4,268
Views
73
CrossRef citations to date
0
Altmetric
Review

The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn

, &
Pages 649-659 | Received 14 Dec 2015, Accepted 04 May 2016, Published online: 09 Jun 2016

References

  • Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med 2012; 4:165rv13; PMID:23253612
  • Martins N, Ferreira IC, Barros L, Silva S, Henriques M. Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 2014; 177:223-40; PMID:24789109; http://dx.doi.org/10.1007/s11046-014-9749-1
  • Parker JE, Warrilow AG, Price CL, Mullins JG, Kelly DE, Kelly SL. Resistance to antifungals that target CYP51. J Chem Biol 2014; 7:143-61; PMID:25320648; http://dx.doi.org/10.1007/s12154-014-0121-1
  • Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010; 9:719-27; PMID:20725094; http://dx.doi.org/10.1038/nrd3074
  • Solomon SL, Oliver KB. Antibiotic resistance threats in the United States: stepping back from the brink. Am Fam Physician 2014; 89:938-41; PMID:25162160
  • Xie JL, Polvi EJ, Shekhar-Guturja T, Cowen LE. Elucidating drug resistance in human fungal pathogens. Future Microbiol 2014; 9:523-42; PMID:24810351; http://dx.doi.org/10.2217/fmb.14.18
  • Noel T. The cellular and molecular defense mechanisms of the Candida yeasts against azole antifungal drugs. J Mycol Med 2012; 22:173-8; PMID:23518020; http://dx.doi.org/10.1016/j.mycmed.2012.04.004
  • Kontoyiannis DP, Sagar N, Hirschi KD. Overexpression of Erg11p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 1999; 43:2798-800; PMID:10543768
  • Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, d'Enfert C, Berman J, Sanglard D. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 2007; 6:1889-904; PMID:17693596; http://dx.doi.org/10.1128/EC.00151-07
  • Schubert S, Rogers PD, Morschhauser J. Gain-of-function mutations in the transcription factor MRR1 are responsible for overexpression of the MDR1 efflux pump in fluconazole-resistant Candida dubliniensis strains. Antimicrob Agents Chemother 2008; 52:4274-80; PMID:18809934; http://dx.doi.org/10.1128/AAC.00740-08
  • Prasad R, Kapoor K. Multidrug resistance in yeast Candida. Int Rev of Cytol 2005; 242:215-48; PMID:15598470; http://dx.doi.org/10.1016/S0074-7696(04)42005-1
  • Liu TT, Znaidi S, Barker KS, Xu L, Homayouni R, Saidane S, Morschhäuser J, Nantel A, Raymond M, Rogers PD. Genome-wide expression and location analyses of the Candida albicans Tac1p regulon. Eukaryot Cell 2007; 6:2122-38; PMID:17905926; http://dx.doi.org/10.1128/EC.00327-07
  • Dunkel N, Blass J, Rogers PD, Morschhauser J. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol 2008; 69:827-40; PMID:18577180; http://dx.doi.org/10.1111/j.1365-2958.2008.06309.x
  • Karababa M, Valentino E, Pardini G, Coste AT, Bille J, Sanglard D. CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol 2006; 59:1429-51; PMID:16468987; http://dx.doi.org/10.1111/j.1365-2958.2005.05037.x
  • Nett JE, Sanchez H, Cain MT, Andes DR. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infec Dis 2010; 202:171-5; PMID:20497051; http://dx.doi.org/10.1086/651200
  • Daum G, Wagner A, Czabany T, Athenstaedt K. Dynamics of neutral lipid storage and mobilization in yeast. Biochimie 2007; 89:243-8; PMID:16919863; http://dx.doi.org/10.1016/j.biochi.2006.06.018
  • Abe F, Usui K, Hiraki T. Fluconazole modulates membrane rigidity, heterogeneity, and water penetration into the plasma membrane in Saccharomyces cerevisiae. Biochemistry 2009; 48:8494-504; PMID:19670905; http://dx.doi.org/10.1021/bi900578y
