2,442
Views
36
CrossRef citations to date
0
Altmetric
Review

Assessing immune aging in HIV-infected patients

&
Pages 529-538 | Received 18 Apr 2016, Accepted 20 May 2016, Published online: 24 Jun 2016

References

  • Wolthers KC, Bea G, Wisman A, Otto SA, de Roda Husman AM, Schaft N, de Wolf F, Goudsmit J, Coutinho RA, van der Zee AG, et al. T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 1996; 274:1543-7; PMID:8929418; https://doi.org/10.1126/science.274.5292.1543
  • Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, Wang L, Harley CB, Villeponteau B, West MD, Giorgi JV. Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 1996; 10:F17-22; PMID:8828735; https://doi.org/10.1097/00002030-199607000-00001
  • Pommier JP, Gauthier L, Livartowski J, Galanaud P, Boue F, Dulioust A, Marcé D, Ducray C, Sabatier L, Lebeau J, et al. Immunosenescence in HIV pathogenesis. Virology 1997; 231:148-54; PMID:9143314; https://doi.org/10.1006/viro.1997.8512
  • Kaushal S, Landay AL, Lederman MM, Connick E, Spritzler J, Kuritzkes DR, Kessler H, Levine BL, St Louis DC, June CH. Increases in T cell telomere length in HIV infection after antiretroviral combination therapy for HIV-1 infection implicate distinct population dynamics in CD4+ and CD8+ T cells. Clin Immunol 1999; 92:14-24; PMID:10413649; https://doi.org/10.1006/clim.1999.4726
  • Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 2008; 73:975-83; PMID:18785267; https://doi.org/10.1002/cyto.a.20643
  • Weng NP, Akbar AN, Goronzy J. CD28(−) T cells: their role in the age-associated decline of immune function. Trends Immunol 2009; 30:306-12; PMID:19540809; https://doi.org/10.1016/j.it.2009.03.013
  • Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, Puleston DJ, Watson AS, Simon AK, Tooze SA, et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J Clin Invest 2014; 124:4004-16; PMID:25083993; https://doi.org/10.1172/JCI75051
  • Lanna A, Henson SM, Escors D, Akbar AN. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol 2014; 15:965-72; PMID:25151490; https://doi.org/10.1038/ni.2981
  • Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 2003; 101:2711-20; PMID:12433688; https://doi.org/10.1182/blood-2002-07-2103
  • Papagno L, Spina CA, Marchant A, Salio M, Rufer N, Little S, Dong T, Chesney G, Waters A, Easterbrook P, et al. Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2004; 2:E20; PMID:14966528; https://doi.org/10.1371/journal.pbio.0020020
  • Gamadia LE, van Leeuwen EM, Remmerswaal EB, Yong SL, Surachno S, Wertheim-van Dillen PM, Ten Berge IJ, Van Lier RA. The size and phenotype of virus-specific T cell populations is determined by repetitive antigenic stimulation and environmental cytokines. J Immunol 2004; 172:6107-14; PMID:15128796; https://doi.org/10.4049/jimmunol.172.10.6107
  • Frasca D, Diaz A, Romero M, Phillips M, Mendez NV, Landin AM, Blomberg BB. Unique biomarkers for B-cell function predict the serum response to pandemic H1N1 influenza vaccine. Int Immunol 2012; 24:175-82; PMID:22281510; https://doi.org/10.1093/intimm/dxr123
  • Wittkop L, Bitard J, Lazaro E, Neau D, Bonnet F, Mercie P, Dupon M, Hessamfar M, Ventura M, Malvy D, et al. Effect of cytomegalovirus-induced immune response, self antigen-induced immune response, and microbial translocation on chronic immune activation in successfully treated HIV type 1-infected patients: the ANRS CO3 Aquitaine Cohort. J Infect Dis 2013; 207:622-7; PMID:23204178; https://doi.org/10.1093/infdis/jis732
