1,400
Views
18
CrossRef citations to date
0
Altmetric
Research Paper

Talaromyces marneffei laccase modifies THP-1 macrophage responses

, , , , , & show all
Pages 702-717 | Received 14 Sep 2015, Accepted 18 May 2016, Published online: 17 Jun 2016

References

  • Drouhet E. Penicilliosis due to Penicillium marneffei: a new emerging systemic mycosis in AIDS patients travelling or living in Southeast Asia. Review of 44 cases reported in HIV infected patients during the last 5 years compared to 44 cases of non AIDS patients reported over 20 years. J Mycol Méd 1993; 4:195-224.
  • Duong TA. Infection due to Penicillium marneffei, an emerging pathogen: review of 155 reported cases. Clin Infect Dis 1996; 23:125-130.
  • Wong SY, Wong KF. Penicillium marneffei infection in AIDS. Patholog Res Int 2011; 2011:764293; PMID:21331327; http://dx.doi.org/10.4061/2011/764293
  • Supparatpinyo K, Perriens J, Nelson KE, Sirisanthana T. A controlled trial of itraconazole to prevent relapse of Penicillium marneffei infection in patients infected with the human immunodeficiency virus. N Engl J Med 1998; 339:1739-1743; PMID:9845708; http://dx.doi.org/10.1056/NEJM199812103392403
  • Kawila R, Chaiwarith R, Supparatpinyo K. Clinical and laboratory characteristics of penicilliosis marneffei among patients with and without HIV infection in Northern Thailand: a retrospective study. BMC Infect Dis 2013; 13:464; PMID:24094273; http://dx.doi.org/10.1186/1471-2334-13-464
  • Sil A, Andrianopoulos A. Thermally dimorphic human fungal pathogens-polyphyletic pathogens with a convergent pathogenicity trait. Cold Spring Harb Perspect Med 2014; 5:a019794; PMID:25384771; http://dx.doi.org/10.1101/cshperspect.a019794
  • Cogliati M, Roverselli A, Boelaert JR, Taramelli D, Lombardi L, Viviani MA. Development of an in vitro macrophage system to assess Penicillium marneffei growth and susceptibility to nitric oxide. Infect Immun 1997; 65:279-284; PMID:8975924
  • Rongrungruang Y, Levitz SM. Interactions of Penicillium marneffei with human leukocytes in vitro. Infect Immun 1999; 67:4732-4736; PMID:10456924
  • Roilides E, Lyman CA, Sein T, Petraitiene R, Walsh TJ. Macrophage colony-stimulating factor enhances phagocytosis and oxidative burst of mononuclear phagocytes against Penicillium marneffei conidia. FEMS Immunol Med Microbiol 2003; 36:19-26; PMID:12727361; http://dx.doi.org/10.1016/S0928-8244(03)00035
  • Nyberg K, Johansson U, Johansson A, Camner P. Phagolysosomal pH in alveolar macrophage. Environ Health Perspect 1992; 97:149-152. PMID:1327733
  • Becker KL, Ifrim DC, Quintin J, Netea MG, van de Veerdonk FL. Antifungal innate immunity: recognition and inflammatory networks. Semin Immunopathol 2015; 37(2):107-116; PMID:25527294; http://dx.doi.org/10.1007/s00281-014-0467-z
  • Kudeken N, Kawakami K, Saito A. Mechanisms of the in vitro fungicidal effects of human neutrophils against Penicillium marneffei induced by granulocyte-macrophage colony-stimulating factor (GM-CSF). Clin Exp Immunol 2000; 119:472-478; PMID:10691919; http://dx.doi.org/10.1046/j.1365-2249.2000.01158
  • Vanittanakom N, Cooper CR JR, Fisher MC, Sirisanthana T. Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin Microbiol Rev 2006; 19:95-110; PMID:16418525
  • Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V. Induction and transcriptional regulation of laccases in fungi. Curr Genomics 2011; 12:104-112; PMID:21966248; http://dx.doi.org/10.2174/138920211795564331
  • Zhu X, Williamson PR. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 2004; 5:1-10; PMID:15381117; http://dx.doi.org/ 10.1016/j.femsyr.2004.04.004
