46,898
Views
770
CrossRef citations to date
0
Altmetric
Review

Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action

, , &
Pages 522-554 | Received 16 Sep 2016, Accepted 25 Mar 2017, Published online: 27 Feb 2018

References

  • Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M, Christensen LD, Jensen PØ, Nielsen AK, Parsek M, Wozniak D, et al. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PloS One 2011; 6:e27943; PMID:22132176; http://doi.org/10.1371/journal.pone.0027943
  • Bjarnsholt T, Jensen PO, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 2009; 44:547-58; PMID:19418571; http://doi.org/10.1002/ppul.21011
  • Haaber J, Cohn MT, Frees D, Andersen TJ, Ingmer H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PloS One 2012; 7:e41075; PMID:22815921; http://doi.org/10.1371/journal.pone.0041075
  • Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003; 2:114-22; PMID:12563302; http://doi.org/10.1038/nrd1008
  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000; 407:762-4; PMID:11048725; http://doi.org/10.1038/35037627
  • Wu H, Moser C, Wang HZ, Hoiby N, Song ZJ. Strategies for combating bacterial biofilm infections. Int J Oral Sci 2015; 7:1-7; PMID:25504208; http://doi.org/10.1038/ijos.2014.65
  • Piozzi A, Francolini I, Occhiaperti L, Di Rosa R, Ruggeri V, Donelli G. Polyurethanes loaded with antibiotics: influence of polymer-antibiotic interactions on in vitro activity against Staphylococcus epidermidis. J Chemotherapy 2004; 16:446-52; PMID:15565910; http://doi.org/10.1179/joc.2004.16.5.446
  • Donelli G, Francolini I. Efficacy of antiadhesive, antibiotic and antiseptic coatings in preventing catheter-related infections: review. J Chemotherapy 2001; 13:595-606; PMID:11806619; http://doi.org/10.1179/joc.2001.13.6.595
  • Hengzhuang W, Wu H, Ciofu O, Song Z, Hoiby N. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrobial Agents Chemotherapy 2011; 55:4469-74; PMID:21670181; http://doi.org/10.1128/AAC.00126-11
  • Hengzhuang W, Wu H, Ciofu O, Song Z, Hoiby N. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrobial Agents Chemotherapy 2012; 56:2683-90; PMID:22354300; http://doi.org/10.1128/AAC.06486-11
  • Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T. The clinical impact of bacterial biofilms. Int J Oral Sci 2011; 3:55-65; PMID:21485309; http://doi.org/10.4248/IJOS11026
  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immunity 1999; 67:5427-33; PMID:10496925
  • Gotz F. Staphylococcus and biofilms. Mol Microbiol 2002; 43:1367-78; PMID:11952892; http://doi.org/10.1046/j.1365-2958.2002.02827.x
  • McKenney D, Hubner J, Muller E, Wang Y, Goldmann DA, Pier GB. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immunity 1998; 66:4711-20; PMID:9746568
  • Aaron SD, Ferris W, Ramotar K, Vandemheen K, Chan F, Saginur R. Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis. J Clin Microbiol 2002; 40:4172-9; PMID:12409393; http://doi.org/10.1128/JCM.40.11.4172-4179.2002
  • Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, Schnabl B, DeMatteo RP, Pamer EG. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008; 455:804-7; PMID:18724361; http://doi.org/10.1038/nature07250
  • Hoyle BD, Costerton JW. Bacterial resistance to antibiotics: the role of biofilms. Progress Drug Res Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques 1991; 37:91-105; PMID:1763187
  • Moreau-Marquis S, Stanton BA, O'Toole GA. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulmonary Pharmacol Therapeutics 2008; 21:595-9; http://doi.org/10.1016/j.pupt.2007.12.001
  • Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annual Rev Microbiol 2003; 57:677-701; PMID:14527295; http://doi.org/10.1146/annurev.micro.57.030502.090720
  • Rasmussen TB, Givskov M. Quorum sensing inhibitors: a bargain of effects. Microbiol 2006; 152:895-904; PMID:16549654; http://doi.org/10.1099/mic.0.28601-0
  • Ciofu O, Mandsberg LF, Wang H, Hoiby N. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunol Medical Microbiol 2012; 65:215-25; PMID:22540844; http://doi.org/10.1111/j.1574-695X.2012.00983.x
  • Anderl JN, Zahller J, Roe F, Stewart PS. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents Chemotherapy 2003; 47:1251-6; PMID:12654654; http://doi.org/10.1128/AAC.47.4.1251-1256.2003
  • Brown MR, Allison DG, Gilbert P. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrobial Chemotherapy 1988; 22:777-80; PMID:3072331; http://doi.org/10.1093/jac/22.6.777
  • Walters MC, 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents Chemotherapy 2003; 47:317-23; PMID:12499208; http://doi.org/10.1128/AAC.47.1.317-323.2003
  • Ma H, Bryers JD. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Applied Microbiol Biotechnol 2013; 97:317-28; PMID:22669634; http://doi.org/10.1007/s00253-012-4179-9
  • Gjodsbol K, Christensen JJ, Karlsmark T, Jorgensen B, Klein BM, Krogfelt KA. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 2006; 3:225-31; PMID:16984578; http://doi.org/10.1111/j.1742-481X.2006.00159.x
  • Kirketerp-Moller K, Jensen PO, Fazli M, Madsen KG, Pedersen J, Moser C, Tolker-Nielsen T, Høiby N, Givskov M, Bjarnsholt T. Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 2008; 46:2717-22; PMID:18508940; http://doi.org/10.1128/JCM.00501-08
  • Homoe P, Bjarnsholt T, Wessman M, Sorensen HC, Johansen HK. Morphological evidence of biofilm formation in Greenlanders with chronic suppurative otitis media. Eur Arch Oto-Rhino-Laryngol 2009; 266:1533-8; http://doi.org/10.1007/s00405-009-0940-9
  • Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathogens 2008; 4:e1000052; PMID:18437240; http://doi.org/10.1371/journal.ppat.1000052
  • Van Oss CJ, Good RJ, Chaudhury MK. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci 1986; 111:378-90; http://doi.org/10.1016/0021-9797(86)90041-X
  • O'Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, Foster TJ, O'Gara JP. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 2008; 190:3835-50; PMID:18375547; http://doi.org/10.1128/JB.00167-08
  • Merino N, Toledo-Arana A, Vergara-Irigaray M, Valle J, Solano C, Calvo E, Lopez JA, Foster TJ, Penadés JR, Lasa I. Protein A-mediated multicellular behavior in Staphylococcus aureus. J Bacteriol 2009; 191:832-43; PMID:19047354; http://doi.org/10.1128/JB.01222-08
  • Corrigan RM, Rigby D, Handley P, Foster TJ. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiol 2007; 153:2435-46; PMID:17660408; http://doi.org/10.1099/mic.0.2007/006676-0
  • Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB. A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A 2008; 105:19456-61; PMID:19047636; http://doi.org/10.1073/pnas.0807717105
