virulence of Legionella pneumophila in Galleria mellonella and A/J mice. Infect Immun 2013; 81:2598-605; PMID:23649096; http://dx.doi.org/10.1128/IAI.00296-13
  • Ahmad S, Hunter L, Qin A, Mann BJ, van Hoek ML. Azithromycin effectiveness against intracellular infections of Francisella. BMC Microbiol 2010; 10:123; PMID:20416090; http://dx.doi.org/10.1186/1471-2180-10-123
  • Aperis G, Fuchs BB, Anderson CA, Warner JE, Calderwood SB, Mylonakis E. Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect 2007; 9:729-34; PMID:17400503; http://dx.doi.org/10.1016/j.micinf.2007.02.016
  • Jacobs AC, Thompson MG, Black CC, Kessler JL, Clark LP, McQueary CN, Gancz HY, Corey BW, Moon JK, Si Y, et al. AB5075, a Highly Virulent Isolate of Acinetobacter baumannii, as a Model Strain for the Evaluation of Pathogenesis and Antimicrobial Treatments. MBio 2014; 5:e01076-14; PMID:24865555; http://dx.doi.org/10.1128/mBio.01076-14
  • Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC, Jr., Mylonakis E. Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother 2009; 53:2605-9; PMID:19332683; http://dx.doi.org/10.1128/AAC.01533-08
  • Koch G, Nadal-Jimenez P, Reis CR, Muntendam R, Bokhove M, Melillo E, Dijkstra BW, Cool RH, Quax WJ. Reducing virulence of the human pathogen Burkholderia by altering the substrate specificity of the quorum-quenching acylase PvdQ. Proc Natl Acad Sci U S A 2014; 111:1568-73; PMID:24474783; http://dx.doi.org/10.1073/pnas.1311263111
  • Schell MA, Lipscomb L, DeShazer D. Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. J Bacteriol 2008; 190:2306-13; PMID:18223084; http://dx.doi.org/10.1128/JB.01735-07
  • Seed KD, Dennis JJ. Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 2008; 76:1267-75; PMID:18195031; http://dx.doi.org/10.1128/IAI.01249-07
  • Thomas RJ, Hamblin KA, Armstrong SJ, Muller CM, Bokori-Brown M, Goldman S, Atkins HS, Titball RW. Galleria mellonella as a model system to test the pharmacokinetics and efficacy of antibiotics against Burkholderia pseudomallei. Int J Antimicrob Agents 2013; 41:330-6; PMID:23402703; http://dx.doi.org/10.1016/j.ijantimicag.2012.12.009
  • Wand ME, Muller CM, Titball RW, Michell SL. Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol 2011; 11:11; PMID:21241461; http://dx.doi.org/10.1186/1471-2180-11-11
  • Zak O, O'Reilly T. Animal models in the evaluation of antimicrobial agents. Antimicrob Agents Chemother 1991; 35:1527-31; PMID:1929323; http://dx.doi.org/10.1128/AAC.35.8.1527
  • Betts JW, Phee LM, Hornsey M, Woodford N, Wareham DW. In vitro and in vivo activities of tigecycline-colistin combination therapies against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 2014; 58:3541-6; PMID:24687491; http://dx.doi.org/10.1128/AAC.02449-14
  • Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-enantiomer of LL-37. Front Microbiol 2011; 2:128; PMID:21772832; http://dx.doi.org/10.3389/fmicb.2011.00128
  • Luther MK, Arvanitis M, Mylonakis E, LaPlante KL. Activity of daptomycin or linezolid in combination with rifampin or gentamicin against biofilm-forming Enterococcus faecalis or E. faecium in an in vitro pharmacodynamic model using simulated endocardial vegetations and an in vivo survival assay using Galleria mellonella larvae. Antimicrob Agents Chemother 2014; 58:4612-20; PMID:24867993; http://dx.doi.org/10.1128/AAC.02790-13