  • Shraddha  , Shekher R, Sehgal S, Kamthania M, Kumar A. Laccase: Microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 2011; 2011:1-11; PMID:21755038; http://dx.doi.org/10.4061/2011/217861
  • Waterman SR, Hacham M, Panepinto J, Hu G, Shin S, Williamson PR. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice. Infect Immun 2007; 75:714-722; PMID:17101662; http://dx.doi.org/10.1128/IAI.01351-06
  • Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N, Hay RJ. Sialic acid-dependent recognition of laminin by Penicillium marneffei conidia. Infect Immun 1998; 66:6024-6026; PMID:9826390
  • Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N. Recognition of fibronectin by Penicillium marneffei conidia via a sialic acid-dependent process and its relationship to the interaction between conidia and laminin. Infect Immun 1999; 67:5200-5205; PMID:10496896
  • Sternberg S. The emerging fungal threat. Science 1994; 266:1632-1634; PMID:7702654; http://dx.doi.org/10.1126/science.7702654
  • Borneman AR, Hynes MJ, Andrianopoulos A. The abaA homologue of Penicillium marneffei participates in two developmental programmes: conidiation and dimorphic growth. Mol Microbiol 2000; 38:1034-1047; PMID:11123677; http://dx.doi.org/ 10.1046/j.1365-2958.2000.02202
  • Boyce KJ, Schreider L, Andrianopoulos A. In vivo yeast cell morphogenesis is regulated by a p21-activated kinase in the human pathogen Penicillium marneffei. PLoS Pathog 2009; 5:e1000678; PMID:19956672; http://dx.doi.org/ 10.1371/journal.ppat.1000678
  • Youngchim S, Hay RJ, Hamilton AJ. Melanization of Penicillium marneffei in vitro and in vivo. Microbiol 2005; 151:291-299; PMID:15632446; http://dx.doi.org/ 10.1099/mic.0.27433-0
  • Liu H, Wei L, Guo T, Tan W. Detection of DOPA-melanin in the dimorphic fungal pathogen Penicillium marneffei and its effect on macrophage phagocytosis in vitro. PLoS One 2014; 9:e92610; PMID:24647795; http://dx.doi.org/10.1371/journal.pone.0092610
  • Cánovas D, Andrianopoulos A. Developmental regulation of the glyoxylate cycle in the human pathogen Penicillium marneffei. Mol Microbiol 2006; 62:1725-1738; PMID:17427290
  • Thurston CF. The structure and function of fungal laccases. Microbiol 1994; 140:19-26. http://dx.doi.org/10.1099/13500872-140-1-19
  • Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T. Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiol 2003; 149:2455-2462; PMID:12949171; http://dx.doi.org/10.1099/mic.0.26414-0
  • Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol Rev 2006; 30:215-242; PMID:16472305
  • Williamson PR. Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front Biosci 1997; 2:e99-107; PMID:9342305
  • Gómez, BL, Nosanchuk, JD, Díez S, Youngchim S, Aisen P, Cano LE, Restrepo A, Casadevall A, Hamilton AJ. Detection of melanin-like pigments in the dimorphic fungal pathogen Paracoccidioides brasiliensis in vitro and during infection. Infect Immun 2001; 69:5760-5767; PMID:11500453; http://dx.doi.1i.org/10.1128/IAI.69.9.5760-5767.2001
  • Nosanchuk JD, Gomez BL, Youngchim S, Díez S, Aisen P, Zancopé-Oliveira RM, Restrepo A, Casadevall A, Hamilton AJ. Histoplasma capsulatum synthesizes melanin-like pigments in vitro and during mammalian infection. Infect Immun 2002; 70:5124-5131; PMID:12183562; http://dx.doi.org/10.1128/IAI.70.9.5124-5131
  • Sapmak A, Boyce KJ, Andrianopoulos A, Vanittanakom N. The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei. PLoS One 2015; 10(4):e0122728; PMID:25866870; http://dx.doi.org/10.1371/journal.pone.0122728
  • Antecka A, Bizukojc M, Ledakowicz S. The kinetic model of laccase biosynthesis by Cerrena unicolor. Chem Process Eng 2009; 30:403-416.
