1,346
Views
10
CrossRef citations to date
0
Altmetric
Research paper

Molecular characterization of pneumococcal surface protein K, a potential pneumococcal vaccine antigen

, ORCID Icon, , , , , , , ORCID Icon & ORCID Icon show all
Pages 875-890 | Received 05 Oct 2016, Accepted 28 Dec 2016, Published online: 08 Feb 2017

References

  • Zhu F, Hu Y, Li J, Ye Q, Young MM, Jr., Zhou X, Chen Z, Yan B, Liang JZ, Gruber WC, et al. Immunogenicity and safety of 13-valent pneumococcal conjugate vaccine compared with 7-valent pneumococcal conjugate vaccine among healthy infants in China. Pediatr Infect Dis J 2016; :999-1010; PMID:27254028; http://dx.doi.org/10.1097/INF.0000000000001248
  • Welte T. Pneumococcal conjugate vaccine-equally effective for everyone? Dtsch Arztebl Int 2016; 113(9):137-8. PMID:26987461
  • van Werkhoven CH, Hollingsworth RC, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Sanders EA, Bonten MJ. Pneumococcal conjugate vaccine herd effects on non-invasive pneumococcal pneumonia in elderly. Vaccine 2016; 34(28):3275-82; PMID:27171754; http://dx.doi.org/10.1016/j.vaccine.2016.05.002
  • Valente C, Hinds J, Gould KA, Pinto FR, de Lencastre H, Sa-Leao R. Impact of the 13-valent pneumococcal conjugate vaccine on Streptococcus pneumoniae multiple serotype carriage. Vaccine 2016; 34(34):4072-8; PMID:27325351; http://dx.doi.org/10.1016/j.vaccine.2016.06.017
  • Grant LR, Hammitt LL, O'Brien SE, Jacobs MR, Donaldson C, Weatherholtz RC, Reid R, Santosham M, O'Brien KL. Impact of the 13-valent pneumococcal conjugate vaccine on pneumococcal carriage among American Indians. Pediatr Infect Dis J 2016; 35(8):907-14; PMID:27171679; http://dx.doi.org/10.1097/INF.0000000000001207
  • Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, Hurlburt DA, Butler JC, Rudolph K, Parkinson A. Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA 2007; 297(16):1784-92; PMID:17456820; http://dx.doi.org/10.1001/jama.297.16.1784
  • Pelton SI, Huot H, Finkelstein JA, Bishop CJ, Hsu KK, Kellenberg J, Huang SS, Goldstein R, Hanage WP. Emergence of 19A as virulent and multidrug resistant Pneumococcus in Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine. Pediatr Infect Dis J 2007; 26(6):468-72; PMID:17529860; http://dx.doi.org/10.1097/INF.0b013e31803df9ca
  • Hicks LA, Harrison LH, Flannery B, Hadler JL, Schaffner W, Craig AS, Jackson D, Thomas A, Beall B, Lynfield R, et al. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. J Infect Dis 2007; 196(9):1346-54; PMID:17922399; http://dx.doi.org/10.1086/521626
  • Brueggemann AB, Pai R, Crook DW, Beall B. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog 2007; 3(11):e168; PMID:18020702; http://dx.doi.org/10.1371/journal.ppat.0030168
  • Keller LE, Robinson DA, McDaniel LS. Nonencapsulated Streptococcus pneumoniae: emergence and pathogenesis. MBio 2016; 7(2):e01792; PMID:27006456; http://dx.doi.org/10.1128/mBio.01792-15
  • Hilty M, Wüthrich D, Salter SJ, Engel H, Campbell S, Sá-Leão R, de Lencastre H, Hermans P, Sadowy E, Turner P, et al. Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol Evol 2014; 6:3281-94; PMID:25480686; http://dx.doi.org/10.1093/gbe/evu263