  • Duffau P, Wittkop L, Lazaro E, le Marec F, Cognet C, Blanco P, Moreau JF, Dauchy FA, Cazanave C, Vandenhende MA, et al. Association of immune-activation and senescence markers with non-AIDS-defining comorbidities in HIV-suppressed patients. AIDS 2015; 29:2099-108; PMID:26544576; https://doi.org/10.1097/QAD.0000000000000807
  • Unemori P, Leslie KS, Hunt PW, Sinclair E, Epling L, Mitsuyasu R, Effros RB, Dock J, Dollard SG, Deeks SG, et al. Immunosenescence is associated with presence of Kaposi's sarcoma in antiretroviral treated HIV infection. AIDS 2013; 27:1735-42; PMID:23435301; https://doi.org/10.1097/QAD.0b013e3283601144
  • Appay V, Fastenackels S, Katlama C, Ait-Mohand H, Schneider L, Guihot A, Keller M, Grubeck-Loebenstein B, Simon A, Lambotte O, et al. Old age and anti-cytomegalovirus immunity are associated with altered T-cell reconstitution in HIV-1-infected patients. AIDS 2011; 25:1813-22; PMID:21412126; https://doi.org/10.1097/QAD.0b013e32834640e6
  • Petrovas C, Chaon B, Ambrozak DR, Price DA, Melenhorst JJ, Hill BJ, Geldmacher C, Casazza JP, Chattopadhyay PK, Roederer M, et al. Differential association of programmed death-1 and CD57 with ex vivo survival of CD8+ T cells in HIV infection. J Immunol 2009; 183:1120-32; PMID:19564339; https://doi.org/10.4049/jimmunol.0900182
  • Dion ML, Poulin JF, Bordi R, Sylvestre M, Corsini R, Kettaf N, Dalloul A, Boulassel MR, Debré P, Routy JP, et al. HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 2004; 21:757-68; PMID:15589165; https://doi.org/10.1016/j.immuni.2004.10.013
  • Fabre-Mersseman V, Dutrieux J, Louise A, Rozlan S, Lamine A, Parker R, Rancez M, Nunes-Cabaço H, Sousa AE, Lambotte O, et al. CD4(+) recent thymic emigrants are infected by HIV in vivo, implication for pathogenesis. AIDS 2011; 25:1153-62; PMID:21505308; https://doi.org/10.1097/QAD.0b013e3283471e89
  • Lelievre JD, Melica G, Itti E, Lacabaratz C, Rozlan S, Wiedemann A, Cheynier R, Meignan M, Thiebaut R, Levy Y. Initiation of c-ART in HIV-1 infected patients is associated with a decrease of the metabolic activity of the thymus evaluated using FDG-PET/computed tomography. J Acquir Immune Defic Syndr 2012; 61:56-63; PMID:22706292; https://doi.org/10.1097/QAI.0b013e3182615b62
  • Sauce D, Larsen M, Fastenackels S, Duperrier A, Keller M, Grubeck-Loebenstein B, Ferrand C, Debré P, Sidi D, Appay V. Evidence of premature immune aging in patients thymectomized during early childhood. J Clin Invest 2009; 119:3070-8; PMID:19770514; https://doi.org/10.1172/JCI39269
  • Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, Polis MA, Haase AT, Feinberg MB, Sullivan JL, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998; 396:690-5; PMID:9872319; https://doi.org/10.1038/25374
  • Blanche S, Scott-Algara D, Le Chenadec J, Didier C, Montange T, Avettand-Fenoel V, Rouzioux C, Mélard A, Viard JP, Dollfus C, et al. Naive T lymphocytes and recent thymic emigrants are associated with HIV-1 disease history in french adolescents and young adults infected in the perinatal period: the ANRS-EP38-IMMIP study. Clin Infect Dis 2014; 58:573-87; PMID:24253249; https://doi.org/10.1093/cid/cit729
  • Gautier D, Beq S, Cortesao CS, Sousa AE, Cheynier R. Efficient thymopoiesis contributes to the maintenance of peripheral CD4 T cells during chronic human immunodeficiency virus type 2 infection. J Virol 2007; 81:12685-8; PMID:17804512; https://doi.org/10.1128/JVI.01131-07
