995
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Involvement of L-selectin expression in Burkholderia pseudomallei-infected monocytes invading the brain during murine melioidosis

, , , , , , , & ORCID Icon show all
Pages 751-766 | Received 16 Mar 2016, Accepted 30 Aug 2016, Published online: 30 Sep 2016

References

  • Cheng AC, Currie BJ. Melioidosis: epidemiology, pathop]hysiology, and management. Clin Microbiol Rev 2005; 18:383-416; PMID:15831829; http://dx.doi.org/10.1128/CMR.18.2.383-416.2005
  • Dance DA. Ecology of Burkholderia pseudomallei and the interactions between environmental Burkholderia spp. and human-animal hosts. Acta Trop 2000; 74:159-68; PMID:10674645; http://dx.doi.org/10.1016/S0001-706X(99)00066-2
  • Cheng AC. Melioidosis: advances in diagnosis and treatment. Curr Opin Infect Dis 2010; 23:554-9; PMID:20847695; http://dx.doi.org/10.1097/QCO.0b013e32833fb88c
  • Muttarak M, Peh WC, Euathrongchit J, Lin SE, Tan AG, Lerttumnongtum P, Sivasomboon C. Spectrum of imaging findings in melioidosis. Br J Radiol 2009; 82:514-21; PMID:19098086; http://dx.doi.org/10.1259/bjr/15785231
  • Jabbar Z, Currie BJ. Melioidosis and the kidney. Nephrology (Carlton, Vic) 2013; 18:169-75; PMID:23279670
  • Meumann EM, Cheng AC, Ward L, Currie BJ. Clinical features and epidemiology of melioidosis pneumonia: results from a 21-year study and review of the literature. Clin Infect Dis 2012; 54:362-9; PMID:22057702; http://dx.doi.org/10.1093/cid/cir808
  • Currie BJ, Fisher DA, Howard DM, Burrow JN. Neurologic melioidosis. Acta trop 2000; 74:145-51; PMID:10674643; http://dx.doi.org/10.1016/S0001-706X(99)00064-9
  • Owen SJ, Batzloff M, Chehrehasa F, Meedeniya A, Casart Y, Logue CA, Hirst RG, Peak IR, Mackay-Sim A, Beacham IR. Nasal-associated lymphoid tissue and olfactory epithelium as portals of entry for Burkholderia pseudomallei in murine melioidosis. J Infect Dis 2009; 199:1761-70; PMID:19456230; http://dx.doi.org/10.1086/599210
  • St John JA, Ekberg JA, Dando SJ, Meedeniya AC, Horton RE, Batzloff M, Owen SJ, Holt S, Peak IR, Ulett GC, et al. Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurologic melioidosis. mBio 2014; 5:e00025; PMID:24736221
  • White NJ. Melioidosis. Lancet 2003; 361:1715-22; PMID:12767750; http://dx.doi.org/10.1016/S0140-6736(03)13374-0
  • Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurologic diseases. Biochim Biophys Acta 2009; 1788:842-57; PMID:19061857; http://dx.doi.org/10.1016/j.bbamem.2008.10.022
  • Barnes JL, Ulett GC, Ketheesan N, Clair T, Summers PM, Hirst RG. Induction of multiple chemokine and colony-stimulating factor genes in experimental Burkholderia pseudomallei infection Immunol Cell Biol 2001; 79:490-501; PMID:11564157; http://dx.doi.org/10.1046/j.1440-1711.2001.01038.x
  • Conejero L, Patel N, de Reynal M, Oberdorf S, Prior J, Felgner PL, Titball RW, Salguero FJ, Bancroft GJ. Low-dose exposure of C57BL/6 mice to Burkholderia pseudomallei mimics chronic human melioidosis. Am J Pathol 2011; 179:270-80; PMID:21703409; http://dx.doi.org/10.1016/j.ajpath.2011.03.031
  • West TE, Myers ND, Limmathurotsakul D, Liggitt HD, Chantratita N, Peacock SJ, Skerrett SJ. Pathogenicity of high-dose enteral inoculation of Burkholderia pseudomallei to mice. Am J Trop Med Hyg 2010; 83:1066-9; PMID:21036839; http://dx.doi.org/10.4269/ajtmh.2010.10-0306
  • West TE, Myers ND, Liggitt HD, Skerrett SJ. Murine pulmonary infection and inflammation induced by inhalation of Burkholderia pseudomallei. Int J Exp Pathol 2012; 93:421-8; PMID:23136994; http://dx.doi.org/10.1111/j.1365-2613.2012.00842.x
  • Goodyear A, Bielefeldt-Ohmann H, Schweizer H, Dow S. Persistent gastric colonization with Burkholderia pseudomallei and dissemination from the gastrointestinal tract following mucosal inoculation of mice. PloS One 2012; 7:e37324; PMID:22624016; http://dx.doi.org/10.1371/journal.pone.0037324
  • Williams NL, Kloeze E, Govan BL, Korner H, Ketheesan N. Burkholderia pseudomallei enhances maturation of bone marrow-derived dendritic cells. Trans R Soc Trop Med Hyg 2008; 102(Suppl 1):S71-5; PMID:19121693; http://dx.doi.org/10.1016/S0035-9203(08)70019-1
