1,544
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

Listeria monocytogenes encodes a functional ESX-1 secretion system whose expression is detrimental to in vivo infection

, , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 993-1004 | Received 16 Nov 2015, Accepted 28 Sep 2016, Published online: 01 Nov 2016

References

  • Schneewind O, Missiakas DM. Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 2012; 367:1123-39; PMID:22411983; http://dx.doi.org/10.1098/rstb.2011.0210
  • Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R. ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis 2015; 95 Suppl 1:S150-4; PMID:25732627; http://dx.doi.org/10.1016/j.tube.2015.02.019
  • Houben EN, Korotkov KV, Bitter W. Take five - Type VII secretion systems of Mycobacteria. Biochim Biophys Acta 2014; 1843:1707-16; PMID:24263244; http://dx.doi.org/10.1016/j.bbamcr.2013.11.003
  • Bottai D, Groschel MI, Brosch R. Type VII Secretion Systems in Gram-Positive Bacteria. Curr Top Microbiol Immunol 2016; pp. 1-31; PMID:26847354
  • Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A 2003; 100:13001-6; PMID:14557536; http://dx.doi.org/10.1073/pnas.2235593100
  • Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, Behr MA, Sherman DR. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J Infect Dis 2003; 187:117-23; PMID:12508154; http://dx.doi.org/10.1086/345862
  • Burts ML, Williams WA, DeBord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 2005; 102:1169-74; PMID:15657139; http://dx.doi.org/10.1073/pnas.0405620102
  • Anderson M, Aly KA, Chen YH, Missiakas D. Secretion of atypical protein substrates by the ESAT-6 secretion system of Staphylococcus aureus. Mol Microbiol 2013; 90:734-43; PMID:24033479; http://dx.doi.org/10.1111/mmi.12395
  • Anderson M, Chen YH, Butler EK, Missiakas DM. EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J Bacteriol 2011; 193:1583-9; PMID:21278286; http://dx.doi.org/10.1128/JB.01096-10
  • Chen YH, Anderson M, Hendrickx AP, Missiakas D. Characterization of EssB, a protein required for secretion of ESAT-6 like proteins in Staphylococcus aureus. BMC Microbiol 2012; 12:219; PMID:23006124; http://dx.doi.org/10.1186/1471-2180-12-219
  • Burts ML, DeDent AC, Missiakas DM. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol Microbiol 2008; 69:736-46; PMID:18554323; http://dx.doi.org/10.1111/j.1365-2958.2008.06324.x
  • Kneuper H, Cao ZP, Twomey KB, Zoltner M, Jager F, Cargill JS, Chalmers J, van der Kooi-Pol MM, van Dijl JM, Ryan RP, et al. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Mol Microbiol 2014; 93:928-43; PMID:25040609; http://dx.doi.org/10.1111/mmi.12707
  • Korea CG, Balsamo G, Pezzicoli A, Merakou C, Tavarini S, Bagnoli F, Serruto D, Unnikrishnan M. Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infect Immun 2014; 82:4144-53; PMID:25047846; http://dx.doi.org/10.1128/IAI.01576-14
  • Garufi G, Butler E, Missiakas D. ESAT-6-like protein secretion in Bacillus anthracis. J Bacteriol 2008; 190:7004-11; PMID:18723613; http://dx.doi.org/10.1128/JB.00458-08
  • Akpe San Roman S, Facey PD, Fernandez-Martinez L, Rodriguez C, Vallin C, Del Sol R, Dyson P. A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. Microbiology 2010; 156:1719-29; PMID:20223806; http://dx.doi.org/10.1099/mic.0.037069-0
  • Baptista C, Barreto HC, Sao-Jose C. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis. PLoS One 2013; 8:e67840; PMID:23861817; http://dx.doi.org/10.1371/journal.pone.0067840
  • Huppert LA, Ramsdell TL, Chase MR, Sarracino DA, Fortune SM, Burton BM. The ESX system in Bacillus subtilis mediates protein secretion. PLoS One 2014; 9:e96267; PMID:24798022; http://dx.doi.org/10.1371/journal.pone.0096267
  • European Food Safety Authority ECfDPaC. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. Euro Food Safety Authority, European Centre Dis Prevention Control EFSA J 2015; 13:3991.