  • Sauce D, Larsen M, Fastenackels S, Pauchard M, Ait-Mohand H, Schneider L, Guihot A, Boufassa F, Zaunders J, Iguertsira M, et al. HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. Blood 2011; 117:5142-51; PMID:21436070; https://doi.org/10.1182/blood-2011-01-331306
  • Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA. CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest 1995; 95:2061-6; PMID:7738173; https://doi.org/10.1172/JCI117892
  • Sauce D, Larsen M, Fastenackels S, Roux A, Gorochov G, Katlama C, Sidi D, Sibony-Prat J, Appay V. Lymphopenia-driven homeostatic regulation of naive T cells in elderly and thymectomized young adults. J Immunol 2012; 189:5541-8; PMID:23136199; https://doi.org/10.4049/jimmunol.1201235
  • Favre D, Stoddart CA, Emu B, Hoh R, Martin JN, Hecht FM, Deeks SG, McCune JM. HIV disease progression correlates with the generation of dysfunctional naive CD8(low) T cells. Blood 2011; 117:2189-99; PMID:21200021; https://doi.org/10.1182/blood-2010-06-288035
  • Briceno O, Lissina A, Wanke K, Afonso G, von Braun A, Ragon K, Miquel T, Gostick E, Papagno L, Stiasny K, et al. Reduced naive CD8(+) T-cell priming efficacy in elderly adults. Aging Cell 2015; 15:14-21; PMID:26472076; https://doi.org/10.1111/acel.12384
  • George VK, Pallikkuth S, Parmigiani A, Alcaide M, Fischl M, Arheart KL, Pahwa S. HIV infection Worsens Age-Associated Defects in Antibody Responses to Influenza Vaccine. J Infect Dis 2015; 211:1959-68; PMID:25556252; https://doi.org/10.1093/infdis/jiu840
  • Parmigiani A, Alcaide ML, Freguja R, Pallikkuth S, Frasca D, Fischl MA, Pahwa S. Impaired antibody response to influenza vaccine in HIV-infected and uninfected aging women is associated with immune activation and inflammation. PLoS One 2013; 8:e79816; PMID:24236161; https://doi.org/10.1371/journal.pone.0079816
  • Kaminski DA, Wei C, Qian Y, Rosenberg AF, Sanz I. Advances in human B cell phenotypic profiling. Front Immunol 2012; 3:302; PMID:23087687; https://doi.org/10.3389/fimmu.2012.00302
  • Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, Looney RJ, Sanz I, Anolik JH. Novel human transitional B cell populations revealed by B cell depletion therapy. J Immunol 2009; 182:5982-93; PMID:19414749; https://doi.org/10.4049/jimmunol.0801859
  • Gibson KL, Wu YC, Barnett Y, Duggan O, Vaughan R, Kondeatis E, Nilsson BO, Wikby A, Kipling D, Dunn-Walters DK. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 2009; 8:18-25; PMID:18986373; https://doi.org/10.1111/j.1474-9726.2008.00443.x
  • Frasca D, Landin AM, Lechner SC, Ryan JG, Schwartz R, Riley RL, Blomberg BB. Aging down-regulates the transcription factor E2A, activation-induced cytidine deaminase, and Ig class switch in human B cells. J Immunol 2008; 180:5283-90; PMID:18390709; https://doi.org/10.4049/jimmunol.180.8.5283
  • Colonna-Romano G, Bulati M, Aquino A, Pellicano M, Vitello S, Lio D, Candore G, Caruso C. A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev 2009; 130:681-90; PMID:19698733; https://doi.org/10.1016/j.mad.2009.08.003
  • Moir S, Ho J, Malaspina A, Wang W, DiPoto AC, O'Shea MA, Roby G, Kottilil S, Arthos J, Proschan MA, et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 2008; 205:1797-805; PMID:18625747; https://doi.org/10.1084/jem.20072683
  • Chong Y, Ikematsu H, Yamamoto M, Murata M, Yamaji K, Nishimura M, Nabeshima S, Kashiwagi S, Hayashi J. Increased frequency of CD27- (naive) B cells and their phenotypic alteration in HIV type 1-infected patients. AIDS Res Hum Retroviruses 2004; 20:621-9; PMID:15242538; https://doi.org/10.1089/0889222041217455