  • Sgherri C, Porta A, Castellano S, Pinzino C, Quartacci MF, Calucci L. Effects of azole treatments on the physical properties of Candida albicans plasma membrane: a spin probe EPR study. Biochimica Et Biophysica Acta 2014; 1838:465-73; PMID:24184423; http://dx.doi.org/10.1016/j.bbamem.2013.10.015
  • Espenshade PJ, Hughes AL. Regulation of sterol synthesis in eukaryotes. Annu Rev of Genet 2007; 41:401-27; PMID:17666007; http://dx.doi.org/10.1146/annurev.genet.41.110306.130315
  • Bard M, Sturm AM, Pierson CA, Brown S, Rogers KM, Nabinger S, Eckstein J, Barbuch R, Lees ND, Howell SA, et al. Sterol uptake in Candida glabrata: rescue of sterol auxotrophic strains. Diagn Microbiol Infect Dis 2005; 52:285-93; PMID:15893902; http://dx.doi.org/10.1016/j.diagmicrobio.2005.03.001
  • Zavrel M, Hoot SJ, White TC. Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. Eukaryot Cell 2013; 12:725-38; PMID:23475705; http://dx.doi.org/10.1128/EC.00345-12
  • Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Rolley N, Kelly DE, Kelly SL. Identification and characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob Agents Chemother 2010; 54:4527-33; PMID:20733039; http://dx.doi.org/10.1128/AAC.00348-10
  • Theesfeld CL, Hampton RY. Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast. J Biol Chem 2013; 288:8519-30; PMID:23306196; http://dx.doi.org/10.1074/jbc.M112.404517
  • Pasrija R, Krishnamurthy S, Prasad T, Ernst JF, Prasad R. Squalene epoxidase encoded by ERG1 affects morphogenesis and drug susceptibilities of Candida albicans. J Antimicrob Chemother 2005; 55:905-13; PMID:15845783; http://dx.doi.org/10.1093/jac/dki112
  • Kennedy MA, Johnson TA, Lees ND, Barbuch R, Eckstein JA, Bard M. Cloning and sequencing of the Candida albicans C-4 sterol methyl oxidase gene (ERG25) and expression of an ERG25 conditional lethal mutation in Saccharomyces cerevisiae. Lipids 2000; 35:257-62; PMID:10783002; http://dx.doi.org/10.1007/s11745-000-0521-2
  • Aaron KE, Pierson CA, Lees ND, Bard M. The Candida albicans ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) is essential for growth. FEMS Yeast Res 2001; 1:93-101; PMID:12702354; http://dx.doi.org/10.1111/j.1567-1364.2001.tb00020.x
  • Pierson CA, Jia N, Mo C, Lees ND, Sturm AM, Eckstein J, Barbuct R, Bard M. Isolation, characterization, and regulation of theCandidaalbicansERG27gene encoding the sterol 3-keto reductase. Med Mycol 2004; 42:461-73; PMID:15552648; http://dx.doi.org/10.1080/1369378032000141471
  • Mukhopadhyay K, Prasad T, Saini P, Pucadyil TJ, Chattopadhyay A, Prasad R. Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans. Antimicrob Agents Chemother 2004; 48:1778-87; PMID:15105135; http://dx.doi.org/10.1128/AAC.48.5.1778-1787.2004
  • Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Kelly DE, Kelly SL. A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrob Agents Chemother 2010; 54:3578-83; PMID:20547793; http://dx.doi.org/10.1128/AAC.00303-10
  • Jensen-Pergakes KL, Kennedy MA, Lees ND, Barbuch R, Koegel C, Bard M. Sequencing, disruption, and characterization of the Candida albicans sterol methyltransferase (ERG6) gene: drug susceptibility studies in erg6 mutants. Antimicrob Agents Chemother 1998; 42:1160-7; PMID:9593144
  • Jia N, Arthington-Skaggs B, Lee W, Pierson CA, Lees ND, Eckstein J, Barbuch R, Bard M. Candida albicans Sterol C-14 reductase, encoded by the ERG24 gene, as a potential antifungal target site. Antimicrob Agents Chemother 2002; 46:947-57; PMID:11897574; http://dx.doi.org/10.1128/AAC.46.4.947-957.2002
  • Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Kelly DE, Kelly SL. A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrob Agents Chemother 2010; 54:3578-83; PMID:20547793; http://dx.doi.org/10.1128/AAC.00303-10
  • Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 2003; 47:2404-12; PMID:12878497; http://dx.doi.org/10.1128/AAC.47.8.2404-2412.2003
  • Keller P, Muller C, Engelhardt I, Hiller E, Lemuth K, Eickhoff H, Wiesmüller KH, Burger-Kentischer A, Bracher F, Rupp S. An antifungal benzimidazole derivative inhibits ergosterol biosynthesis and reveals novel sterols. Antimicrob Agents Chemother 2015; 59:6296-307; PMID:26248360; http://dx.doi.org/10.1128/AAC.00640-15
  • Pierson CA, Eckstein J, Barbuch R, Bard M. Ergosterol gene expression in wild-type and ergosterol-deficient mutants of Candida albicans. Med Mycol 2004; 42:385-9; PMID:15473366; http://dx.doi.org/10.1080/13693780410001712016
  • Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD. Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 2005; 49:2226-36; PMID:15917516; http://dx.doi.org/10.1128/AAC.49.6.2226-2236.2005
  • Arthington-Skaggs BA1, Jradi H, Desai T, Morrison CJ. Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans. J Clin Microbiol 1999; 10:3332-7; PMID:10488201
  • Morio F, Pagniez F, Lacroix C, Miegeville M, Le Pape P. Amino acid substitutions in the Candida albicans sterol Delta5,6-desaturase (Erg3p) confer azole resistance: characterization of two novel mutants with impaired virulence. J Antimicrob Chemother 2012; 67:2131-8; PMID:22678731; http://dx.doi.org/10.1093/jac/dks186
  • Bard M, Lees ND, Barbuch RJ, Sanglard D. Characterization of a cytochrome P450 deficient mutant of Candida albicans. Biochem Biophys Res Commun 1987; 147:794-800; PMID:3307785; http://dx.doi.org/10.1016/0006-291X(87)91000-X
  • Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. MMBR 2011; 75:213-67; PMID:21646428; http://dx.doi.org/10.1128/MMBR.00045-10
  • Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, Perfect JR, McCusker JH, Heitman J. Heitman J. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 2002; 21:546-59; PMID:11847103; http://dx.doi.org/10.1093/emboj/21.4.546
  • Golabek K, Strzelczyk JK, Owczarek A, Cuber P, Slemp-Migiel A, Wiczkowski A. Selected mechanisms of molecular resistance of Candida albicans to azole drugs. Acta Biochimica Polonica 2015; 62:247-51; PMID:25901298; http://dx.doi.org/10.18388/abp.2014_940
  • Liu JY, Shi C, Wang Y, Li WJ, Zhao Y, Xiang MJ. Mechanisms of azole resistance in Candida albicans clinical isolates from Shanghai, China. Res in Microbiol 2015; 166:153-61; PMID:25748216; http://dx.doi.org/10.1016/j.resmic.2015.02.009
  • Wang H, Kong F, Sorrell TC, Wang B, McNicholas P, Pantarat N, Ellis D, Xiao M, Widmer F, Chen SC. Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing. BMC Microbiology 2009; 9:167; PMID:19682357; http://dx.doi.org/10.1186/1471-2180-9-167
  • Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, Manai M, Sanglard D. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother 2013; 57:3182-93; PMID:23629718; http://dx.doi.org/10.1128/AAC.00555-13
  • Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE, Morschhäuser J, Rogers PD. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot Cell 2012; 11:1289-99; PMID:22923048; http://dx.doi.org/10.1128/EC.00215-12
  • Kim KY, Shin YK, Park JC, Kim JH, Yang H, Han DM, Paik YK. Molecular cloning and biochemical characterization of Candida albicans acyl-CoA:sterol acyltransferase, a potential target of antifungal agents. Biochem Biophys Res Commun 2004; 319:911-9; PMID:15184069; http://dx.doi.org/10.1016/j.bbrc.2004.05.076