  • Krezdorn J, Adams S, Coote PJ. A Galleria mellonella infection model reveals double and triple antibiotic combination therapies with enhanced efficacy versus a multidrug-resistant strain of Pseudomonas aeruginosa. J Med Microbiol 2014; 63:945-55; PMID:24928215; http://dx.doi.org/10.1099/jmm.0.074245-0
  • Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 2011; 55:2655-61; PMID:21422204; http://dx.doi.org/10.1128/AAC.00045-11
  • Seed KD, Dennis JJ. Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex. Antimicrob Agents Chemother 2009; 53:2205-8; PMID:19223640; http://dx.doi.org/10.1128/AAC.01166-08
  • Comeau AM, Tetart F, Trojet SN, Prere MF, Krisch HM. Phage-Antibiotic Synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One 2007; 2:e799; PMID:17726529; http://dx.doi.org/10.1371/journal.pone.0000799
  • Kamal F, Dennis JJ. Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol 2015; 81:1132-8; PMID:25452284; http://dx.doi.org/10.1128/AEM.02850-14
  • Olszak T, Zarnowiec P, Kaca W, Danis-Wlodarczyk K, Augustyniak D, Drevinek P, de Soyza A, McClean S, Drulis-Kawa Z. In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients. Appl Microbiol Biotechnol 2015; 99(14):6021-33; PMID:25758956
  • Cook SM, McArthur JD. Developing Galleria mellonella as a model host for human pathogens. Virulence 2013; 4:350-3; PMID:23799664; http://dx.doi.org/10.4161/viru.25240
  • Mowlds P, Kavanagh K. Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia 2008; 165:5-12; PMID:17922218; http://dx.doi.org/10.1007/s11046-007-9069-9
  • Banville N, Browne N, Kavanagh K. Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence 2012; 3:497-503; PMID:23076277; http://dx.doi.org/10.4161/viru.21972
  • Fallon JP, Troy N, Kavanagh K. Pre-exposure of Galleria mellonella larvae to different doses of Aspergillus fumigatus conidia causes differential activation of cellular and humoral immune responses. Virulence 2011; 2:413-21; PMID:21921688; http://dx.doi.org/10.4161/viru.2.5.17811
  • Halwani AE, Dunphy GB. Apolipophorin-III in Galleria mellonella potentiates hemolymph lytic activity. Dev Comp Immunol 1999; 23:563-70; PMID:10579385; http://dx.doi.org/10.1016/S0145-305X(99)00037-3
  • Kopacek P, Weise C, Gotz P. The prophenoloxidase from the wax moth Galleria mellonella: purification and characterization of the proenzyme. Insect Biochem Mol Biol 1995; 25:1081-91; PMID:8580908; http://dx.doi.org/10.1016/0965-1748(95)00040-2
  • Abranches J, Miller JH, Martinez AR, Simpson-Haidaris PJ, Burne RA, Lemos JA. The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun 2011; 79:2277-84; PMID:21422186; http://dx.doi.org/10.1128/IAI.00767-10
  • Bitoun JP, Liao S, Yao X, Ahn SJ, Isoda R, Nguyen AH, Brady LJ, Burne RA, Abranches J, Wen ZT. BrpA is involved in regulation of cell envelope stress responses in Streptococcus mutans. Appl Environ Microbiol 2012; 78:2914-22; PMID:22327589; http://dx.doi.org/10.1128/AEM.07823-11
  • Buckley AA, Faustoferri RC, Quivey RG, Jr. β-Phosphoglucomutase contributes to aciduricity in Streptococcus mutans. Microbiology 2014; 160:818-27; PMID:24509501; http://dx.doi.org/10.1099/mic.0.075754-0
  • Purves J, Cockayne A, Moody PC, Morrissey JA. Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus. Infect Immun 2010; 78:5223-32; PMID:20876289; http://dx.doi.org/10.1128/IAI.00762-10