  • Williams NL, Morris JL, Rush CM, Ketheesan N. Migration of dendritic cells facilitates systemic dissemination of Burkholderia pseudomallei. Infect Immun 2014; 82:4233-40; PMID:25069976; http://dx.doi.org/10.1128/IAI.01880-14
  • Morris J, Fane A, Rush C, Govan B, Mayo M, Currie BJ, Ketheesan N. Neurotropic threat characterization of Burkholderia pseudomallei strains. Emerg Infect Dis 2015; 21:58-63; PMID:25530166; http://dx.doi.org/10.3201/eid2101.131570
  • Liu PJ, Chen YS, Lin HH, Ni WF, Hsieh TH, Chen HT, Chen YL. Induction of mouse melioidosis with meningitis by CD11b+ phagocytic cells harboring intracellular B. pseudomallei as a Trojan horse. PLoS Negl Trop Dis 2013; 7:e2363; PMID:23951382; http://dx.doi.org/10.1371/journal.pntd.0002363
  • Zarbock A, Ley K, McEver RP, Hidalgo A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 2011; 118:6743-51; PMID:22021370; http://dx.doi.org/10.1182/blood-2011-07-343566
  • Engelhardt B. Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J Neurol Sci. 2008; 274:23-6; PMID:18573502; http://dx.doi.org/10.1016/j.jns.2008.05.019
  • Arbones ML, Ord DC, Ley K, Ratech H, Maynard-Curry C, Otten G, Capon DJ, Tedder TF. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1994; 1:247-60; PMID:7534203; http://dx.doi.org/10.1016/1074-7613(94)90076-0
  • Angiari S, Constantin G. Selectins and their ligands as potential immunotherapeutic targets in neurologic diseases. Immunotherapy 2013; 5:1207-20; PMID:24188675; http://dx.doi.org/10.2217/imt.13.122
  • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nature Rev Immunol 2005; 5:953-64; http://dx.doi.org/10.1038/nri1733
  • Chen YS, Lin HH, Hsueh PT, Liu PJ, Ni WF, Chung WC, Lin CP, Chen YL. Whole-Genome Sequence of an Epidemic Strain of Burkholderia pseudomallei vgh07 in Taiwan. Genome announc 2015; 3:pii: e00345-15; PMID:25931599
  • Alexeyev MF. The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. BioTechniques 1999; 26:824-6; PMID:10337469
  • Carvalho LP, Petritus PM, Trochtenberg AL, Zaph C, Hill DA, Artis D, Scott P. Lymph node hypertrophy following Leishmania major infection is dependent on TLR9. J Immunol. 2012; 188:1394-401; PMID:22205030; http://dx.doi.org/10.4049/jimmunol.1101018
  • Huang HS, Sun DS, Lien TS, Chang HH. Dendritic cells modulate platelet activity in IVIg-mediated amelioration of ITP in mice. Blood 2010; 116:5002-9; PMID:20699442; http://dx.doi.org/10.1182/blood-2010-03-275123
  • Pascual DW, Riccardi C, Csencsits-Smith K. Distal IgA immunity can be sustained by alphaEbeta7+ B cells in L-selectin-/- mice following oral immunization. Mucosal Immunol 2008; 1:68-77; PMID:19079162; http://dx.doi.org/10.1038/mi.2007.2
  • Sun DS, Chang YC, Lien TS, King CC, Shih YL, Huang HS, Wang TY, Li CR, Lee CC, Hsu PN, et al. Endothelial cell Sensitization by death receptor fractions of an anti-dengue monstructural protein 1 antibody induced plasma leakage, coagulopathy, and mortality in Mice. J Immunol 2015; 195:2743-53; PMID:26259584; http://dx.doi.org/10.4049/jimmunol.1500136
  • Harry GJ, Kraft AD. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 2012; 33:191-206; PMID:22322212; http://dx.doi.org/10.1016/j.neuro.2012.01.012
  • Chen YS, Shieh WJ, Goldsmith CS, Metcalfe MG, Greer PW, Zaki SR, Chang HH, Chan H, Chen YL. Alteration of the phenotypic and pathogenic patterns of Burkholderia pseudomallei that persist in a soil environment. Am J Trop Med Hyg 2014; 90:469-79; PMID:24445207; http://dx.doi.org/10.4269/ajtmh.13-0051
  • Stevens MP, Wood MW, Taylor LA, Monaghan P, Hawes P, Jones PW, Wallis TS, Galyov EE. An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol 2002; 46:649-59; PMID:12410823; http://dx.doi.org/10.1046/j.1365-2958.2002.03190.x
  • Stevens MP, Haque A, Atkins T, Hill J, Wood MW, Easton A, Nelson M, Underwood-Fowler C, Titball RW, Bancroft GJ, et al. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiol 2004; 50(Pt 8):2669-76; http://dx.doi.org/10.1099/mic.0.27146-0