  • Beller M, Thiel K, Thul PJ, Jackle H. Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 2010; 584:2176-82; PMID:20303960; http://dx.doi.org/10.1016/j.febslet.2010.03.022
  • Ishida K, Fernandes Rodrigues JC, Cammerer S, Urbina JA, Gilbert I, de Souza W, Rozental S. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis. Ann Clin Microbiol Antimicrob 2011; 10:3; PMID:21255433; http://dx.doi.org/10.1186/1476-0711-10-3
  • Debelyy MO, Thoms S, Connerth M, Daum G, Erdmann R. Involvement of the Saccharomyces cerevisiae hydrolase Ldh1p in lipid homeostasis. Eukaryot Cell 2011; 10:776-81; PMID:21478434; http://dx.doi.org/10.1128/EC.05040-11
  • Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014; 14:369-88; PMID:24520995; http://dx.doi.org/10.1111/1567-1364.12141
  • Culakova H, Dzugasova V, Valencikova R, Gbelska Y, Subik J. Stress response and expression of fluconazole resistance associated genes in the pathogenic yeast Candida glabrata deleted in the CgPDR16 gene. Microbiol Res 2015; 174:17-23; PMID:25946325; http://dx.doi.org/10.1016/j.micres.2015.03.004
  • Bien CM, Espenshade PJ. Sterol regulatory element binding proteins in fungi: hypoxic transcription factors linked to pathogenesis. Eukaryot Cell 2010; 9:352-9; PMID:20118213; http://dx.doi.org/10.1128/EC.00358-09
  • Maguire SL, Wang C, Holland LM, Brunel F, Neuveglise C, Nicaud JM, Zavrel M, White TC, Wolfe KH, Butler G. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution. PLoS Genet 2014; 10:e1004076; PMID:24453983; http://dx.doi.org/10.1371/journal.pgen.1004076
  • Silver PM, Oliver BG, White TC. Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 2004; 3:1391-7; PMID:15590814; http://dx.doi.org/10.1128/EC.3.6.1391-1397.2004
  • MacPherson S, Akache B, Weber S, De Deken X, Raymond M, Turcotte B. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 2005; 49:1745-52; PMID:15855491; http://dx.doi.org/10.1128/AAC.49.5.1745-1752.2005
  • Hoot SJ1, Brown RP, Oliver BG, White TC. The UPC2 promoter in Candida albicans contains two cis-acting elements that bind directly to Upc2p, resulting in transcriptional autoregulation. Eukaryot Cell 2010; 9:1354-1362; PMID:20656915; http://dx.doi.org/10.1128/EC.00130-10
  • Gallo-Ebert C, Donigan M, Stroke IL, Swanson RN, Manners MT, Francisco J, Toner G, Gallagher D, Huang CY, Gygax SE, et al. Novel antifungal drug discovery based on targeting pathways regulating the fungus-conserved Upc2 transcription factor. Antimicrob Agents Chemother 2014; 58:258-66; PMID:24145546; http://dx.doi.org/10.1128/AAC.01677-13
  • Sellam A, Tebbji F, Nantel A. Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans. Eukaryot Cell 2009; 8:1174-83; PMID:19542309; http://dx.doi.org/10.1128/EC.00074-09
  • Sasse C, Schillig R, Dierolf F, Weyler M, Schneider S, Mogavero S, Rogers PD, Morschhäuser J. The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicans. PLoS One 2011; 6:1-9; PMID:21980509; http://dx.doi.org/10.1371/journal.pone.0025623
  • Prasad T, Hameed S, Manoharlal R, Biswas S, Mukhopadhyay CK, Goswami SK, Prasad R. Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans. FEMS Yeast Res 2010; 10:587-96; PMID:20491944
  • Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G, et al. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 1999; 146:741-54; PMID:10459010; http://dx.doi.org/10.1083/jcb.146.4.741
  • Kartsonis NA, Nielsen J, Douglas CM. Caspofungin: the first in a new class of antifungal agents. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy 2003; 6:197–218.