  • De Milito A, Morch C, Sonnerborg A, Chiodi F. Loss of memory (CD27) B lymphocytes in HIV-1 infection. AIDS 2001; 15:957-64; PMID:11399977; https://doi.org/10.1097/00002030-200105250-00003
  • Moir S, Malaspina A, Pickeral OK, Donoghue ET, Vasquez J, Miller NJ, Krishnan SR, Planta MA, Turney JF, Justement JS, et al. Decreased survival of B cells of HIV-viremic patients mediated by altered expression of receptors of the TNF superfamily. J Exp Med 2004; 200:587-99; PMID:15508184; https://doi.org/10.1084/jem.20032236
  • Fogli M, Torti C, Malacarne F, Fiorentini S, Albani M, Izzo I, Giagulli C, Maggi F, Carosi G, Caruso A. Emergence of exhausted B cells in asymptomatic HIV-1-infected patients naive for HAART is related to reduced immune surveillance. Clin Dev Immunol 2012; 2012:829584; PMID:22474482; https://doi.org/10.1155/2012/829584
  • Moir S, Malaspina A, Ogwaro KM, Donoghue ET, Hallahan CW, Ehler LA, Liu S, Adelsberger J, Lapointe R, Hwu P, et al. HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proc Natl Acad Sci U S A 2001; 98:10362-7; PMID:11504927; https://doi.org/10.1073/pnas.181347898
  • Notermans DW, de Jong JJ, Goudsmit J, Bakker M, Roos MT, Nijholt L, Cremers J, Hellings JA, Danner SA, de Ronde A. Potent antiretroviral therapy initiates normalization of hypergammaglobulinemia and a decline in HIV type 1-specific antibody responses. AIDS Res Hum Retroviruses 2001; 17:1003-8; PMID:11485617; https://doi.org/10.1089/088922201300343681
  • Shearer WT, Easley KA, Goldfarb J, Rosenblatt HM, Jenson HB, Kovacs A, McIntosh K. Prospective 5-year study of peripheral blood CD4, CD8, and CD19/CD20 lymphocytes and serum Igs in children born to HIV-1 women. The P(2)C(2) HIV Study Group. J Allergy Clin Immunol 2000; 106:559-66; PMID:10984378; https://doi.org/10.1067/mai.2000.109433
  • Blomberg BB, Frasca D. Age effects on mouse and human B cells. Immunol Res 2013; 57:354-60; PMID:24203437; https://doi.org/10.1007/s12026-013-8440-9
  • Moir S, Malaspina A, Ho J, Wang W, Dipoto AC, O'Shea MA, Roby G, Mican JM, Kottilil S, Chun TW, et al. Normalization of B cell counts and subpopulations after antiretroviral therapy in chronic HIV disease. J Infect Dis 2008; 197:572-9; PMID:18240953; https://doi.org/10.1086/526789
  • Morris L, Binley JM, Clas BA, Bonhoeffer S, Astill TP, Kost R, Hurley A, Cao Y, Markowitz M, Ho DD, et al. HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J Exp Med 1998; 188:233-45; PMID:9670036; https://doi.org/10.1084/jem.188.2.233
  • Malaspina A, Moir S, Kottilil S, Hallahan CW, Ehler LA, Liu S, Planta MA, Chun TW, Fauci AS. Deleterious effect of HIV-1 plasma viremia on B cell costimulatory function. J Immunol 2003; 170:5965-72; PMID:12794123; https://doi.org/10.4049/jimmunol.170.12.5965
  • Cagigi A, Nilsson A, De Milito A, Chiodi F. B cell immunopathology during HIV-1 infection: lessons to learn for HIV-1 vaccine design. Vaccine 2008; 26:3016-25; PMID:18164520; https://doi.org/10.1016/j.vaccine.2007.11.063
  • De Milito A. B lymphocyte dysfunctions in HIV infection. Curr HIV Res 2004; 2:11-21; PMID:15053337; https://doi.org/10.2174/1570162043485068
  • Pensieroso S, Galli L, Nozza S, Ruffin N, Castagna A, Tambussi G, Hejdeman B, Misciagna D, Riva A, Malnati M, et al. B-cell subset alterations and correlated factors in HIV-1 infection. AIDS 2013; 27:1209-17; PMID:23343911; https://doi.org/10.1097/QAD.0b013e32835edc47
  • Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ, Waring MT, Streeck H, Johnston MN, Staller KD, Zaman MT, et al. Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 2005; 106:3366-9; PMID:16002429; https://doi.org/10.1182/blood-2005-03-1100
  • Brunetta E, Hudspeth KL, Mavilio D. Pathologic natural killer cell subset redistribution in HIV-1 infection: new insights in pathophysiology and clinical outcomes. J Leukoc Biol 2010; 88:1119-30; PMID:20651298; https://doi.org/10.1189/jlb.0410225
  • Naranbhai V, Altfeld M, Karim SS, Ndung'u T, Karim QA, Carr WH. Changes in Natural Killer cell activation and function during primary HIV-1 Infection. PLoS One 2013; 8:e53251; PMID:23326405; https://doi.org/10.1371/journal.pone.0053251
  • Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E, O'Shea MA, Kinter A, Kovacs C, Moretta A, et al. Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci U S A 2005; 102:2886-91; PMID:15699323; https://doi.org/10.1073/pnas.0409872102
  • Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, Debré P, Merle-Beral H, Vieillard V. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 2010; 9:527-35; PMID:20477761; https://doi.org/10.1111/j.1474-9726.2010.00584.x
  • Solana R, Campos C, Pera A, Tarazona R. Shaping of NK cell subsets by aging. Curr Opin Immunol 2014; 29:56-61; PMID:24792889; https://doi.org/10.1016/j.coi.2014.04.002
  • Bayard C, Lepetitcorps H, Roux A, Larsen M, Fastenackels S, Salle V, Vieillard V, Marchant A, Stern M, Boddaert J, et al. Coordinated expansion of both memory T cells and NK cells in response to CMV infection in humans. Eur J Immunol 2016; 46:1168-79; PMID:26910859
  • Fauci AS, Mavilio D, Kottilil S. NK cells in HIV infection: paradigm for protection or targets for ambush. Nat Rev Immunol 2005; 5:835-43; PMID:16239902; https://doi.org/10.1038/nri1711
  • Mavilio D, Lombardo G, Kinter A, Fogli M, La Sala A, Ortolano S, Farschi A, Follmann D, Gregg R, Kovacs C, et al. Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection. J Exp Med 2006; 203:2339-50; PMID:17000867; https://doi.org/10.1084/jem.20060894
  • Martin MP, Carrington M. Natural killer cells and HIV-1 disease. Curr Opin HIV AIDS 2006; 1:226-31; PMID:19372814; https://doi.org/10.1097/01.COH.0000221597.79906.f6
  • Alter G, Rihn S, Walter K, Nolting A, Martin M, Rosenberg ES, Miller JS, Carrington M, Altfeld M. HLA class I subtype-dependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection. J Virol 2009; 83:6798-805; PMID:19386717; https://doi.org/10.1128/JVI.00256-09
  • Beziat V, Liu LL, Malmberg JA, Ivarsson MA, Sohlberg E, Bjorklund AT, Retière C, Sverremark-Ekström E, Traherne J, Ljungman P, et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 2013; 121:2678-88; PMID:23325834; https://doi.org/10.1182/blood-2012-10-459545
  • Boulet S, Kleyman M, Kim JY, Kamya P, Sharafi S, Simic N, Bruneau J, Routy JP, Tsoukas CM, Bernard NF. A combined genotype of KIR3DL1 high expressing alleles and HLA-B*57 is associated with a reduced risk of HIV infection. AIDS 2008; 22:1487-91; PMID:18614872; https://doi.org/10.1097/QAD.0b013e3282ffde7e
  • De Maria A, Fogli M, Costa P, Murdaca G, Puppo F, Mavilio D, Moretta A, Moretta L. The impaired NK cell cytolytic function in viremic HIV-1 infection is associated with a reduced surface expression of natural cytotoxicity receptors (NKp46, NKp30 and NKp44). Eur J Immunol 2003; 33:2410-8; PMID:12938217; https://doi.org/10.1002/eji.200324141