  • Marti M, Trotonda MP, Tormo-Mas MA, Vergara-Irigaray M, Cheung AL, Lasa I, Penadés JR. Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect / Institut Pasteur 2010; 12:55-64; http://doi.org/10.1016/j.micinf.2009.10.005
  • Trotonda MP, Manna AC, Cheung AL, Lasa I, Penades JR. SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus. J Bacteriol 2005; 187:5790-8; PMID:16077127; http://doi.org/10.1128/JB.187.16.5790-5798.2005
  • Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 1994; 176:269-75; PMID:8288518; http://doi.org/10.1128/jb.176.2.269-275.1994
  • Huber B, Eberl L, Feucht W, Polster J. Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Zeitschrift fur Naturforschung C. J Biosci 2003; 58:879-84; PMID:14713169
  • Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immunity 2008; 76:4176-82; PMID:18591225; http://doi.org/10.1128/IAI.00318-08
  • Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents Chemotherapy 2000; 44:1818-24; PMID:10858336; http://doi.org/10.1128/AAC.44.7.1818-1824.2000
  • Lappin-Scott HM, Costerton JW. Bacterial biofilms and surface fouling. Biofouling 1989; 1:323-42; http://doi.org/10.1080/08927018909378120
  • Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 2010; 75:815-26; PMID:19602146; http://doi.org/10.1111/j.1365-2958.2009.06793.x
  • Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environmental Microbiol 2005; 7:894-906; PMID:15892708; http://doi.org/10.1111/j.1462-2920.2005.00775.x
  • Nilsson M, Chiang WC, Fazli M, Gjermansen M, Givskov M, Tolker-Nielsen T. Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability. Environmental Microbiol 2011; 13:1357-69; PMID:21507178; http://doi.org/10.1111/j.1462-2920.2011.02447.x
  • Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 2004; 186:4466-75; PMID:15231778; http://doi.org/10.1128/JB.186.14.4466-4475.2004
  • Matsukawa M, Greenberg EP. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 2004; 186:4449-56; PMID:15231776; http://doi.org/10.1128/JB.186.14.4449-4456.2004
  • Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O'Toole GA, Parsek MR. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 2003; 100:7907-12; PMID:12810959; http://doi.org/10.1073/pnas.1231792100
  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. Bacterial biofilms in nature and disease. Ann Rev Microbiol 1987; 41:435-64; PMID:3318676; http://doi.org/10.1146/annurev.mi.41.100187.002251
  • Purevdorj-Gage B, Costerton WJ, Stoodley P. Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 2005; 151:1569-76; PMID:15870466; http://doi.org/10.1099/mic.0.27536-0
  • Chen Y, Chai Y, Guo JH, Losick R. Evidence for cyclic Di-GMP-mediated signaling in Bacillus subtilis. J Bacteriol 2012; 194:5080-90; PMID:22821967; http://doi.org/10.1128/JB.01092-12
  • Garcia B, Latasa C, Solano C, Garcia-del Portillo F, Gamazo C, Lasa I. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 2004; 54:264-77; PMID:15458421; http://doi.org/10.1111/j.1365-2958.2004.04269.x
  • Gjermansen M, Ragas P, Tolker-Nielsen T. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol Letters 2006; 265:215-24; PMID:17054717; http://doi.org/10.1111/j.1574-6968.2006.00493.x
  • Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 2005; 102:14422-7; PMID:16186483; http://doi.org/10.1073/pnas.0507170102
  • Purcell EB, McKee RW, McBride SM, Waters CM, Tamayo R. Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 2012; 194:3307-16; PMID:22522894; http://doi.org/10.1128/JB.00100-12
  • Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 1987; 325:279-81; PMID:18990795; http://doi.org/10.1038/325279a0
  • Ryan RP, Lucey J, O'Donovan K, McCarthy Y, Yang L, Tolker-Nielsen T, Dow JM. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ Microbiol 2009; 11:1126-36; PMID:19170727; http://doi.org/10.1111/j.1462-2920.2008.01842.x
  • Simm R, Morr M, Kader A, Nimtz M, Romling U. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 2004; 53:1123-34; PMID:15306016; http://doi.org/10.1111/j.1365-2958.2004.04206.x
  • Tischler AD, Camilli A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 2004; 53:857-69; PMID:15255898; http://doi.org/10.1111/j.1365-2958.2004.04155.x
  • Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, et al. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 2006; 103:2839-44; PMID:16477007; http://doi.org/10.1073/pnas.0511090103
  • Lim B, Beyhan S, Meir J, Yildiz FH. Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Mol Microbiol 2006; 60:331-48; PMID:16573684; http://doi.org/10.1111/j.1365-2958.2006.05106.x
  • Ryan RP, Tolker-Nielsen T, Dow JM. When the PilZ don't work: effectors for cyclic di-GMP action in bacteria. Trends Microbiol 2012; 20:235-42; PMID:22444828; http://doi.org/10.1016/j.tim.2012.02.008
  • Tischler AD, Camilli A. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immunity 2005; 73:5873-82; PMID:16113306; http://doi.org/10.1128/IAI.73.9.5873-5882.2005
  • Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, Cao H, Cavaliere R, James CE, Whitchurch CB, Schembri MA, et al. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathogens 2011; 7:e1002204; PMID:21901098; http://doi.org/10.1371/journal.ppat.1002204
  • Massie JP, Reynolds EL, Koestler BJ, Cong JP, Agostoni M, Waters CM. Quantification of high-specificity cyclic diguanylate signaling. Proc Natl Acad Sci U S A 2012; 109:12746-51; PMID:22802636; http://doi.org/10.1073/pnas.1115663109
  • Monds RD, Newell PD, Gross RH, O'Toole GA. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol Microbiol 2007; 63:656-79; PMID:17302799; http://doi.org/10.1111/j.1365-2958.2006.05539.x
  • O'Connor JR, Kuwada NJ, Huangyutitham V, Wiggins PA, Harwood CS. Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system leading to c-di-GMP production. Mol Microbiol 2012; 86:720-9; PMID:22957788; http://doi.org/10.1111/mmi.12013
  • Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 2010; 75:827-42; PMID:20088866; http://doi.org/10.1111/j.1365-2958.2009.06991.x
  • Chambers JR, Sauer K. Small RNAs and their role in biofilm formation. Trends Microbiol 2013; 21:39-49; PMID:23178000; http://doi.org/10.1016/j.tim.2012.10.008
  • Antonelli M, De Pascale G, Ranieri VM, Pelaia P, Tufano R, Piazza O, Zangrillo A, Ferrario A, De Gaetano A, Guaglianone E, et al. Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTive(R)) vs conventional catheters in intensive care unit patients. J Hospital Infect 2012; 82:101-7; PMID:22938728; http://doi.org/10.1016/j.jhin.2012.07.010
  • Heersink J, Goeres D. Reactor design considerations. In: Hamilton M, Heersink J, Buckingham-Meyer K, Goeres D, editors. The Biofilm Laboratory: Step-by-step Protocols for Experimental Design, Analysis, and Data Interpretation, M. Hamilton, J. Heersink, K. Buckingham-Meyer and D. Goeres, eds. Bozeman, MT: Cytergy Publishing 2003:13-5.