  • Michaux C, Martini C, Shioya K, Ahmed Lecheheb S, Budin-Verneuil A, Cosette P, Sanguinetti M, Hartke A, Verneuil N, Giard JC. CspR, a cold shock RNA-binding protein involved in the long-term survival and the virulence of Enterococcus faecalis. J Bacteriol 2012; 194:6900-8; PMID:23086208; http://dx.doi.org/10.1128/JB.01673-12
  • Michaux C, Saavedra LF, Reffuveille F, Bernay B, Goux D, Hartke A, Verneuil N, Giard JC. Cold-shock RNA-binding protein CspR is also exposed to the surface of Enterococcus faecalis. Microbiology 2013; 159:2153-61; PMID:23955430; http://dx.doi.org/10.1099/mic.0.071076-0
  • La Rosa SL, Casey PG, Hill C, Diep DB, Nes IF, Brede DA. In VivoAssessment of Growth and Virulence Gene Expression during Commensal and Pathogenic Lifestyles ofluxABCDE-Tagged Enterococcus faecalis Strains in Murine Gastrointestinal and Intravenous Infection Models. Appl Environ Microbiol 2013; 79:3986-97; PMID:23603680; http://dx.doi.org/10.1128/AEM.00831-13
  • de Oliveira NE, Abranches J, Gaca AO, Laport MS, Damaso CR, Bastos Mdo C, Lemos JA, Giambiagi-deMarval M. clpB, a class III heat-shock gene regulated by CtsR, is involved in thermotolerance and virulence of Enterococcus faecalis. Microbiology 2011; 157:656-65; PMID:21148206; http://dx.doi.org/10.1099/mic.0.041897-0
  • Mukherjee K, Hain T, Fischer R, Chakraborty T, Vilcinskas A. Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence 2013; 4:324-32; PMID:23348912; http://dx.doi.org/10.4161/viru.23629
  • Harding CR, Schroeder GN, Collins JW, Frankel G. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. J Vis Exp 2013:e50964; PMID:24299965
  • Champion OL, Karlyshev AV, Senior NJ, Woodward M, La Ragione R, Howard SL, Wren BW, Titball RW. Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. J Infect Dis 2010; 201:776-82; PMID:20113177
  • Senior NJ, Bagnall MC, Champion OL, Reynolds SE, La Ragione RM, Woodward MJ, Salguero FJ, Titball RW. Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol 2011; 60:661-9; PMID:21233296; http://dx.doi.org/10.1099/jmm.0.026658-0
  • Gundogdu O, Mills DC, Elmi A, Martin MJ, Wren BW, Dorrell N. The Campylobacter jejuni transcriptional regulator Cj1556 plays a role in the oxidative and aerobic stress response and is important for bacterial survival in vivo. J Bacteriol 2011; 193:4238-49; PMID:21642451; http://dx.doi.org/10.1128/JB.05189-11
  • Wand ME, Bock LJ, Turton JF, Nugent PG, Sutton JM. Acinetobacter baumannii virulence is enhanced in Galleria mellonella following biofilm adaptation. J Med Microbiol 2012; 61:470-7; PMID:22194338; http://dx.doi.org/10.1099/jmm.0.037523-0
  • Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, Reiz B, Cordwell SJ, Whittal R, Schild S, et al. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 2012; 8:e1002758; PMID:22685409; http://dx.doi.org/10.1371/journal.ppat.1002758
  • Gaddy JA, Arivett BA, McConnell MJ, Lopez-Rojas R, Pachon J, Actis LA. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect Immun 2012; 80:1015-24; PMID:22232188; http://dx.doi.org/10.1128/IAI.06279-11
  • Esterly JS, McLaughlin MM, Malczynski M, Qi C, Zembower TR, Scheetz MH. Pathogenicity of clinical Acinetobacter baumannii isolates in a Galleria mellonella host model according to bla(OXA-40) gene and epidemiological outbreak status. Antimicrob Agents Chemother 2014; 58:1240-2; PMID:24295983; http://dx.doi.org/10.1128/AAC.02201-13