  • Azzoni L, Papasavvas E, Chehimi J, Kostman JR, Mounzer K, Ondercin J, Perussia B, Montaner LJ. Sustained impairment of IFN-gamma secretion in suppressed HIV-infected patients despite mature NK cell recovery: evidence for a defective reconstitution of innate immunity. J Immunol 2002; 168:5764-70; PMID:12023377; https://doi.org/10.4049/jimmunol.168.11.5764
  • Bozzano F, Nasi M, Bertoncelli L, Nemes E, Prati F, Marras F, Mussini C, Moretta L, Cossarizza A, De Maria A, et al. NK-cell phenotype at interruption underlies widely divergent duration of CD4+-guided antiretroviral treatment interruption. Int Immunol 2011; 23:109-18; PMID:21216830; https://doi.org/10.1093/intimm/dxq462
  • Leeansyah E, Zhou J, Paukovics G, Lewin SR, Crowe SM, Jaworowski A. Decreased NK Cell FcRgamma in HIV-1 infected individuals receiving combination antiretroviral therapy: a cross sectional study. PLoS One 2010; 5:e9643; PMID:20224795; https://doi.org/10.1371/journal.pone.0009643
  • Lichtfuss GF, Cheng WJ, Farsakoglu Y, Paukovics G, Rajasuriar R, Velayudham P, Kramski M, Hearps AC, Cameron PU, Lewin SR, et al. Virologically suppressed HIV patients show activation of NK cells and persistent innate immune activation. J Immunol 2012; 189:1491-9; PMID:22745371; https://doi.org/10.4049/jimmunol.1200458
  • Crowe SM, Ziegler-Heitbrock L. Editorial: Monocyte subpopulations and lentiviral infection. J Leukoc Biol 2010; 87:541-3; PMID:20356904; https://doi.org/10.1189/jlb.0909637
  • Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A, Zaman T, Stone D, Mefford M, Morgello S, et al. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 2008; 3:e2516; PMID:18575590; https://doi.org/10.1371/journal.pone.0002516
  • Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 2012; 11:867-75; PMID:22708967; https://doi.org/10.1111/j.1474-9726.2012.00851.x
  • Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol 2010; 30:806-13; PMID:20703784; https://doi.org/10.1007/s10875-010-9448-8
  • Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol 2010; 11:30; PMID:20565954; https://doi.org/10.1186/1471-2172-11-30
  • Jaworowski A, Ellery P, Maslin CL, Naim E, Heinlein AC, Ryan CE, Paukovics G, Hocking J, Sonza S, Crowe SM. Normal CD16 expression and phagocytosis of Mycobacterium avium complex by monocytes from a current cohort of HIV-1-infected patients. J Infect Dis 2006; 193:693-7; PMID:16453265; https://doi.org/10.1086/500367
  • Angelovich TA, Hearps AC, Maisa A, Martin GE, Lichtfuss GF, Cheng WJ, Palmer CS, Landay AL, Crowe SM, Jaworowski A. Viremic and virologically suppressed HIV infection increases age-related changes to monocyte activation equivalent to 12 and 4 years of aging, respectively. J Acquir Immune Defic Syndr 2015; 69:11-7; PMID:25647525; https://doi.org/10.1097/QAI.0000000000000559
  • Hearps AC, Maisa A, Cheng WJ, Angelovich TA, Lichtfuss GF, Palmer CS, Landay AL, Jaworowski A, Crowe SM. HIV infection induces age-related changes to monocytes and innate immune activation in young men that persist despite combination antiretroviral therapy. AIDS 2012; 26:843-53; PMID:22313961; https://doi.org/10.1097/QAD.0b013e328351f756
  • Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001; 106:259-62; PMID:11509173; https://doi.org/10.1016/S0092-8674(01)00456-1
  • Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol 2009; 70:777-84; PMID:19596035; https://doi.org/10.1016/j.humimm.2009.07.005
  • Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, Chen S, Towle V, Belshe RB, Fikrig E, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 2010; 184:2518-27; PMID:20100933; https://doi.org/10.4049/jimmunol.0901022