  • Niu C, Gilbert ES. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 2004; 70:6951-6; PMID:15574886; http://doi.org/10.1128/AEM.70.12.6951-6956.2004
  • Heilmann C, Gerke C, Perdreau-Remington F, Gotz F. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immunity 1996; 64:277-82; PMID:8557351
  • O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30:295-304; PMID:9791175; http://doi.org/10.1046/j.1365-2958.1998.01062.x
  • Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiological Methods 2010; 83:89-105; PMID:20816706; http://doi.org/10.1016/j.mimet.2010.08.018
  • O'Toole GA. Microtiter dish biofilm formation assay. J Vis Exp 2011; 47:2473; PMID:21307833
  • Busscher HJ, van der Mei HC. Microbial adhesion in flow displacement systems. Clin Microbiol Rev 2006; 19:127-41; PMID:16418527; http://doi.org/10.1128/CMR.19.1.127-141.2006
  • Debebe T, Krüger M, Huse K, Kacza J, Mühlberg K, König B, Birkenmeier G. Ethyl Pyruvate: An anti-microbial agent that selectively targets Pathobionts and Biofilms. PLoS One 2016; 11:e0162919; http://doi.org/10.1371/journal.pone.0162919
  • Maske TT, Brauner KV, Nakanishi L, Arthur RA, van de Sande FH, Cenci MS. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies. Biofouling 2016; 32:339-48; PMID:26905384; http://doi.org/10.1080/08927014.2015.1130824
  • Salli KM, Ouwehand AC. The use of in vitro model systems to study dental biofilms associated with caries: a short review. J Oral Microbiol 2015; 7:26149; PMID:25740099; http://doi.org/10.3402/jom.v7.26149
  • Singer G, Besemer K, Hödl I, Chlup A, Hochedlinger G, Stadler P, et al. Microcosm design and evaluation to study stream microbial biofilms. Limnol Oceanogr Methods 2006; 4(11):436-47; http://doi.org/10.4319/lom.2006.4.436
  • Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013; 2:288-356; PMID:25437038; http://doi.org/10.3390/pathogens2020288
  • Lemaitre B, Ausubel FM. Animal models for host-pathogen interactions. Curr Opin Microbiol 2008; 11:249-50; PMID:18539076; http://doi.org/10.1016/j.mib.2008.05.002
  • Djordjevic D, Wiedmann M, McLandsborough LA. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Applied Environ Microbiol 2002; 68:2950-8; PMID:12039754; http://doi.org/10.1128/AEM.68.6.2950-2958.2002
  • Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 2011; 15:305-11; PMID:21860999; http://doi.org/10.1016/S1413-8670(11)70197-0
  • Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989; 42:872-4; PMID:2475530; http://doi.org/10.1136/jcp.42.8.872
  • Sánchez MC, Llama-Palacios A, Marín MJ, Figuero E, León R, Blanc V, Herrera D, Sanz M. Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model. Med Oral Patol Oral Cir Bucal 2013; 18:e86-92; PMID:23229259; http://doi.org/10.4317/medoral.18376
  • Aparna MS, Yadav S. Biofims: microbes and disease. Braz J Infect Dis 2008; 12:526-30; PMID:19287843; http://doi.org/10.1590/S1413-86702008000600016
  • Dhale RP, Ghorpade MV, Dharmadhikari CA. Comparison of various methods used to detect biofilm production of candida species. J Clin Diagnostic Res 2014; 8:DC18-DC20; PMID:25584219
  • Zufferey J, Rime B, Francioli P, Bille J. Simple method for rapid diagnosis of catheter-associated infection by direct acridine orange staining of catheter tips. J Clin Microbiol 1988; 26:175-7; PMID:2449453
  • Gomes F, Teixeira P, Cerca N, Azeredo J, Oliveira R. Effect of farnesol on structure and composition of Staphylococcus epidermidis biofilm matrix. Curr Microbiol 2011; 63:354-9; PMID:21800262; http://doi.org/10.1007/s00284-011-9984-3
  • Quintas V, Prada-López I, Tomás I. Analyzing the oral biofilm using fluorescence-based microscopy: what's in a dye? In Microscopy: Adv Scientific Res Education, A. Méndez-Vilas, ed. Badajoz, Spain: Formatex Research Center 2014:226-38.
  • Wiggli M, Smallcombe A, Bachofen R. Reflectance spectroscopy and laser confocal microscopy as tools in an ecophysiological study of microbial mats in an alpine bog pond. J Microbiological Methods 1999; 34:173-82; http://doi.org/10.1016/S0167-7012(98)00085-2
  • Broschat SL, Loge FJ, Peppin JD, White D, Call DR, Kuhn E. Optical reflectance assay for the detection of biofilm formation. J Biomedical Optics 2005; 10:44027; PMID:16178660; http://doi.org/10.1117/1.1953347
  • Humbert F, Quilès F. In-situ study of early stages of biofilm formation under different environmental stresses by ATR-FTIR spectroscopy. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances, A. Méndez-Vilas, ed. Badajoz, Spain: Formatex Research Center 2011:889-95.
  • Paquet-Mercier F, Safdar M, Parvinzadeh M, Greener J. Emerging Spectral Microscopy Techniques and Applications to Biofilm Detection. Microscopy: Advances in Scientific Research and Education, A. Méndez-Vilas, ed. Badajoz, Spain: Formatex Research Center 2014; 2: 638–49.
  • Hornemann JA, Codd SL, Fell RJ, Stewart PS, Seymour JD. Secondary flow mixing due to biofilm growth in capillaries of varying dimensions. Biotechnol Bioengineering 2009; 103:353-60; PMID:19191352; http://doi.org/10.1002/bit.22248
  • Hornemann JA, Lysova AA, Codd SL, Seymour JD, Busse SC, Stewart PS, Brown JR. Biopolymer and water dynamics in microbial biofilm extracellular polymeric substance. Biomacromolecules 2008; 9:2322-8; PMID:18665639; http://doi.org/10.1021/bm800269h
  • Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J Appl Microbiol 2007; 103:1808-20; PMID:17953591; http://doi.org/10.1111/j.1365-2672.2007.03413.x
  • Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J Appl Microbiol 2007; 103:1808-20; PMID:17953591; http://doi.org/10.1111/j.1365-2672.2007.03413.x
  • da Silva WJ, Seneviratne J, Parahitiyawa N, Rosa EA, Samaranayake LP, Del Bel Cury AA. Improvement of XTT assay performance for studies involving Candida albicans biofilms. Brazilian Dental J 2008; 19:364-9; PMID:19180329
  • Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrobial Agents Chemotherapy 2002; 46:1773-80; http://doi.org/10.1128/AAC.46.6.1773-1780.2002
  • Piper KE, Jacobson MJ, Cofield RH, Sperling JW, Sanchez-Sotelo J, Osmon DR, McDowell A, Patrick S, Steckelberg JM, Mandrekar JN. Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. J Clin Microbiol 2009; 47:1878-84; http://doi.org/10.1128/JCM.01686-08
  • Song Z, Borgwardt L, Hoiby N, Wu H, Sorensen TS, Borgwardt A. Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthopedic Rev 2013; 5:65-71; PMID:23888204; http://doi.org/10.4081/or.2013.e14
  • Berbari E, Mabry T, Tsaras G, Spangehl M, Erwin PJ, Murad MH, Steckelberg J, Osmon D. Inflammatory blood laboratory levels as markers of prosthetic joint infection: A systematic review and meta-analysis. J Bone Joint Surg Am 2010; 92:2102-9; PMID:20810860; http://doi.org/10.2106/JBJS.I.01199
  • Vergidis P, Patel R. Novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect Dis Clinics North Am 2012; 26:173-86; PMID:22284383; http://doi.org/10.1016/j.idc.2011.09.012
  • Amann R, Ludwig W. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 2000; 24:555-65; PMID:11077149; http://doi.org/10.1111/j.1574-6976.2000.tb00557.x
  • Brileya KA, Camilleri LB, Fields MW. 3D- fluorescence in situ hybridisation of intact, anaerobic biofilm. Methods Mol Biol 2014; 1151:189-97; PMID:24838887
  • Cassán FD, Okon Y, Creus CM. Handbook for Azospirillum: Technical Issues and Protocols, C.M. Creus, ed. Switzerland: Springer International 2015; doi:10.1007/978-3-319-06542-7
  • DeLong EF, Wickham GS, Pace NR. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 1989; 243:1360-3; PMID:2466341; http://doi.org/10.1126/science.2466341