  • Cossart P. Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci U S A 2011; 108:19484-91; PMID:22114192; http://dx.doi.org/10.1073/pnas.1112371108
  • Camejo A, Carvalho F, Reis O, Leitao E, Sousa S, Cabanes D. The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle. Virulence 2011; 2:379-94; PMID:21921683; http://dx.doi.org/10.4161/viru.2.5.17703
  • Carvalho F, Sousa S, Cabanes D. How Listeria monocytogenes organizes its surface for virulence. Front Cell Infect Microbiol 2014; 4:48; PMID:24809022; http://dx.doi.org/10.3389/fcimb.2014.00048
  • Desvaux M, Hebraud M. The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 2006; 30:774-805; PMID:16911044; http://dx.doi.org/10.1111/j.1574-6976.2006.00035.x
  • Way SS, Wilson CB. The Mycobacterium tuberculosis ESAT-6 homologue in Listeria monocytogenes is dispensable for growth in vitro and in vivo. Infect Immun 2005; 73:6151-3; PMID:16113338; http://dx.doi.org/10.1128/IAI.73.9.6151-6153.2005
  • Schulthess B, Bloes DA, Berger-Bachi B. Opposing roles of sigmaB and sigmaB-controlled SpoVG in the global regulation of esxA in Staphylococcus aureus. BMC Microbiol 2012; 12:17; PMID:22272815; http://dx.doi.org/10.1186/1471-2180-12-17
  • Zhang Q, Feng Y, Deng L, Feng F, Wang L, Zhou Q, Luo Q. SigB plays a major role in Listeria monocytogenes tolerance to bile stress. Int J Food Microbiol 2011; 145:238-43; PMID:21262551; http://dx.doi.org/10.1016/j.ijfoodmicro.2010.12.028
  • Stavru F, Archambaud C, Cossart P. Cell biology and immunology of Listeria monocytogenes infections: novel insights. Immunol Rev 2011; 240:160-84; PMID:21349093; http://dx.doi.org/10.1111/j.1600-065X.2010.00993.x
  • Harty JT, Bevan MJ. Specific immunity to Listeria monocytogenes in the absence of IFN gamma. Immunity 1995; 3:109-17; PMID:7621071; http://dx.doi.org/10.1016/1074-7613(95)90163-9
  • Wurtzel O, Sesto N, Mellin JR, Karunker I, Edelheit S, Becavin C, Archambaud C, Cossart P, Sorek R. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol Syst Biol 2012; 8:583; PMID:22617957; http://dx.doi.org/10.1038/msb.2012.11
  • Bergholz TM, Bowen B, Wiedmann M, Boor KJ. Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses. Appl Environ Microbiol 2012; 78:2602-12; PMID:22307309; http://dx.doi.org/10.1128/AEM.07658-11
  • Garmyn D, Augagneur Y, Gal L, Vivant AL, Piveteau P. Listeria monocytogenes differential transcriptome analysis reveals temperature-dependent Agr regulation and suggests overlaps with other regulons. PLoS One 2012; 7:e43154; PMID:23024744; http://dx.doi.org/10.1371/journal.pone.0043154
  • Neuhaus K, Satorhelyi P, Schauer K, Scherer S, Fuchs TM. Acid shock of Listeria monocytogenes at low environmental temperatures induces prfA, epithelial cell invasion, and lethality towards Caenorhabditis elegans. BMC Genomics 2013; 14:285; PMID:23622257; http://dx.doi.org/10.1186/1471-2164-14-285
  • Marr AK, Joseph B, Mertins S, Ecke R, Muller-Altrock S, Goebel W. Overexpression of PrfA leads to growth inhibition of Listeria monocytogenes in glucose-containing culture media by interfering with glucose uptake. J Bacteriol 2006; 188:3887-901; PMID:16707681; http://dx.doi.org/10.1128/JB.01978-05
  • Joseph B, Mertins S, Stoll R, Schar J, Umesha KR, Luo Q, Müller-Altrock S, Goebel W. Glycerol metabolism and PrfA activity in Listeria monocytogenes. J Bacteriol 2008; 190:5412-30; PMID:18502850; http://dx.doi.org/10.1128/JB.00259-08
  • Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T, Hain T. Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 2006; 74:1323-38; PMID:16428782; http://dx.doi.org/10.1128/IAI.74.2.1323-1338.2006
  • Schultze T, Hilker R, Mannala GK, Gentil K, Weigel M, Farmani N, Windhorst AC, Goesmann A, Chakraborty T, Hain T. A detailed view of the intracellular transcriptome of Listeria monocytogenes in murine macrophages using RNA-seq. Front Microbiol 2015; 6:1199; PMID:26579105; http://dx.doi.org/10.3389/fmicb.2015.01199
  • Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 2009; 459:950-6; PMID:19448609; http://dx.doi.org/10.1038/nature08080
  • Camejo A, Buchrieser C, Couve E, Carvalho F, Reis O, Ferreira P, Sousa S, Cossart P, Cabanes D. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog 2009; 5:e1000449; PMID:19478867; http://dx.doi.org/10.1371/journal.ppat.1000449
  • Renier S, Micheau P, Talon R, Hebraud M, Desvaux M. Subcellular Localization of Extracytoplasmic Proteins in Monoderm Bacteria: Rational Secretomics-Based Strategy for Genomic and Proteomic Analyses. PLoS One 2012; 7:e42982; PMID:22912771; http://dx.doi.org/10.1371/journal.pone.0042982
  • Aguilo JI, Alonso H, Uranga S, Marinova D, Arbues A, de Martino A, Anel A, Monzon M, Badiola J, Pardo J, et al. ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis. Cell Microbiol 2013; 15:1994-2005; PMID:23848406; http://dx.doi.org/10.1111/cmi.12169
  • Walsh D, Sheridan JJ, Duffy G, Blair IS, McDowell DA, Harrington D. Thermal resistance of wild-type and antibiotic-resistant Listeria monocytogenes in meat and potato substrates. J Appl Microbiol 2001; 90:555-60; PMID:11309067; http://dx.doi.org/10.1046/j.1365-2672.2001.01284.x
  • Soni DK, Singh RK, Singh DV, Dubey SK. Characterization of Listeria monocytogenes isolated from Ganges water, human clinical and milk samples at Varanasi, India. Infect Genet Evol 2013; 14:83-91; PMID:23201044; http://dx.doi.org/10.1016/j.meegid.2012.09.019
  • Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, et al. Comparative genomics of Listeria species. Science 2001; 294:849-52; PMID:11679669
  • Becavin C, Bouchier C, Lechat P, Archambaud C, Creno S, Gouin E, Wu Z, Kühbacher A, Brisse S, Pucciarelli MG, et al. Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. MBio 2014; 5:e00969-14; PMID:24667708; http://dx.doi.org/10.1128/mBio.00969-14
  • Tsai HN, Hodgson DA. Development of a synthetic minimal medium for Listeria monocytogenes. Appl Environ Microbiol 2003; 69:6943-5; PMID:14602660; http://dx.doi.org/10.1128/AEM.69.11.6943-6945.2003
  • Reis O, Sousa S, Camejo A, Villiers V, Gouin E, Cossart P, Cabanes D. LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis 2010; 202:551-62; PMID:20617901; http://dx.doi.org/10.1086/654880
  • Lecuit M, Ohayon H, Braun L, Mengaud J, Cossart P. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 1997; 65:5309-19.
  • Garcia-del Portillo F, Calvo E, D'Orazio V, Pucciarelli MG. Association of ActA to peptidoglycan revealed by cell wall proteomics of intracellular Listeria monocytogenes. J Biol Chem 2011; 286:34675-89; PMID:21846725; http://dx.doi.org/10.1074/jbc.M111.230441
  • Cabanes D, Lecuit M, Cossart P. Animal models of Listeria infection. Curr Protoc Microbiol 2008; Chapter 9: 9B.1.1-9B.1.17; Unit9B 1; PMID:18729060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.