847
Views
2
CrossRef citations to date
0
Altmetric
Editorial

A repeat motif on a Coxiella effector protein facilitates apoptosis inhibition

Pages 369-371 | Received 17 Feb 2016, Accepted 17 Feb 2016, Published online: 22 Apr 2016

References

  • Maurin M, Raoult D. Q fever. Clin Microbiol Rev 1999; 12:518-53; PMID:10515901.
  • Dijkstra F, van der Hoek W, Wijers N, Schimmer B, Rietveld A, Wijkmans CJ, Vellema P, Schneeberger PM. The 2007–2010 Q fever epidemic in The Netherlands: characteristics of notified acute Q fever patients and the association with dairy goat farming. FEMS Immunol Med Microbiol 2012; 64:3-12; PMID:22066649; http://dx.doi.org/10.1111/j.1574-695X.2011.00876.x.
  • Voth DE, Howe D, Heinzen RA. Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect Immun 2007; 75:4263-71; PMID:17606599; http://dx.doi.org/10.1128/IAI.00594-07.
  • Moffatt JH, Newton P, Newton HJ. Coxiella burnetii: turning hostility into a home. Cell Microbiol 2015; 17:621-31; PMID:25728389; http://dx.doi.org/10.1111/cmi.12432.
  • Macdonald LJ, Graham JG, Kurten RC, Voth DE. Coxiella burnetii exploits host cAMP-dependent protein kinase signaling to promote macrophage survival. Cell Microbiol 2014; 6:146-59; http://dx.doi.org/10.1111/cmi.12213.
  • Voth DE, Heinzen RA. Sustained activation of Akt and Erk1/2 is required for Coxiella burnetii antiapoptotic activity. Infect Immun 2009; 77:205-13; PMID:18981248; http://dx.doi.org/10.1128/IAI.01124-08.
  • Hussain SK, Broederdorf LJ, Sharma UM, Voth DE. Host kinase activity is required for Coxiella burnetii parasitophorous vacuole formation. Front Microbiol 2010; 1:137; PMID:21772829; http://dx.doi.org/10.3389/fmicb.2010.00137.
  • Millar JA, Valdes R, Kacharia FR, Landfear SM, Cambronne ED, Raghavan R. Coxiella burnetii and Leishmania mexicana residing within similar parasitophorous vacuoles elicit disparate host responses. Front Microbiol 2015; 6:794; PMID:26300862; http://dx.doi.org/10.3389/fmicb.2015.00794.
  • Luhrmann A, Nogueira CV, Carey KL, Roy CR. Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A 2010; 107:8997-9001; http://dx.doi.org/10.1073/pnas.1004380107.
  • Eckart RA, Bisle S, Schulze-Luehrmann J, Wittmann I, Jantsch J, Schmid B, Berens C, Lührmann A. Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infect Immun 2014; 82:2763-71; PMID:24733095; http://dx.doi.org/10.1128/IAI.01204-13.
  • Klingenbeck L, Eckart RA, Berens C, Luhrmann A. The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell Microbiol 2012; 15:675-87; PMID:23126667; http://dx.doi.org/10.1111/cmi.12066.
  • Bisle S, Klingenbeck L, Borges V, Sobotta K, Schulze-Luehrmann J, Menge C, Heydel C, Gomes JP, Luhrmann A. The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin. Virulence 2016; 7(4): 400-412; PMID:26760129.
  • Luhrmann A, Roy CR. Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect Immun 2007; 75:5282-9; PMID:17709406; http://dx.doi.org/10.1128/IAI.00863-07.
  • Carey KL, Newton HJ, Luhrmann A, Roy CR. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog 2011; 7:e1002056; PMID:21637816; http://dx.doi.org/10.1371/journal.ppat.1002056.
  • Beare PA, Gilk SD, Larson CL, Hill J, Stead CM, Omsland A, Cockrell DC, Howe D, Voth DE, Heinzen RA. Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. MBio 2011; 2:1-10; http://dx.doi.org/10.1128/mBio.00175-11.