  • Malic S, Hill KE, Hayes A. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology 2009; 155:2603-11; PMID:19477903; http://doi.org/10.1099/mic.0.028712-0
  • Moller S, Pedersen AR, Poulsen LK, Arvin E, Molin S. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridisatrion and scanning confocal laser microscopy. Applied Environ Microbiol 1996; 62:4632-40; PMID:8953734
  • Schramm A, De Beer D, Wagner M, Amann R. Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Applied Environ Microbiol 1998; 64:3480-5; PMID:9726900
  • Skogman ME, Vuorela PM, Fallarero A. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J Antibiotics 2012; 65:453-9; PMID:22739537; http://doi.org/10.1038/ja.2012.49
  • Hoiby N, Krogh Johansen H, Moser C, Song Z, Ciofu O, Kharazmi A. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect / Institut Pasteur 2001; 3:23-35; http://doi.org/10.1016/S1286-4579(00)01349-6
  • Herrmann G, Yang L, Wu H, Song Z, Wang H, Hoiby N, Ulrich M, Molin S, Riethmüller J, Döring G. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis 2010; 202:1585-92; PMID:20942647; http://doi.org/10.1086/656788
  • Francolini I, Piozzi A, Donelli G. Efficacy evaluation of antimicrobial drug-releasing polymer matrices. Methods Mol Biology 2014; 1147:215-25; PMID:24664836
  • Donelli G, Francolini I, Ruggeri V, Guaglianone E, D'Ilario L, Piozzi A. Pore formers promoted release of an antifungal drug from functionalized polyurethanes to inhibit Candida colonization. J Appl Microbiol 2006; 100:615-22; PMID:16478501; http://doi.org/10.1111/j.1365-2672.2005.02801.x
  • Donelli G, Francolini I, Piozzi A, Di Rosa R, Marconi W. New polymer-antibiotic systems to inhibit bacterial biofilm formation: a suitable approach to prevent central venous catheter-associated infections. J Chemotherapy 2002; 14:501-7; PMID:12462430; http://doi.org/10.1179/joc.2002.14.5.501
  • Crisante F, Taresco V, Donelli G, Vuotto C, Martinelli A, D'Ilario L, et al. Antioxidant Hydroxytyrosol-Based Polyacrylate with Antimicrobial and Antiadhesive Activity Versus Staphylococcus Epidermidis. Adv Exp Med Biol 2015; 901:25-36; PMID:25384665
  • Percival SL, Suleman L, Francolini I, Donelli G. The effectiveness of photodynamic therapy on planktonic cells and biofilms and its role in wound healing. Future Microbiol 2014; 9:1083-94; PMID:25340837; http://doi.org/10.2217/fmb.14.59
  • Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan JB. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrobial Agents Chemotherapy 2007; 51:2733-40; PMID:17548491; http://doi.org/10.1128/AAC.01249-06
  • Tiwari V, Roy R, Tiwari M. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens. Frontiers Microbiol 2015; 6:618; http://doi.org/10.3389/fmicb.2015.00618
  • Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Anderson JB, Parsck MR, Rice SA, Eberl L, Molin S, Høiby N, et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 2002; 148:87-102; PMID:11782502; http://doi.org/10.1099/00221287-148-1-87
  • Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 1991; 173:3000-9; PMID:1902216; http://doi.org/10.1128/jb.173.9.3000-3009.1991
  • Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993; 260:1127-30; PMID:8493556; http://doi.org/10.1126/science.8493556
  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 1996; 178:6618-22; PMID:8932319; http://doi.org/10.1128/jb.178.22.6618-6622.1996
  • Manefield M, Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg S. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 1999; 145:283-91; PMID:10075410; http://doi.org/10.1099/13500872-145-2-283
  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003; 22:3803-15; PMID:12881415; http://doi.org/10.1093/emboj/cdg366
  • Manefield M, Harris L, Rice SA, de Nys R, Kjelleberg S. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Applied Environmental Microbiol 2000; 66:2079-84; PMID:10788385; http://doi.org/10.1128/AEM.66.5.2079-2084.2000
  • Lee JH, Park JH, Cho HS, Joo SW, Cho MH, Lee J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 2013; 29:491-9; PMID:23668380; http://doi.org/10.1080/08927014.2013.788692
  • Manner S, Skogman M, Goeres D, Vuorela P, Fallarero A. Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int J Mol Sci 2013; 14:19434-51; PMID:24071942; http://doi.org/10.3390/ijms141019434
  • Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrobial Agents Chemotherapy 2004; 48:4360-5; PMID:15504865; http://doi.org/10.1128/AAC.48.11.4360-4365.2004
  • Kali A, Bhuvaneshwar D, Charles PM, Seetha KS. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates. J Basic Clin Pharmacy 2016; 7:93-6; PMID:27330262; http://doi.org/10.4103/0976-0105.183265
  • Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW. Broad-Spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathogens 2014; 10:e1004152
  • Potrykus K, Cashel M. (p)ppGpp: still magical? Annual Rev Microbiol 2008; 62:35-51; PMID:18454629; http://doi.org/10.1146/annurev.micro.62.081307.162903
  • Abranches J, Martinez AR, Kajfasz JK, Chavez V, Garsin DA, Lemos JA. The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J Bacteriol 2009; 191:2248-56; PMID:19168608; http://doi.org/10.1128/JB.01726-08
  • Paz LEC, Lemos JA, Wickström C, Sedgley CM. Role of (p)ppGpp in biofilm formation by Enterococcus faecalis. Applied Environmental Microbiol 2012; 78:1627-30; PMID:22179256; http://doi.org/10.1128/AEM.07036-11
  • Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock REW. A broad-spectrum anti-biofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 2014; 58:5363-71; PMID:24982074; http://doi.org/10.1128/AAC.03163-14
  • De la Fuente-Núñez C, Mansour SC, Wang Z, Jiang L, Breidenstein EBM, Elliott M, Reffuveille F, Speert DP, Reckseidler-Zenteno SL, Shen Y, et al. Anti-biofilm and immunomodulatory activities of peptides that inhibit biofilms formed by pathogens isolated from cystic fibrosis patients. Antibiotics 2014; 3:509-26; PMID:26221537; http://doi.org/10.3390/antibiotics3040509
  • de la Fuente-Nunez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, Hancock RE. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrobial Agents Chemotherapy 2012; 56:2696-704; PMID:22354291; http://doi.org/10.1128/AAC.00064-12
  • Lemos JAC, Brown TA, Burne RA. Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans. Infect Immunity 2004; 72:1431-40; PMID:14977948; http://doi.org/10.1128/IAI.72.3.1431-1440.2004
  • Stewart PS. Prospects for anti-biofilm pharmaceuticals. Pharmaceuticals 2015; 8:504-11; PMID:26343685; http://doi.org/10.3390/ph8030504
  • Kaplan JB. Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs 2009; 32:533-695; PMID:19856268
  • Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Applied Environmental Microbiol 2008; 74:470-6; PMID:18039822; http://doi.org/10.1128/AEM.02073-07
  • Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J Antimicrobial Chemotherapy 2009; 64:88-93; PMID:19447791; http://doi.org/10.1093/jac/dkp158
  • Payne DE, Martin NR, Parzych KR, Rickard AH, Underwood A, Boles BR. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infect Immunity 2013; 81:496-504; PMID:23208606; http://doi.org/10.1128/IAI.00877-12
  • Stapleton MR, Horsburgh MJ, Hayhurst EJ, Wright L, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ. Characterization of IsaA and SceD, two putative lytic transglycosylases of Staphylococcus aureus. J Bacteriol 2007; 189:7316-25; PMID:17675373; http://doi.org/10.1128/JB.00734-07
  • Holtje JV, Mirelman D, Sharon N, Schwarz U. Novel type of murein transglycosylase in Escherichia coli. J Bacteriol 1975; 124:1067-76.