  • Tavares APM, Coelho MAZ, Coutinho JAP, Xavier AMRB. Laccase improvement in submerged cultivation: induced production and kinetic modeling. J Chem Technol Biot 2005; 80:669-676. http://dx.doi.org/10.1002/jctb.1246
  • Kim D, Kwak E, Choi HT. Increase of yeast survival under oxidative stress by the expression of the laccase gene from Coprinellus congregatus. J Microbiol 2006; 44:617-621; PMID:17205039
  • Yang Y, Fan F, Zhuo R, Gong Y, Wan X, Jiang M, Zhang X. Expression of laccase gene from white rot fungus in Pichia pastoris can enhance the resistance of yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Appl Environ Microbiol 2012; 78:1-14; PMID:22706050; http://dx.doi.org/10.1128/AEM.00218-12
  • Eisenman HC, Casadevall A. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 2012; 93:931-940; PMID:22173481; http://dx.doi.org/10.1007/s00253-011-3777-2
  • Jacobson ES. Pathogenic roles for fungal melanins. Clin Microbiol Rev 2000; 13:708-717; PMID:11023965; http://dx.doi.org/10.1128/CMR.13.4.708-717.2000
  • Castilho FJD, Torres RA, Barbosa AM, Dekker RFH, Garcia JE. On the diversity of the laccase gene: a phylogenetic perspective from Botryosphaeria rhodina (Ascomycota: Fungi) and other related taxa. Biochem Genet 2009; 47:80-91; PMID:19160039; http://dx.doi.org/10.1007/s10528-008-9208-0
  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: a never-ending story. Cell Mol Life Sci 2010; 67:369-385; PMID:19844659; http://dx.doi. org/10.1007/s00018-009-0169-1
  • Liu GY, Nizet V. Color me bad: microbial pigments as virulence factors. Trends Microbiol 2009; 17:406-413; PMID:19726196; http://dx.doi.org/10.1016/j.mpmed.2009.06.006
  • Liu L, Tewari RP, Williamson PR. Laccase protects Cryptococcus neoformans from antifungal activity of alveolar macrophages. Infect Immun 1999; 67:6034-6039; PMID:10531264
  • Mednick AJ, Nosanchuk JD, Casadevall A. Melanization of Cryptococcus neoformans affects lung inflammatory responses during cryptococcal infection. Infect Immun 2005; 73:2012-2019; PMID:15784542; http://dx.doi.org/10.1128/IAI.73.4.2012-2019.2005
  • Missall TA, Moran JM, Corbett JA, Lodge JK. Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1. Eukaryot Cell 2005; 4:202-208; PMID:15643075; http://dx. doi.org/10.1128/EC.4.1.202-208.2005
  • Qiu Y, Davis MJ, Dayrit JK, Hadd Z, Meister DL, Osterholzer JJ, Williamson PR, Olszewski MA. Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice. PLoS One 2012; 7:1-14; PMID:23110112; http://dx.doi.org/10.1371/journal.pone.0047853
  • Zhu X, Gibbons J, Garcia-Rivera J, Casadevall A, Williamson PR. Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect Immun 2001; 69:5589-5596; PMID:11500433; http://dx.doi.org/10.1128/IAI.69.9.5589-5596.2001
  • Scherer M, Fischer R. Purification and characterisation of laccase II of 482 Aspergillus nidulans. Arch Microbiol 1998; 170:78-84; PMID:9683643
  • Sabiiti W, Robertson E, Beale MA, Johnston SA, Brouwer AE, Loyse A, Jarvis JN, Gilbert AS, Fisher MC, Harrison TS, et al. Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. J Clin Invest 2014; 124:2000-2008; PMID:2474314; http://dx.doi.org/10.1172/JCI72950