  • Norcross EW, Tullos NA, Taylor SD, Sanders ME, Marquart ME. Assessment of Streptococcus pneumoniae capsule in conjunctivitis and keratitis in vivo neuraminidase activity increases in nonencapsulated pneumococci following conjunctival infection. Curr Eye Res 2010; 35(9):787-98; PMID:20795860; http://dx.doi.org/10.3109/02713683.2010.492462
  • Hathaway LJ, Stutzmann Meier P, Battig P, Aebi S, Muhlemann K. A homologue of aliB is found in the capsule region of nonencapsulated Streptococcus pneumoniae. J Bacteriol 2004; 186(12):3721-9; PMID:15175285; http://dx.doi.org/10.1128/JB.186.12.3721-3729.2004
  • Schaffner TO, Hinds J, Gould KA, Wüthrich D, Bruggmann R, Küffer M, Mühlemann K, Hilty M, Hathaway LJ. A point mutation in cpsE renders Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence and competence. BMC Microbiol 2014; 14:210; PMID:25163487; http://dx.doi.org/10.1186/s12866-014-0210-x
  • Advisory Committee on Immunization Practices. Pneumococcal polysaccharide vaccine. MMWR 1989; 38:64-8; PMID:2492366
  • Dixit C, Keller LE, Bradshaw JL, Robinson DA, Swiatlo E, McDaniel LS. Nonencapsulated Streptococcus pneumoniae as a cause of chronic adenoiditis. IDCases 2016; 4:56-8; PMID:27144125; http://dx.doi.org/10.1016/j.idcr.2016.04.001
  • Murrah KA, Pang B, Richardson S, Perez A, Reimche J, King L, Wren J, Swords WE. Nonencapsulated Streptococcus pneumoniae causes otitis media during single-species infection and during polymicrobial infection with nontypeable Haemophilus influenzae. Pathog Dis 2015; 73(5):ftu011 PMID:26014114; PMID:26014114; http://dx.doi.org/10.1093/femspd/ftu011
  • Keller LE, Luo X, Thornton JA, Seo KS, Moon BY, Robinson DA, McDaniel LS. Immunization with pneumococcal surface protein K of nonencapsulated Streptococcus pneumoniae provides protection in a mouse model of colonization. Clin Vaccine Immunol 2015; 22:1146-53; PMID:26311246; http://dx.doi.org/10.1128/CVI.00456-15
  • Keller LE, Friley J, Dixit C, Nahm MH, McDaniel LS. Nonencapsulated Streptococcus pneumoniae cause acute otitis media in the chinchilla that is enhanced by pneumococcal surface protein K. Open Forum Infect Dis 2014; 1(2):ofu037; PMID:25734113; http://dx.doi.org/10.1093/ofid/ofu037
  • Lofling J, Vimberg V, Battig P, Henriques-Normark B. Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues. Cell Microbiol 2011; 13(2):186-97; PMID:21199258; http://dx.doi.org/10.1111/j.1462-5822.2010.01560.x
  • Keller LE, Jones CV, Thornton JA, Sanders ME, Swiatlo E, Nahm MH, Park IH, McDaniel LS. PspK of Streptococcus pneumoniae increases adherence to epithelial cells and enhances nasopharyngeal colonization. Infect Immun 2013; 81(1):173-81; PMID:23115034; http://dx.doi.org/10.1128/IAI.00755-12
  • Seo HS, Mu R, Kim BJ, Doran KS, Sullam PM. Binding of glycoprotein Srr1 of Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium and the eevelopment of meningitis. PLoS Pathog 2012; 8(10):e1002947; PMID:23055927; http://dx.doi.org/10.1371/journal.ppat.1002947
  • Wang NY, Patras KA, Seo HS, Cavaco CK, Rosler B, Neely MN, Sullam PM, Doran KS. Group B streptococcal serine-rich repeat proteins promote interaction with fibrinogen and vaginal colonization. J Infect Dis 2014; 210(6):982-91; PMID:24620021; http://dx.doi.org/10.1093/infdis/jiu151