  • Shah IM, Laaberki MH, Popham DL, Dworkin J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 2008; 135:486-96; PMID:18984160; http://doi.org/10.1016/j.cell.2008.08.039
  • Shen Y, Koller T, Kreikemeyer B, Nelson DC. Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J Antimicrobial Chemotherapy 2013; 68:1818-24; PMID:23557924; http://doi.org/10.1093/jac/dkt104
  • Fischetti VA. Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Medical Microbiol 2010; 300:357-62; PMID:20452280; http://doi.org/10.1016/j.ijmm.2010.04.002
  • Hoopes JT, Stark CJ, Kim HA, Sussman DJ, Donovan DM, Nelson DC. Use of a bacteriophage lysin, PlyC, as an enzyme disinfectant against Streptococcus equi. Applied Environ Microbiol 2009; 75:1388-94; PMID:19139235; http://doi.org/10.1128/AEM.02195-08
  • Koller T, Nelson D, Nakata M, Kreutzer M, Fischetti VA, Glocker MO, Podbielski A, Kreikemeyer B. PlyC, a novel bacteriophage lysin for compartment-dependent proteomics of group A streptococci. Proteomics 2008; 8:140-8; PMID:18095374; http://doi.org/10.1002/pmic.200700001
  • McGowan S, Buckle AM, Mitchell MS, Hoopes JT, Gallagher DT, Heselpoth RD, Shen Y, Reboul CF, Law RH, Fischetti VA, et al. X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proc Natl Acad Sci U S A 2012; 109:12752-7; PMID:22807482; http://doi.org/10.1073/pnas.1208424109
  • Nelson D, Loomis L, Fischetti VA. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A 2001; 98:4107-12; http://doi.org/10.1073/pnas.061038398
  • Nelson D, Schuch R, Chahales P, Zhu S, Fischetti VA. PlyC: a multimeric bacteriophage lysin. Proc Natl Acad Sci U S A 2006; 103:10765-70; PMID:16818874; http://doi.org/10.1073/pnas.0604521103
  • Yoda Y, Hu ZQ, Zhao WH, Shimamura T. Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. J Infect Chemotherapy 2004; 10:55-8; PMID:14991521; http://doi.org/10.1007/s10156-003-0284-0
  • Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrobial Agents Chemotherapy 2002; 46:2266-8; PMID:12069986; http://doi.org/10.1128/AAC.46.7.2266-2268.2002
  • Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 1993; 75:499-511; PMID:8294303; http://doi.org/10.1111/j.1365-2672.1993.tb01587.x
  • Boles BR, Horswill AR. Staphylococcal biofilm disassembly. Trends Microbiol 2011; 19:449-55; PMID:21784640; http://doi.org/10.1016/j.tim.2011.06.004
  • Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. Peptide signaling in the staphylococci. Chem Rev 2011; 111:117-51; PMID:21174435; http://doi.org/10.1021/cr100370n
  • Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, Horswill AR, Bayles KW, Smeltzer MS. Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation. PloS One 2010; 5; PMID:20520723; http://doi.org/10.1371/journal.pone.0010790
  • Vuong C, Saenz HL, Gotz F, Otto M. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis 2000; 182:1688-93; PMID:11069241; http://doi.org/10.1086/317606
  • Lauderdale KJ, Boles BR, Cheung AL, Horswill AR. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immunity 2009; 77:1623-35; PMID:19188357; http://doi.org/10.1128/IAI.01036-08
  • Tsang LH, Cassat JE, Shaw LN, Beenken KE, Smeltzer MS. Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants. PloS One 2008; 3:e3361; PMID:18846215; http://doi.org/10.1371/journal.pone.0003361
  • Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH, Smeltzer MS, Horswill AR, Bayles KW. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PloS One 2009; 4:e5822; PMID:19513119; http://doi.org/10.1371/journal.pone.0005822
  • Branda SS, Chu F, Kearns DB, Losick R, Kolter R. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 2006; 59:1229-38; PMID:16430696; http://doi.org/10.1111/j.1365-2958.2005.05020.x
  • Romero D, Kolter R. Will biofilm disassembly agents make it to market? Trends Microbiol 2011; 19:304-6; PMID:21458996; http://doi.org/10.1016/j.tim.2011.03.003
  • Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 2009; 5:913-9; PMID:19915538; http://doi.org/10.1038/nchembio.242
  • Connolly KL, Roberts AL, Holder RC, Reid SD. Dispersal of Group A streptococcal biofilms by the cysteine protease SpeB leads to increased disease severity in a murine model. PloS One 2011; 6:e18984; PMID:21547075; http://doi.org/10.1371/journal.pone.0018984
  • Park JH, Lee JH, Cho MH, Herzberg M, Lee J. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. FEMS Microbiol Letters 2012; 335:31-8; PMID:22784033; http://doi.org/10.1111/j.1574-6968.2012.02635.x
  • Yu C, Li X, Zhang N, Wen D, Liu C, Li Q. Inhibition of biofilm formation by d-tyrosine: Effect of bacterial type and d-tyrosine concentration. Water Res 2016; 92:173-9; PMID:26854605; http://doi.org/10.1016/j.watres.2016.01.037
  • Rumbo C, Vallejo JA, Cabral MP, Martinez-Guitian M, Perez A, Beceiro A, Bou G. Assessment of antivirulence activity of several d-amino acids against Acinetobacter baumannii and Pseudomonas aeruginosa. J Antimicrobial Chemotherapy 2016; 71(12):3473-3481; PMID:27605598
  • Bhoopalan SV, Piekarowicz A, Lenz JD, Dillard JP, Stein DC. nagZ Triggers Gonococcal Biofilm Disassembly. Scientific Reports 2016; 6:22372; PMID:26927542; http://doi.org/10.1038/srep22372
  • Nithyanand P, Beema Shafreen RM, Muthamil S, Karutha Pandian S. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiological Res 2015; 179:20-8; PMID:26411891; http://doi.org/10.1016/j.micres.2015.06.009