  • Ulett GC, Ketheesan N, Hirst RG. Cytokine gene expression in innately susceptible BALB/c mice and relatively resistant C57BL/6 mice during infection with virulent Burkholderia pseudomallei. Infect Immun 2000; 68:2034-42; PMID:10722599; http://dx.doi.org/10.1128/IAI.68.4.2034-2042.2000
  • Liu B, Koo GC, Yap EH, Chua KL, Gan YH. Model of differential susceptibility to mucosal Burkholderia pseudomallei infection. Infect Immun 2002; 70:504-511; PMID:11796576; http://dx.doi.org/10.1128/IAI.70.2.504-511.2002
  • Tan GY, Liu Y, Sivalingam SP, Sim SH, Wang D, Paucod JC, Gauthier Y, Ooi EE. Burkholderia pseudomallei aerosol infection results in differential inflammatory responses in BALB/c and C57BL/6 mice. J Med Microbiol 2008; 57:508-515; PMID:18349373; http://dx.doi.org/10.1099/jmm.0.47596-0
  • Chieng S, Carreto L, Nathan S. Burkholderia pseudomallei transcriptional adaptation in macrophages. BMC Genomics 2012; 13:328; PMID:22823543; http://dx.doi.org/10.1186/1471-2164-13-328
  • Tuanyok A, Tom M, Dunbar J, Woods DE. Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect Immun 2006; 74:5465-5476; PMID:16988221; http://dx.doi.org/10.1128/IAI.00737-06
  • Eske K, Breitbach K, Kohler J, Wongprompitak P, Steinmetz I. Generation of murine bone marrow derived macrophages in a standardised serum-free cell culture system. J Immunol Methods 2009; 342:13-9; PMID:19133267; http://dx.doi.org/10.1016/j.jim.2008.11.011
  • Santos JL, Andrade AA, Dias AA, Bonjardim CA, Reis LF, Teixeira SM, Horta MF. Differential sensitivity of C57BL/6 (M-1) and BALB/c (M-2) macrophages to the stimuli of IFN-gamma/LPS for the production of NO: correlation with iNOS mRNA and protein expression. J Interferon Cytokine Res. 2006; 26:682-8; PMID:16978073; http://dx.doi.org/10.1089/jir.2006.26.682
  • Breitbach K, Klocke S, Tschernig T, van Rooijen N, Baumann U, Steinmetz I. Role of inducible nitric oxide synthase and NADPH oxidase in early control of Burkholderia pseudomallei infection in mice. Infect Immun 2006; 74:6300-9; PMID:17000727; http://dx.doi.org/10.1128/IAI.00966-06
  • Depke M, Breitbach K, Dinh Hoang Dang K, Brinkmann L, Salazar MG, Dhople VM, Bast A, Steil L, Schmidt F, Steinmetz I, et al. Bone marrow-derived macrophages from BALB/c and C57BL/6 mice fundamentally differ in their respiratory chain complex proteins, lysosomal enzymes and components of antioxidant stress systems. J Proteomics 2014; 103:72-86; PMID:24704164; http://dx.doi.org/10.1016/j.jprot.2014.03.027
  • Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 2004; 75:388-97; PMID:14612429; http://dx.doi.org/10.1189/jlb.0303114
  • Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK. Role of microglia in central nervous system infections. Clin Microbiol Rev 2004; 17:942-64; PMID:15489356; http://dx.doi.org/10.1128/CMR.17.4.942-964.2004
  • Utaisincharoen P, Tangthawornchaikul N, Kespichayawattana W, Anuntagool N, Chaisuriya P, Sirisinha S. Kinetic studies of the production of nitric oxide (NO) and tumour necrosis factor-α (TNF-α) in macrophages stimulated with Burkholderia pseudomallei endotoxin. Clin Exp Immunol 2000; 122:324-9; PMID:11122236; http://dx.doi.org/10.1046/j.1365-2249.2000.01386.x
  • Yao Y, Tsirka SE. Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol Life Sci 2014; 71:683-97; PMID:24051980; http://dx.doi.org/10.1007/s00018-013-1459-1
  • Menetski J, Mistry S, Lu M, Mudgett JS, Ransohoff RM, Demartino JA, Macintyre DE, Abbadie C. Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses. Neuroscience 2007; 149:706-14; PMID:17870246; http://dx.doi.org/10.1016/j.neuroscience.2007.08.014
  • Getts DR, Terry RL, Getts MT, Muller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJ. 2008. Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med 2008; 205:2319-37; PMID:18779347; http://dx.doi.org/10.1084/jem.20080421
  • Guilliams M, Lambrecht BN, Hammad H. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol. 2013; 6:464-73; PMID:23549447; http://dx.doi.org/10.1038/mi.2013.14
  • Chen YS, Shiuan D, Chen SC, Chye SM, Chen YL. Recombinant truncated flagellin of Burkholderia pseudomallei as a molecular probe for diagnosis of melioidosis. Clin Diagn Lab Immunol 2003; 10:423-5; PMID:12738642

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.