  • Sillanpää J, Nallapareddy SR, Houston J, Ganesh VK, Bourgogne A, Singh KV, Murray BE, Höök M. A family of fibrinogen-binding MSCRAMMs from Enterococcus faecalis. Microbiology 2009; 155(Pt 7):2390-400; PMID:19389755; http://dx.doi.org/10.1099/mic.0.027821-0
  • Ganesh VK, Barbu EM, Deivanayagam CC, Le B, Anderson AS, Matsuka YV, Lin SL, Foster TJ, Narayana SV, Höök M. Structural and biochemical characterization of Staphylococcus aureus clumping factor B/ligand interactions. J Biol Chem 2011; 286(29):25963-72; PMID:21543319; http://dx.doi.org/10.1074/jbc.M110.217414
  • Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 2002; 30(1):281-3; PMID:11752315; http://dx.doi.org/10.1093/nar/30.1.281
  • Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009; 4(3):363-71; PMID:19247286; http://dx.doi.org/10.1038/nprot.2009.2
  • Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006; 22(2):195-201; PMID:16301204; http://dx.doi.org/10.1093/bioinformatics/bti770
  • Biegert A, Mayer C, Remmert M, Soding J, Lupas AN. The MPI Bioinformatics Toolkit for protein sequence analysis. Nucleic Acids Res 2006; 34:W335-9; PMID:16845021; http://dx.doi.org/10.1093/nar/gkl217
  • Harada T, Ogawa Y, Eguchi M, Shi F, Sato M, Uchida K, Nakayama H, Shimoji Y. Erysipelothrix rhusiopathiae exploits cytokeratin 18-positive epithelial cells of porcine tonsillar crypts as an invasion gateway. Vet Immunol Immunopathol 2013; 153(3–4):260-6; PMID:23601839; http://dx.doi.org/10.1016/j.vetimm.2013.03.013
  • Tam C, Mun JJ, Evans DJ, Fleiszig SM. Cytokeratins mediate epithelial innate defense through their antimicrobial properties. J Clin Invest 2012; 122(10):3665-77; PMID:23006328; http://dx.doi.org/10.1172/JCI64416
  • Batchelor M, Guignot J, Patel A, Cummings N, Cleary J, Knutton S, Holden DW, Connerton I, Frankel G. Involvement of the intermediate filament protein cytokeratin-18 in actin pedestal formation during EPEC infection. EMBO Rep 2004; 5(1):104-10; PMID:14710194; http://dx.doi.org/10.1038/sj.embor.7400038
  • Jolly C, Winfree S, Hansen B, Steele-Mortimer O. The Annexin A2/p11 complex is required for efficient invasion of Salmonella typhimurium in epithelial cells. Cell Microbiol 2014; 16(1):64-77; PMID:23931152; http://dx.doi.org/10.1111/cmi.12180
  • Somarajan SR, Al-Asadi F, Ramasamy K, Pandranki L, Baseman JB, Kannan TR. Annexin A2 mediates Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin binding to eukaryotic cells. MBio 2014; 5(4):e01497-14; PMID:25139904; http://dx.doi.org/10.1128/mBio.01497-14
  • Zhang S, Yu M, Guo Q, Li R, Li G, Tan S, Li X, Wei Y, Wu M. Annexin A2 binds to endosomes and negatively regulates TLR4-triggered inflammatory responses via the TRAM-TRIF pathway. Sci Rep 2015; 5:15859; PMID:26527544; http://dx.doi.org/10.1038/srep15859
  • Li R, Tan S, Yu M, Jundt MC, Zhang S, Wu M. Annexin A2 regulates autophagy in Pseudomonas aeruginosa infection through the Akt1-mTOR-ULK1/2 signaling pathway. J Immunol 2015; 195(8):3901-11; PMID:26371245; http://dx.doi.org/10.4049/jimmunol.1500967
  • Fortanier AC, Venekamp RP, Boonacker CW, Hak E, Schilder AG, Sanders EA, Damoiseaux RA. Pneumococcal conjugate vaccines for preventing otitis media. Cochrane Database Syst Rev 2014; 4:CD001480.