  • Izadpanah A, Gallo RL. Antimicrobial peptides. J Am Acad Dermatol 2005; 52:381-90; PMID:15761415; http://doi.org/10.1016/j.jaad.2004.08.026
  • Li P, Wohland T, Ho B, Ding JL. Perturbation of Lipopolysaccharide (LPS) Micelles by Sushi 3 (S3) antimicrobial peptide. The importance of an intermolecular disulfide bond in S3 dimer for binding, disruption, and neutralization of LPS. J Biol Chem 2004; 279:50150-6; PMID:15328339; http://doi.org/10.1074/jbc.M405606200
  • Bhattacharjya S, Domadia PN, Bhunia A, Malladi S, David SA. High-resolution solution structure of a designed peptide bound to lipopolysaccharide: transferred nuclear Overhauser effects, micelle selectivity, and anti-endotoxic activity. Biochemistry 2007; 46:5864-74; PMID:17469802; http://doi.org/10.1021/bi6025159
  • Kharidia R, Liang JF. The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol 2011; 49:663-8; http://doi.org/10.1007/s12275-011-1013-5
  • Mogi T, Kita K. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 2009; 66:3821-6; PMID:19701717; http://doi.org/10.1007/s00018-009-0129-9
  • Ding JL, Li P, Ho B. The Sushi peptides: structural characterization and mode of action against Gram-negative bacteria. Cell Mol Life Sci 2008; 65:1202-19; PMID:18213446; http://doi.org/10.1007/s00018-008-7456-0
  • Oren Z, Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 1998; 47:451-63; PMID:10333737; http://doi.org/10.1002/(SICI)1097-0282(1998)47:6%3c451::AID-BIP4%3e3.0.CO;2-F
  • Mihajlovic M, Lazaridis T. Antimicrobial peptides in toroidal and cylindrical pores. Biochim Et Biophysica Acta 2010; 1798:1485-93; PMID:20403332; http://doi.org/10.1016/j.bbamem.2010.04.004
  • Gottler LM, Ramamoorthy A. Structure, membrane orientation, mechanism, and function of Pexiganan – A highly potent antimicrobial peptide designed from magainin. Biochim Et Biophysica Acta 2009; 1788:1680-6; PMID:19010301; http://doi.org/10.1016/j.bbamem.2008.10.009
  • Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 2001; 22:1629-41; PMID:11587791; http://doi.org/10.1016/S0196-9781(01)00498-3
  • Bierbaum G, Sahl HG. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharmaceutical Biotechnol 2009; 10:2-18; PMID:19149587; http://doi.org/10.2174/138920109787048616
  • Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 2006; 313:1636-16377; PMID:16973881; http://doi.org/10.1126/science.1129818
  • Hsu STD, Breukink E, Tischenko E, Lutters MAG, Kruijff B, Kaptein R, Bonvin AM, van Nuland NA. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Structural Mol Biol 2004; 11:963-7; http://doi.org/10.1038/nsmb830
  • Parisot J, Carey S, Breukink E, Chan WC, Narbad A, Bonev B. Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrobial Agents Chemotherapy 2008; 52:612-8; PMID:17999970; http://doi.org/10.1128/AAC.00836-07
  • Saising J, Dube L, Ziebandt AK, Voravuthikunchai SP, Nega M, Gotz F. Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrobial Agents Chemotherapy 2012; 56:5804-10; PMID:22926575; http://doi.org/10.1128/AAC.01296-12
  • Rienzo MAD, Banat IM, Dolman B, Winterburn J, Martin PJ. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. N Biotechnol 2015; 7:720-6.
  • Incani V, Omar A, Prosperi-Porta G, Nadworny P. Ag5IO6: novel antibiofilm activity of a silver compound with application to medical devices. Int J Antimicrobial Agents 2015; 45:586-93; PMID:25604278; http://doi.org/10.1016/j.ijantimicag.2014.09.008
  • Percival SL, Finnegan S, Donelli G, Vuotto C, Rimmer S, Lipsky BA. Antiseptics for treating infected wounds: Efficacy on biofilms and effect of pH. Critical Rev Microbiol 2014; 42(2):293–309; http://doi.org/10.3109/1040841X.2014.940495
  • Kragol G, Hoffmann R, Chattergoon MA, Lovas S, Cudic M, Bulet P, Condie BA, Rosengren KJ, Montaner LJ, Otvos L, Jr, et al. Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. Eur J Biochem / FEBS 2002; 269:4226-37; http://doi.org/10.1046/j.1432-1033.2002.03119.x
  • Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L, Jr. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 2001; 40:3016-26; PMID:11258915; http://doi.org/10.1021/bi002656a
  • Laszlo OJ, Insug O, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 2000; 39:14150-9; PMID:11087363; http://doi.org/10.1021/bi0012843
  • Gagnon MG, Roy RN, Lomakin IB, Florin T, Mankin AS, Steitz TA. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res 2016; 44:2439-50; PMID:26809677; http://doi.org/10.1093/nar/gkw018
  • Vizan JL, Hernandez-Chico C, del Castillo I, Moreno F. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. EMBO J 1991; 10:467-76.
  • Finnegan S, Percival SL. EDTA: An antimicrobial and antibiofilm agent for use in wound care. Adv Wound Care 2015; 4:415-21; PMID:26155384; http://doi.org/10.1089/wound.2014.0577
  • Zhang A, Mu H, Zhang W, Cui G, Zhu J, Duan J. Chitosan coupling makes microbial biofilms susceptible to antibiotics. Scientific Reports 2013; 3:3364; PMID:24284335
  • Cho JH, Sung BH, Kim SC. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim Et Biophysica Acta 2009; 1788:1564-9; http://doi.org/10.1016/j.bbamem.2008.10.025
  • Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immunity 1993; 61:2978-84.
  • Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Letters 1998; 160:91-6; PMID:9495018; http://doi.org/10.1111/j.1574-6968.1998.tb12896.x
  • Hsu CH, Chen C, Jou ML, Lee AY, Lin YC, Yu YP, Huang WT, Wu SH. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 2005; 33:4053-64; PMID:16034027; http://doi.org/10.1093/nar/gki725
  • Hell E, Giske CG, Nelson A, Römling U, Marchini G. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol 2010; 50:211-5; PMID:20002576; http://doi.org/10.1111/j.1472-765X.2009.02778.x
  • Cirioni O, Giacometti A, Ghiselli R, Kamysz W, Orlando F, Mocchegiani F, Silvestri C, Licci A, Chiodi L, Lukasiak J, et al. Citropin 1.1-treated central venous catheters improve the efficacy of hydrophobic antibiotics in the treatment of experimental staphylococcal catheter-related infection. Peptides 2006; 27:1210-6; PMID:16289474; http://doi.org/10.1016/j.peptides.2005.10.007
  • Willcox MD, Hume EB, Aliwarga Y, Kumar N, Cole N. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol 2008; 105:1817-25; PMID:19016975; http://doi.org/10.1111/j.1365-2672.2008.03942.x
  • Segev-Zarko L, Saar-Dover R, Brumfeld V, Mangoni ML, Shai Y. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem J 2015; 468:259-70; PMID:25761937; http://doi.org/10.1042/BJ20141251
  • Pimentel-Filho NJ, Martins MCF, Nogueira GB, Mantovani HC, Vanetti MCD. Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion. Int J Food Microbiol 2014; 190:1-8; PMID:25173449; http://doi.org/10.1016/j.ijfoodmicro.2014.08.004
  • Konto-Ghiorghi Y, Mairey E, Mallet A, Dumenil G, Caliot E, Trieu-Cuot P, Dramsi S. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PLoS Pathogens 2009; 5:e1000422; PMID:19424490; http://doi.org/10.1371/journal.ppat.1000422
  • Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 2008; 21:26-59; PMID:18202436; http://doi.org/10.1128/CMR.00019-07
  • Hung CS, Bouckaert J, Hung D, Pinkner J, Widberg C, DeFusco A, Auguste CG, Strouse R, Langermann S, Waksman G, et al. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 2002; 44:903-15; PMID:12010488; http://doi.org/10.1046/j.1365-2958.2002.02915.x
  • Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 2003; 301:105-7; PMID:12843396; http://doi.org/10.1126/science.1084550
  • Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 2004; 101:1333-8; PMID:14739341; http://doi.org/10.1073/pnas.0308125100
  • Wright KJ, Seed PC, Hultgren SJ. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 2007; 9:2230-41; PMID:17490405; http://doi.org/10.1111/j.1462-5822.2007.00952.x
  • Arslan SY, Leung KP, Wu CD. The effect of lactoferrin on oral bacterial attachment. Oral Microbiol Immunol 2009; 24:411-6; PMID:19702956; http://doi.org/10.1111/j.1399-302X.2009.00537.x
  • Wakabayashi H, Yamauchi K, Kobayashi T, Yaeshima T, Iwatsuki K, Yoshie H. Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia. Antimicrobial Agents Chemotherapy 2009; 53:3308-16; PMID:19451301; http://doi.org/10.1128/AAC.01688-08
  • Cusumano CK, Pinkner JS, Han Z, Greene SE, Ford BA, Crowley JR, Henderson JP, Janetka JW, Hultgren SJ. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci Translational Med 2011; 3:109ra15; http://doi.org/10.1126/scitranslmed.3003021
  • Han Z, Pinkner JS, Ford B, Chorell E, Crowley JM, Cusumano CK, Campbell S, Henderson JP, Hultgren SJ, Janetka JW. Lead optimization studies on FimH antagonists: discovery of potent and orally bioavailable ortho-substituted biphenyl mannosides. J Med Chem 2012; 55:3945-59; PMID:22449031; http://doi.org/10.1021/jm300165m
  • Han Z, Pinkner JS, Ford B, Obermann R, Nolan W, Wildman SA, Hobbs D, Ellenberger T, Cusumano CK, Hultgren SJ, et al. Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J Med Chem 2010; 53:4779-92; PMID:20507142; http://doi.org/10.1021/jm100438s
  • Guiton PS, Cusumano CK, Kline KA, Dodson KW, Han Z, Janetka JW, Henderson JP, Caparon MG, Hultgren SJ. Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrobial Agents Chemotherapy 2012; 56:4738-45; PMID:22733070; http://doi.org/10.1128/AAC.00447-12
  • Greene SE, Pinkner JS, Chorell E, Dodson KW, Shaffer CL, Conover MS, Livny J, Hadjifrangiskou M, Almqvist F, Hultgren SJ. Pilicide ec240 disrupts virulence circuits in uropathogenic Escherichia coli. MBio 2014; 5:e02038; PMID:25352623; http://doi.org/10.1128/mBio.02038-14
  • Siddiq DM, Darouiche RO. New strategies to prevent catheter-associated urinary tract infections. Nat Rev Urol 2012; 9:305-14; PMID:22508462; http://doi.org/10.1038/nrurol.2012.68
  • Jiang P, Li J, Han F, Duan G, Lu X, Gu Y, Yu W. Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PloS One 2011; 6:e18514; PMID:21490923; http://doi.org/10.1371/journal.pone.0018514
  • Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environmental Microbiol 2013; 15:334-46; PMID:22730907; http://doi.org/10.1111/j.1462-2920.2012.02810.x
  • Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PloS One 2012; 7:e46718; PMID:23056420; http://doi.org/10.1371/journal.pone.0046718
  • Wu S, Liu G, Jin W, Xiu P, Sun C. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa. Front Microbiol 2016; 7:102; PMID:26903981
  • Pihl M, JR D, LE CdP, G S. Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis. FEMS Immunol Med Microbiol 2010; 59:439-46; PMID:20528934; http://doi.org/10.1111/j.1574-695X.2010.00697.x
  • Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology 2009; 155:2148-56; PMID:19389780; http://doi.org/10.1099/mic.0.028001-0
  • Bendaoud M, Vinogradov E, Balashova NV, Kadouri DE, Kachlany SC, Kaplan JB. Broad-spectrum biofilm inhibition by Kingella kingae exopolysaccharide. J Bacteriol 2011; 193:3879-86; PMID:21602333; http://doi.org/10.1128/JB.00311-11
  • Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo JM. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci U S A 2006; 103:12558-63; PMID:16894146; http://doi.org/10.1073/pnas.0605399103
  • Rendueles O, Travier L, Latour-Lambert P, Fontaine T, Magnus J, Denamur E, Ghigo JM. Screening of Escherichia coli species biodiversity reveals new biofilm-associated anti-adhesion polysaccharides. mBio 2011; 2:e00043-e11; PMID:21558434; http://doi.org/10.1128/mBio.00043-11
  • Sayem SM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microbial Cell Factories 2011; 10:74; PMID:21951859; http://doi.org/10.1186/1475-2859-10-74
  • Kim Y, Oh S, Kim SH. Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem Biophys Res Commun 2009; 379:324-9; PMID:19103165; http://doi.org/10.1016/j.bbrc.2008.12.053
  • Yu S, Su T, Wu H, Liu S, Wang D, Zhao T, Jin Z, Du W, Zhu MJ, Chua SL, et al. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res 2015; 25:1352-67; PMID:26611635; http://doi.org/10.1038/cr.2015.129
  • Romling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52; PMID:23471616; http://doi.org/10.1128/MMBR.00043-12
  • Chua SL, Liu Y, Yam JK, Chen Y, Vejborg RM, Tan BG, Kjelleberg S, Tolker-Nielsen T, Givskov M, Yang L. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun 2014; 5:4462; PMID:25042103; http://doi.org/10.1038/ncomms5462
  • Sambanthamoorthy K, Luo C, Pattabiraman N. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling 2014; 30:17-28; PMID:24117391; http://doi.org/10.1080/08927014.2013.832224
  • Lieberman OJ, Orr MW, Wang Y, Lee VT. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem Biol 2014; 9:183-92; PMID:24134695; http://doi.org/10.1021/cb400485k
  • Mueller RS, Beyhan S, Saini SG, Yildiz FH, Bartlett DH. Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol 2009; 191:3504-16; PMID:19329638; http://doi.org/10.1128/JB.01240-08
  • Lee J, Page R, Garcia-Contreras R, Palermino JM, Zhang XS, Doshi O, et al. Structure and function of the Escherichia coli protein YmgB: a protein critical for biofilm formation and acid-resistance. J Mol Biol 2007; 373:11-26; PMID:17765265; http://doi.org/10.1016/j.jmb.2007.07.037
  • Lee J, Jayaraman A, Wood TK. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 2007; 7:42
  • Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189:9066-75; PMID:17933888; http://doi.org/10.1128/JB.01045-07
  • Bunders CA, Minvielle MJ, Worthington RJ, Ortiz M, Cavanagh J, Melander C. Intercepting bacterial indole signaling with flustramine derivatives. J Am Chem Society 2011; 133:20160-3; PMID:22091927; http://doi.org/10.1021/ja209836z
  • Durig A, Kouskoumvekaki I, Vejborg RM, Klemm P. Chemoinformatics-assisted development of new anti-biofilm compounds. Applied Microbiol Biotechnol 2010; 87:309-17; PMID:20204615; http://doi.org/10.1007/s00253-010-2471-0
  • Amalaradjou MAR, Venkitanarayanan K. Antibiofilm effect of Octenidine Hydrochloride on Staphylococcus aureus, MRSA and VRSA. Pathogens 2014; 3:404-16; PMID:25437807; http://doi.org/10.3390/pathogens3020404
  • Hirsch T, Jacobsen F, Rittig A. A comparative in vitro study of cell toxicity of clinically used antiseptics. Hautarzt 2009; 60:984-91; PMID:19812986; http://doi.org/10.1007/s00105-009-1842-x
  • Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, Seo CH, Park Y. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant acinetobacter baumannii strains. Antimicrobial Agents Chemotherapy 2014; 58:1622-9; PMID:24366740; http://doi.org/10.1128/AAC.02473-13
  • Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PloS One 2012; 7:e38492; PMID:22715388; http://doi.org/10.1371/journal.pone.0038492
  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006; 313:1642-5; PMID:16902090; http://doi.org/10.1126/science.1127344
  • Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical J 2006; 91:4258-72; PMID:16980368; http://doi.org/10.1529/biophysj.106.091116
  • Rust MJ, Bates M, Zhuang X. Subdiffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006; 3:793-5; PMID:16896339; http://doi.org/10.1038/nmeth929
  • Abed SE, Ibnsouda SK, Latrache H, Hamadi F. Scanning Electron Microscopy (SEM) and Environmental SEM: Suitable tools for study of adhesion stage and biofilm formation. In Scanning Electron Microscopy, V. Kazmiruk, ed. Rijeka, Croatia: InTech 2012.