  • Muller CM, Conejero L, Spink N, Wand ME, Bancroft GJ, Titball RW. Role of RelA and SpoT in Burkholderia pseudomallei virulence and immunity. Infect Immun 2012; 80:3247-55; PMID:22778096; http://dx.doi.org/10.1128/IAI.00178-12
  • Ferreira AS, Silva IN, Oliveira VH, Becker JD, Givskov M, Ryan RP, Fernandes F, Moreira LM. Comparative transcriptomic analysis of the Burkholderia cepacia tyrosine kinase bceF mutant reveals a role in tolerance to stress, biofilm formation, and virulence. Appl Environ Microbiol 2013; 79:3009-20; PMID:23435894; http://dx.doi.org/10.1128/AEM.00222-13
  • Gibreel TM, Upton M. Synthetic epidermicin NI01 can protect Galleria mellonella larvae from infection with Staphylococcus aureus. J Antimicrob Chemother 2013; 68:2269-73; PMID:23711896
  • Coughlan A, Scanlon K, Mahon BP, Towler MR. Zinc and silver glass polyalkenoate cements: an evaluation of their antibacterial nature. Biomed Mater Eng 2010; 20:99-106; PMID:20592447
  • Jacobs AC, Didone L, Jobson J, Sofia MK, Krysan D, Dunman PM. Adenylate kinase release as a high-throughput-screening-compatible reporter of bacterial lysis for identification of antibacterial agents. Antimicrob Agents Chemother 2013; 57:26-36; PMID:23027196; http://dx.doi.org/10.1128/AAC.01640-12
  • Browne N, Hackenberg F, Streciwilk W, Tacke M, Kavanagh K. Assessment of in vivo antimicrobial activity of the carbene silver(I) acetate derivative SBC3 using Galleria mellonella larvae. Biometals 2014; 27:745-52; PMID:25037059; http://dx.doi.org/10.1007/s10534-014-9766-z
  • Hornsey M, Wareham DW. In vivo efficacy of glycopeptide-colistin combination therapies in a Galleria mellonella model of Acinetobacter baumannii infection. Antimicrob Agents Chemother 2011; 55:3534-7; PMID:21502628; http://dx.doi.org/10.1128/AAC.00230-11
  • O'Hara JA, Ambe LA, Casella LG, Townsend BM, Pelletier MR, Ernst RK, Shanks RM, Doi Y. Activities of vancomycin-containing regimens against colistin-resistant Acinetobacter baumannii clinical strains. Antimicrob Agents Chemother 2013; 57:2103-8; PMID:23422916; http://dx.doi.org/10.1128/AAC.02501-12
  • Yang H, Pan A, Hu L, Liu Y, Ye Y, Li J. Vancomycin protects against Acinetobacter baumannii infection in a Galleria mellonella model. Infect Dis (Lond) 2015; 47:433-5; PMID:25746598; http://dx.doi.org/10.3109/00365548.2014.997284
  • Yang H, Chen G, Hu L, Liu Y, Cheng J, Li H, Ye Y, Li J. In vivo activity of daptomycin/colistin combination therapy in a Galleria mellonella model of Acinetobacter baumannii infection. Int J Antimicrob Agents 2015; 45:188-91; PMID:25440154; http://dx.doi.org/10.1016/j.ijantimicag.2014.10.012
  • Hornsey M, Phee L, Longshaw C, Wareham DW. In vivo efficacy of telavancin/colistin combination therapy in a Galleria mellonella model of Acinetobacter baumannii infection. Int J Antimicrob Agents 2013; 41:285-7; PMID:23312607; http://dx.doi.org/10.1016/j.ijantimicag.2012.11.013
  • Dean SN, van Hoek ML. Screen of FDA-approved drug library identifies maprotiline, an antibiofilm and antivirulence compound with QseC sensor-kinase dependent activity in Francisella novicida. Virulence 2015; 6:487-503; PMID:26155740; http://dx.doi.org/10.1080/21505594.2015.1046029