  • Ref K. Ing J ME, Kaplan SL, Lamberth LB, Revell PA, Luna RA, Hulten KG. Characterization of nontypeable and atypical Streptococcus pneumoniae pediatric isolates from 1994 to 2010. J Clin Microbiol 2012; 50(4):1326-30; PMID:22238440; http://dx.doi.org/10.1128/JCM.05182-11
  • Park IH, Geno KA, Sherwood LK, Nahm MH, Beall B. Population-based analysis of invasive nontypeable pneumococci reveals that most have defective capsule synthesis genes. PLoS One 2014; 9(5):e97825; PMID:24831650; http://dx.doi.org/10.1371/journal.pone.0097825
  • Lacapa R, Bliss SJ, Larzelere-Hinton F, Eagle KJ, McGinty DJ, Parkinson AJ, Santosham M, Craig MJ, O'Brien KL. Changing epidemiology of invasive pneumococcal disease among White Mountain Apache persons in the era of the pneumococcal conjugate vaccine. Clin Infect Dis 2008; 47(4):476-84; PMID:18627249; http://dx.doi.org/10.1086/590001
  • Okade H, Funatsu T, Eto M, Furuya Y, Mizunaga S, Nomura N, Mitsuyama J, Yamagishi Y, Mikamo H. Impact of the pneumococcal conjugate vaccine on serotype distribution and susceptibility trends of pediatric non-invasive Streptococcus pneumoniae isolates in Tokai, Japan over a 5-year period. J Infect Chemother 2014; 20(7):423-8; PMID:24802765; http://dx.doi.org/10.1016/j.jiac.2014.03.010
  • Park IH, Kim KH, Andrade AL, Briles DE, McDaniel LS, Nahm MH. Nontypeable pneumococci can be divided into multiple cps types, including one type expressing the novel gene pspK. MBio 2012; 3(3):e00035-12; PMID:22532557; http://dx.doi.org/10.1128/mBio.00035-12
  • Hajjar KA. The biology of annexin A2: from vascular fibrinolysis to innate immunity. Trans Am Clin Climatol Assoc 2015; 126:144-55. PMID:26330668
  • Briles DE, Hollingshead SK, Swiatlo E, Brooks-Walter A, Szalai A, Virolainen A, McDaniel LS, Benton KA, White P, Prellner K, et al. PspA and PspC: their potential for use as pneumococcal vaccines. MicrobDrug Resist in press 1997; 3:401-08.
  • Voss S, Hallstrom T, Saleh M, Burchhardt G, Pribyl T, Singh B, Riesbeck K, Zipfel PF, Hammerschmidt S. The choline-binding protein PspC of Streptococcus pneumoniae interacts with the C-terminal heparin-binding domain of vitronectin. J Biol Chem 2013; 288:15614-27; PMID:23603906; http://dx.doi.org/10.1074/jbc.M112.443507
  • Dave S, Brooks-Walter A, Pangburn MK, McDaniel LS. PspC, a pneumococcal surface protein, binds human factor H. Infect Immun 2001; 69:3435-7; PMID:11292770; http://dx.doi.org/10.1128/IAI.69.5.3435-3437.2001
  • Yuste J, Khandavilli S, Ansari N, Muttardi K, Ismail L, Hyams C, Weiser J, Mitchell T, Brown JS. The effects of PspC on complement-mediated immunity to Streptococcus pneumoniae vary with strain background and capsular serotype. Infect Immun 2010; 78:283-92; PMID:19884335; http://dx.doi.org/10.1128/IAI.00541-09
  • Dave S, Carmicle S, Hammerschmidt S, Pangburn MK, McDaniel LS. Dual roles of PspC, a surface protein of Streptococcus pneumoniae, in binding human secretory IgA and factor H. J Immunol 2004; 173:471-7; PMID:15210807; http://dx.doi.org/10.4049/jimmunol.173.1.471