  • Shodell M, Siegal FP. Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand J Immunol 2002; 56:518-21; PMID:12410802; https://doi.org/10.1046/j.1365-3083.2002.01148.x
  • Chehimi J, Campbell DE, Azzoni L, Bacheller D, Papasavvas E, Jerandi G, Mounzer K, Kostman J, Trinchieri G, Montaner LJ. Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J Immunol 2002; 168:4796-801; PMID:11971031; https://doi.org/10.4049/jimmunol.168.9.4796
  • Grassi F, Hosmalin A, McIlroy D, Calvez V, Debre P, Autran B. Depletion in blood CD11c-positive dendritic cells from HIV-infected patients. AIDS 1999; 13:759-66; PMID:10357374; https://doi.org/10.1097/00002030-199905070-00004
  • Soumelis V, Scott I, Gheyas F, Bouhour D, Cozon G, Cotte L, Huang L, Levy JA, Liu YJ. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 2001; 98:906-12; PMID:11493432; https://doi.org/10.1182/blood.V98.4.906
  • Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, Goujard C, Meyer L, Oksenhendler E, Sinet M, Hosmalin A. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 2001; 98:3016-21; PMID:11698285; https://doi.org/10.1182/blood.V98.10.3016
  • Feldman S, Stein D, Amrute S, Denny T, Garcia Z, Kloser P, Sun Y, Megjugorac N, Fitzgerald-Bocarsly P. Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol 2001; 101:201-10; PMID:11683579; https://doi.org/10.1006/clim.2001.5111
  • Benlahrech A, Yasmin A, Westrop SJ, Coleman A, Herasimtschuk A, Page E, Kelleher P, Gotch F, Imami N, Patterson S. Dysregulated immunophenotypic attributes of plasmacytoid but not myeloid dendritic cells in HIV-1 infected individuals in the absence of highly active anti-retroviral therapy. Clin Exp Immunol 2012; 170:212-21; PMID:23039892; https://doi.org/10.1111/j.1365-2249.2012.04647.x
  • Kader M, Smith AP, Guiducci C, Wonderlich ER, Normolle D, Watkins SC, Barrat FJ, Barratt-Boyes SM. Blocking TLR7- and TLR9-mediated IFN-alpha production by plasmacytoid dendritic cells does not diminish immune activation in early SIV infection. PLoS Pathog 2013; 9:e1003530; PMID:23935491; https://doi.org/10.1371/journal.ppat.1003530
  • Li G, Cheng M, Nunoya J, Cheng L, Guo H, Yu H, Liu YJ, Su L, Zhang L. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice. PLoS Pathog 2014; 10:e1004291; PMID:25077616; https://doi.org/10.1371/journal.ppat.1004291
  • Isgro A, Leti W, De Santis W, Marziali M, Esposito A, Fimiani C, Luzi G, Pinti M, Cossarizza A, Aiuti F, et al. Altered clonogenic capability and stromal cell function characterize bone marrow of HIV-infected subjects with low CD4+ T cell counts despite viral suppression during HAART. Clin Infect Dis 2008; 46:1902-10; PMID:18462177; https://doi.org/10.1086/588480
  • Jenkins M, Hanley MB, Moreno MB, Wieder E, McCune JM. Human immunodeficiency virus-1 infection interrupts thymopoiesis and multilineage hematopoiesis in vivo. Blood 1998; 91:2672-8; PMID:9531575
  • Marandin A, Katz A, Oksenhendler E, Tulliez M, Picard F, Vainchenker W, Louache F. Loss of primitive hematopoietic progenitors in patients with human immunodeficiency virus infection. Blood 1996; 88:4568-78; PMID:8977248
  • Moses A, Nelson J, Bagby GC, Jr. The influence of human immunodeficiency virus-1 on hematopoiesis. Blood 1998; 91:1479-95; PMID:9473211
  • Clark DR, Ampel NM, Hallett CA, Yedavalli VR, Ahmad N, DeLuca D. Peripheral blood from human immunodeficiency virus type 1-infected patients displays diminished T cell generation capacity. J Infect Dis 1997; 176:649-54; PMID:9291311; https://doi.org/10.1086/514086