  • Pan X, Luhrmann A, Satoh A, Laskowski-Arce MA, Roy CR. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 2008; 320:1651-4; PMID:18566289; http://dx.doi.org/10.1126/science.1158160.
  • Chen C, Banga S, Mertens K, Weber MM, Gorbaslieva I, Tan Y, Luo ZQ, Samuel JE. Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci U S A 2010; 107:21755-60; PMID:21098666; http://dx.doi.org/10.1073/pnas.1010485107.
  • Maturana P, Graham JG, Sharma UM, Voth DE. Refining the plasmid- encoded type IV secretion system substrate repertoire of Coxiella burnetii. J Bacteriol 2013; 195:3269-76; PMID:23687269; http://dx.doi.org/10.1128/JB.00180-13.
  • Weber MM, Chen C, Rowin K, Mertens K, Galvan G, Zhi H, Dealing CM, Roman VA, Banga S, Tan Y, Luo ZQ, Samuel JE. H. Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. J Bacteriol 2013; 195:3914-24; PMID:23813730; http://dx.doi.org/10.1128/JB.00071-13.
  • Larson CL, Beare PA, Voth DE, Howe D, Cockrell DC, Bastidas RJ, Valdivia RH, Heinzen RA. Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication. Infect Immun 2015; 83:661-70; PMID:25422265; http://dx.doi.org/10.1128/IAI.02763-14.
  • Weber MM, Faris R, McLachlan J, Tellez A, Wright WU, Galvan G, Luo ZQ, Samuel JE. Modulation of the host transcriptome by Coxiella burnetii nuclear effector Cbu1314. Microbes Infect 2016; in press; PMID:26827929.
  • Broederdorf LJ, Voth DE. Cheating death: a Coxiella effector prevents apoptosis. Front Microbiol 2011; 2:43; PMID:21747783; http://dx.doi.org/10.3389/fmicb.2011.00043.
  • Beare, PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP, Sobral BW, Kupko JJ 3rd, Porcella SF, et al. Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 2009; 77:642-56; PMID:19047403; http://dx.doi.org/10.1128/IAI.01141-08.
  • Warrier I, Hicks LD, Battisti JM, Raghavan R, Minnick MF. Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii. PLoS ONE 2014; 9:e100147; PMID:24949863; http://dx.doi.org/10.1371/journal.pone.0100147.
  • Martinez E, Cantet F, Fava L, Norville I, Bonazzi M. Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog 2014; 10:e1004013; PMID:24651569; http://dx.doi.org/10.1371/journal.ppat.1004013.
  • Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, Ward NL, Tettelin H, Davidsen TM, Beanan MJ et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 2003; 100:5455-60; PMID:12704232; http://dx.doi.org/10.1073/pnas.0931379100.
  • Omsland A, Beare PA, Hill J, Cockrell DC, Howe D, Hansen B, Samuel JE, Heinzen RA. Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl Environ Microbiol 2011; 77:3720-5; PMID:21478315; http://dx.doi.org/10.1128/AEM.02826-10.
  • Smith TA, Driscoll T, Gillespie JJ, Raghavan R. A Coxiella-like Endosymbiont is a potential vitamin source for the Lone Star Tick. Genome Biol Evol 2015; 7:831-8; PMID:25618142; http://dx.doi.org/10.1093/gbe/evv016.
  • McDonough JA, Newton HJ, Klum S, Swiss R, Agaisse H, Roy CR. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening. MBio 2013; 4:e00606-12; PMID:23362322; http://dx.doi.org/10.1128/mBio.00606-12.
  • Mahapatra S, Ayoubi P, Shaw EI. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection. BMC Microbiol 2010; 10:244e57; http://dx.doi.org/10.1186/1471-2180-10-244.
  • Beare, PA, Larson CL, Gilk SD, Heinzen RA. Two systems for targeted gene deletion in Coxiella burnetii. Appl Environ Microbiol 2012; 78:4580-9; PMID:22522687; http://dx.doi.org/10.1128/AEM.00881-12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.