  • Martin SW, Konopka JB. Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell 2004; 3:675-84; PMID:15189988; http://dx.doi.org/10.1128/EC.3.3.675-684.2004
  • Mollinedo F. Lipid raft involvement in yeast cell growth and death. Front in Oncol 2012; 2:140; PMID:23087902; http://dx.doi.org/10.3389/fonc.2012.00140
  • Insenser M, Nombela C, Molero G, Gil C. Proteomic analysis of detergent-resistant membranes from Candida albicans. Proteomics 2006; 6(Suppl 1):S74-81; PMID:16534748; http://dx.doi.org/10.1002/pmic.200500465
  • Pasrija R1, Panwar SL, Prasad R. Multidrug transporters CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts. Antimicrob Agents Chemother 2008; 52:694-704; PMID:18056285; http://dx.doi.org/10.1128/AAC.00861-07
  • Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci USA 2004; 101:6564-9; PMID:15087496; http://dx.doi.org/10.1073/pnas.0305888101
  • Umebayashi K, Nakano A. Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol 2003; 161:1117-31; PMID:12810702; http://dx.doi.org/10.1083/jcb.200303088
  • O'Meara TR, Veri AO, Ketela T, Jiang B, Roemer T, Cowen LE. Global analysis of fungal morphology exposes mechanisms of host cell escape. Nat Commun 2015; 6:6741; PMID:25824284; http://dx.doi.org/10.1038/ncomms7741
  • Odds FC, Cockayne A, Hayward J, Abbott AB. Effects of imidazole- and triazole-derivative antifungal compounds on the growth and morphological development of Candida albicans hyphae. J Gen Microbiol 1985; 131:2581-9; PMID:2999296
  • Hornby JM, Kebaara BW, Nickerson KW. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Chemother 2003; 47:2366-9; PMID:12821501; http://dx.doi.org/10.1128/AAC.47.7.2366-2369.2003
  • Blankenship JR, Mitchell AP. How to build a biofilm: a fungal perspective. Curr Opin Microbiol 2006; 9:588-94; PMID:17055772; http://dx.doi.org/10.1016/j.mib.2006.10.003
  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001; 183:5385-94; PMID:11514524; http://dx.doi.org/10.1128/JB.183.18.5385-5394.2001
  • Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 2003; 71:4333-40; PMID:12874310; http://dx.doi.org/10.1128/IAI.71.8.4333-4340.2003
  • Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d'Enfert C. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 2004; 3:536-45; PMID:15075282; http://dx.doi.org/10.1128/EC.3.2.536-545.2004
  • Olsen I. Attenuation of Candida albicans virulence with focus on disruption of its vacuole functions. J Oral Microbiol 2014; 6:23898; PMID:24765242
  • Luna-Tapia A, Peters BM, Eberle KE, Kerns ME, Foster TP, Marrero L, Noverr MC, Fidel PL Jr, Palmer GE. ERG2 and ERG24 are required for normal vacuolar physiology as well as Candida albicans pathogenicity in a murine model of disseminated but not vaginal candidiasis. Eukaryot Cell 2015; 14(10):1006-16; PMID:26231054
  • Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 2010; 6:e1000939; PMID:20532216; http://dx.doi.org/10.1371/journal.ppat.1000939
  • Sun N, Fonzi W, Chen H, She X, Zhang L, Zhang L, Calderone R. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants. Antimicrob Agents Chemother 2013; 57:532-42; PMID:23147730; http://dx.doi.org/10.1128/AAC.01520-12
  • Thomas E, Roman E, Claypool S, Manzoor N, Pla J, Panwar SL. Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans. Antimicrob Agents Chemother 2013; 57:5580-99; PMID:23979757; http://dx.doi.org/10.1128/AAC.00889-13
  • Chen C, Pande K, French SD, Tuch BB, Noble SM. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 2011; 10:118-35; PMID:21843869; http://dx.doi.org/10.1016/j.chom.2011.07.005
  • Prasad T, Chandra A, Mukhopadhyay CK, Prasad R. Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob Agents Ch 2006; 50:3597-606; PMID:16954314; http://dx.doi.org/10.1128/AAC.00653-06
  • Hameed S, Dhamgaye S, Singh A, Goswami SK, Prasad R. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans. PloS one 2011; 6:e18684; PMID:21533276; http://dx.doi.org/10.1371/journal.pone.0018684
  • Zhang YQ, Rao R. Beyond ergosterol: linking pH to antifungal mechanisms. Virulence 2010; 1:551-4; PMID:21178501; http://dx.doi.org/10.4161/viru.1.6.13802
  • Heese-Peck A. Multiple functions of sterols in yeast endocytosis. Mole Biolo Cell 2002; 13:2664-80; PMID:12181337; http://dx.doi.org/10.1091/mbc.E02-04-0186
  • Crowley JH, Tove S, Parks LW. A calcium-dependent ergosterol mutant of Saccharomyces cerevisiae. Curr Genet 1998; 34:93-9; PMID:9724410; http://dx.doi.org/10.1007/s002940050371
  • Welihinda AA, Beavis AD, Trumbly RJ. Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta 1994; 1193:107-17; PMID:8038180; http://dx.doi.org/10.1016/0005-2736(94)90339-5
  • Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 2014; 10:400-6; PMID:24681535; http://dx.doi.org/10.1038/nchembio.1496

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.