  • Chai LY, Netea MG, Sugui J, Vonk AG, van de Sande WW, Warris A, Kwon1-Chung KJ, Kullberg BJ. Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiol 2010; 215:915-920; PMID:19939494; http://dx.doi.org/10.1016/j.imbio.2009.10.002
  • Stevens DA. Th1/Th2 in aspergillosis. Med Mycol 2006; 44:s229-s235. http://dx.doi.org/10.1080/13693780600760773
  • Tsai H-F, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol 1998; 180:3031-3038; PMID:9620950
  • Krappmann S, Sasse C, Braus GH. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 2006; 5:212-215; PMID:16400185; http://dx. doi.org/10.1128/EC.5.1.212-215.2006
  • Sugareva V, Hart A, Brock M, Hübner K, Rohde M, Heinekamp T, Brakhage AA. Characterisation of the laccase-encoding gene abr2 of the dihydroxynaphthalene-like melanin gene cluster of Aspergillus fumigatus. Arch Microbiol 2006; 186:345-355; PMID:16988817; http://dx.doi.org/10.1007/s00203-006-0144-2
  • Bugeja HE, Boyce KJ, Weerasinghe H, Beard S, Jeziorowski A, Pasricha S, Payne M, Schreider L, Andrianopoulos A. Tools for high efficiency genetic manipulation of the human pathogen Penicillium marneffei. Fungal Genet Biol 2012; 49:772-778; PMID:22921264. http://dx.doi.org/10.1016/j.fgb.2012.08.003
  • Cove DJ. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 1996; 113:51-56; PMID:5940632
  • Baldrian P. Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Appl Microbiol Biotechnol 2004; 63:560-563; PMID:14504838; http://dx.doi.org/10.1007/s00253-003-1434-0
  • Madzak MC, Mimmi E, Caminade A, Brault A, Baumberger S, Briozzo P, Mougin C, Jolivalt C. Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng Des Sel 2006; 19:77-84; PMID:16368720; http://dx.doi.org/10.1093/protein/gzj004
  • Vanittanakom N, Vanittanakom P, Hay RJ. Rapid identification of Penicillium marneffei by PCR-based detection of specific sequences on the rRNA gene. J Clin Microbiol 2002; 40:1739-1742; PMID:11980953; http://dx.doi.org/10.1128/JCM.40.5.1739-1742.2002
  • Borneman AR, Hynes MJ, Andrianopoulos A. An STE12 homolog from the asexual, dimorphic fungus Penicillium marneffei complements the defect in sexual development of an Aspergillus nidulans steA mutant. Genetics 2001; 157:1003-1014; PMID:11238390
  • Boyce KJ, Bugeja HE, Weerasinghe H, Payne M, Schreider L, Park C, Woodward T, Andrianopoulos A. Strategies for the molecular genetic manipulation and visualization of the human fungal pathogen Penicillium marneffei. Fungal Genet Rep 2012; 59:1-12.
  • Boyce KJ, Schreider L, Kirszenblat L, Andrianopoulos A. The two-component histidine kinases DrkA and SlnA are required for in vivo growth in the human pathogen Penicillium marneffei. Mol Microbiol 2011; 82:1164-1184; PMID:22059885. http://dx.doi.org/10.1111/j.1365-2958.2011.07878.x
  • Wasylnka JA, Moore MM. Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J Cell Sci 2002; 116:179-1587; PMID:12640041; http://dx.doi.org/10.1242/jcs.00329

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.