  • Clark DR, Repping S, Pakker NG, Prins JM, Notermans DW, Wit FW, Reiss P, Danner SA, Coutinho RA, Lange JM, et al. T-cell progenitor function during progressive human immunodeficiency virus-1 infection and after antiretroviral therapy. Blood 2000; 96:242-9; PMID:10891457
  • Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Imai K, Hayashi T, Nakachi K, Young LF, Moore MA, van den Brink MR, et al. Age-associated changes in the differentiation potentials of human circulating hematopoietic progenitors to T- or NK-lineage cells. J Immunol 2013; 190:6164-72; PMID:23670190; https://doi.org/10.4049/jimmunol.1203189
  • Guo X, He S, Lv X, Ding H, Li S, Kang J, Liu J, Qin C, Geng W, Jiang Y, Shang H. The Role of HIV-1 in Affecting the Proliferation Ability of HPCs Derived From BM. J Acquir Immune Defic Syndr 2016; 71:467-73; PMID:26974413; https://doi.org/10.1097/QAI.0000000000000892
  • Carter CC, Onafuwa-Nuga A, McNamara LA, Riddell Jt, Bixby D, Savona MR, Collins KL. HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat Med 2010; 16:446-51; PMID:20208541; https://doi.org/10.1038/nm.2109
  • Folks TM, Kessler SW, Orenstein JM, Justement JS, Jaffe ES, Fauci AS. Infection and replication of HIV-1 in purified progenitor cells of normal human bone marrow. Science 1988; 242:919-22; PMID:2460922; https://doi.org/10.1126/science.2460922
  • Neal TF, Holland HK, Baum CM, Villinger F, Ansari AA, Saral R, Wingard JR, Fleming WH. CD34+ progenitor cells from asymptomatic patients are not a major reservoir for human immunodeficiency virus-1. Blood 1995; 86:1749-56; PMID:7544640
  • Stanley SK, Kessler SW, Justement JS, Schnittman SM, Greenhouse JJ, Brown CC, Musongela L, Musey K, Kapita B, Fauci AS. CD34+ bone marrow cells are infected with HIV in a subset of seropositive individuals. J Immunol 1992; 149:689-97; PMID:1378076
  • von Laer D, Hufert FT, Fenner TE, Schwander S, Dietrich M, Schmitz H, Kern P. CD34+ hematopoietic progenitor cells are not a major reservoir of the human immunodeficiency virus. Blood 1990; 76:1281-6; PMID:1698476
  • Dorival C, Brizzi F, Lelievre JD, Sol-Foulon N, Six E, Henry A, André-Schmutz I, Cavazzana-Calvo M, Coulombel L, Estaquier J, et al. HIV-1 Nef protein expression in human CD34+ progenitors impairs the differentiation of an early T/NK cell precursor. Virology 2008; 377:207-15; PMID:18555888; https://doi.org/10.1016/j.virol.2008.04.009
  • Prost S, Le Dantec M, Auge S, Le Grand R, Derdouch S, Auregan G, Déglon N, Relouzat F, Aubertin AM, Maillere B, et al. [Nef and PPAR-gamma interact to suppress Stat5 expression in CD34+ progenitors from infected macaques]. Med Sci (Paris) 2008; 24:551-3; PMID:18466737; https://doi.org/10.1051/medsci/2008245551
  • Moses AV, Williams S, Heneveld ML, Strussenberg J, Rarick M, Loveless M, Bagby G, Nelson JA. Human immunodeficiency virus infection of bone marrow endothelium reduces induction of stromal hematopoietic growth factors. Blood 1996; 87:919-25; PMID:8562963
  • Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006; 12:1365-71; PMID:17115046; https://doi.org/10.1038/nm1511
  • Jacquelin B, Mayau V, Targat B, Liovat AS, Kunkel D, Petitjean G, Dillies MA, Roques P, Butor C, Silvestri G, et al. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest 2009; 119:3544-55; PMID:19959873

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.