  • Shin SG KS, Lim JH. The in vivo and in vitro Roles of Epithelial Pattern Recognition Receptors in Pneumococcal Infections. J Bacteriol Virol 2014; 44:121-32; http://dx.doi.org/10.4167/jbv.2014.44.2.121
  • Lim JH, Jono H, Komatsu K, Woo CH, Lee J, Miyata M, Matsuno T, Xu X, Huang Y, Zhang W, et al. CYLD negatively regulates transforming growth factor-beta-signalling via deubiquitinating Akt. Nat Commun 2012; 3:771; PMID:22491319; http://dx.doi.org/10.1038/ncomms1776
  • Kuipers K, Daleke-Schermerhorn MH, Jong WS, ten Hagen-Jongman CM, van Opzeeland F, Simonetti E, Luirink J, de Jonge MI. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine 2015; 33:2022-9; PMID:25776921; http://dx.doi.org/10.1016/j.vaccine.2015.03.010
  • Felix F, Gomes GA, Cabral GA, Cordeiro JR, Tomita S. The role of new vaccines in the prevention of otitis media. Braz J Otorhinolaryngol 2008; 74:613-6; http://dx.doi.org/10.1016/S1808-8694(15)30612-1
  • American Academy of Pediatrics Subcommittee on Management of Acute Otitis Media. Diagnosis and management of acute otitis media. Pediatrics 2004; 113:1451-65; PMID:15121972; http://dx.doi.org/10.1542/peds.113.5.1451
  • Agrawal A, Murphy TF. Haemophilus influenzae infections in the H. influenzae type b conjugate vaccine era. J Clin Microbiol 2011; 49:3728-32; PMID:21900515; http://dx.doi.org/10.1128/JCM.05476-11
  • Yu J, Lin J, Benjamin WH, Jr., Waites KB, Lee CH, Nahm MH. Rapid multiplex assay for serotyping pneumococci with monoclonal and polyclonal antibodies. J Clin Microbiol 2005; 43:156-62; PMID:15634965; http://dx.doi.org/10.1128/JCM.43.1.156-162.2005
  • Seo HS, Xiong YQ, Mitchell J, Seepersaud R, Bayer AS, Sullam PM. Bacteriophage lysin mediates the binding of Streptococcus mitis to human platelets through interaction with fibrinogen. PLoS Pathog 2010; 6:e1001047; PMID:20714354; http://dx.doi.org/10.1371/journal.ppat.1001047
  • Sanchez CJ, Shivshankar P, Stol K, Trakhtenbroit S, Sullam PM, Sauer K, et al. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog 2010; 6:e1001044; PMID:20714350; http://dx.doi.org/10.1371/journal.ppat.1001044
  • Takamatsu D, Bensing BA, Cheng H, Jarvis GA, Siboo IR, Lopez JA, Griffiss JM, Sullam PM. Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol Microbiol 2005; 58:380-92; PMID:16194227; http://dx.doi.org/10.1111/j.1365-2958.2005.04830.x
  • Seo HS, Sullam PM. Characterization of the fibrinogen binding domain of bacteriophage lysin from Streptococcus mitis. Infect Immun 2011; 79:3518-26; PMID:21690235; http://dx.doi.org/10.1128/IAI.05088-11
  • Lee J KK, Lee BC, Lim JH, Jono H, Xu H, Kai H, Zhang ZJ, Yan C, Li JD. Phosphodiesterase 4B mediates extracellular signal-regulated kinase-dependent up-regulation of mucin MUC5AC protein by Streptococcus pneumoniae by inhibiting cAMP-protein kinase A-dependent MKP-1 phosphatase pathway. J Biol Chem 2012; 287:22799-811.
  • Trzcinski K, Thompson CM, Lipsitch M. Construction of otherwise isogenic serotype 6B, 7F, 14, and 19F capsular variants of Streptococcus pneumoniae strain TIGR4. Appl Environ Microbiol 2003; 69:7364-70; PMID:14660386; http://dx.doi.org/10.1128/AEM.69.12.7364-7370.2003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.