  • Vidigal PG, Musken M, Becker KA, Haussler S, Wingender J, Steinmann E, Kehrmann J, Gulbins E, Buer J, Rath PM, et al. Effects of green tea compound epigallocatechin-3 gallate against Stenotrophomonas maltophilia infection and biofilm. PloS One 2014; 9:e92876; PMID:24690894; http://doi.org/10.1371/journal.pone.0092876
  • Magesh H, Kumar A, Alam A, Sekar U, Sumantran VN, Vaidyanathan R. Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian J Exp Biol 2013; 51:764-72; PMID:24377137
  • Gopu V, Meena CK, Shetty PH. Quercetin influences quorum sensing in food borne bacteria: In-vitro and in-silico evidence. PloS One 2015; 10:e0134684; PMID:26248208; http://doi.org/10.1371/journal.pone.0134684
  • Adil M, Singh K, Verma PK, Khan AU. Eugenol-induced suppression of biofilm-forming genes in Streptococcus mutans: An approach to inhibit biofilms. J Global Antimicrobial Resistance 2014; 2:286-92; PMID:27873689; http://doi.org/10.1016/j.jgar.2014.05.006
  • Liang ZX. The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Natural Product Reports 2015; 32:663-83; PMID:25666534; http://doi.org/10.1039/C4NP00086B
  • Park SC, Park Y, Hahm KS. The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci 2011; 12:5971-92; PMID:22016639; http://doi.org/10.3390/ijms12095971
  • Shadia MAA, Aeron A. Bacterial Biofilm: Dispersal and Inhibition Strategies. SAJ Biotechnol 2014; 1:105.
  • Vizan JL, Hernandez-Chico C, Castillo I, Moreno F. The Antibiotic Microcin B17 is a DNA Gyrase Poison:Characterisation of the mode of inhibition. EMBO J 1991; 10:467-76; PMID:1846808
  • Kim JY, Park SC, Yoon MY, Hahm KS, Park Y. C-terminal amidation of PMAP-23: translocation to the inner membrane of Gram-negative bacteria. Amino Acids 2011; 40:183-95; PMID:20512598; http://doi.org/10.1007/s00726-010-0632-1
  • Sae-tan S, Grove KA, Kennett MJ, Lambert JD. (−)-Epigallocatechin-3 gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food Funct 2011; 2:111-6; PMID:21779555; http://doi.org/10.1039/c0fo00155d
  • de Manincor M. The reason why mango should be in everyone's diet. flipper e nuvola 2013. http://flipper.diff.org/apptagsaccount/items/5356 (accessed April 18, 2017).
  • Shiner EK, Rumbaugh KP, Williams SC. Interkingdom signaling: Deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 2005; 29:935-47; PMID:16219513; http://doi.org/10.1016/j.femsre.2005.03.001
  • National Center for Biotechnology Information. PubChem Compound Database; CID=5770, 2006. https://pubchem.ncbi.nlm.nih.gov/compound/5770 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=969516, 2016. https://pubchem.ncbi.nlm.nih.gov/compound/969516 (accessed April 18, 2017).
  • Soh PN, Witkowski B, Olagnier D, Nicolau ML, Garcia-Alvarez MC, Berry A, Benoit-Vical F. In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrobial Agents Chemotherapy 2009; 53:1100-6; PMID:19015354; http://doi.org/10.1128/AAC.01175-08
  • National Center for Biotechnology Information. PubChem Compound Database; CID=16129778, 2014. https://pubchem.ncbi.nlm.nih.gov/compound/16129778 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=3314, 2004. https://pubchem.ncbi.nlm.nih.gov/compound/3314 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=2353, 2004. https://pubchem.ncbi.nlm.nih.gov/compound/2353 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=5646, 2005. https://pubchem.ncbi.nlm.nih.gov/compound/5646 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=5311054, 2005. https://pubchem.ncbi.nlm.nih.gov/compound/5311054 (accessed April 18, 2017).
  • Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M, Brown ED, Wright GD. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 2011; 7:348-50; PMID:21516114; http://doi.org/10.1038/nchembio.559
  • Yamamura H, Suzuki K, Uchibori K, Miyagawa A, Kawai M, Ohmizo C, Katsu T. Mimicking an antimicrobial peptide polymyxin B by use of cyclodextrin. Royal Society Chem 2012; 48:892-4.
  • National Center for Biotechnology Information. PubChem Compound Database; CID=73357, 2005. https://pubchem.ncbi.nlm.nih.gov/compound/73357 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=16219761, 2007. https://pubchem.ncbi.nlm.nih.gov/compound/16219761 (accessed April 18, 2017).
  • Scaffaroa R, Bottaa L, Gallo G. Photo-oxidative degradation of poly (ethylene-co-vinyl acetate)/nisin antimicrobial films. Polymer Degradation Stability 2012; 97:653-60; http://doi.org/10.1016/j.polymdegradstab.2012.01.003
  • National Center for Biotechnology Information. PubChem Compound Database; CID=16130064, 2007. https://pubchem.ncbi.nlm.nih.gov/compound/16130064 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=16132391, 2007. https://pubchem.ncbi.nlm.nih.gov/compound/16132391 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=73348284, 2014. https://pubchem.ncbi.nlm.nih.gov/compound/73348284 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=9552079, 2006. https://pubchem.ncbi.nlm.nih.gov/compound/9552079 (accessed April 18, 2017).
  • Baccile N, Pedersen JS, Pehau-Arnaudet G, Van Bogaert INA. Surface charge of acidic sophorolipid micelles: effect of base and time. Royal Society Chem 2013; 9:4911-22.
  • National Center for Biotechnology Information. PubChem Compound Database; CID=20977, 2005. https://pubchem.ncbi.nlm.nih.gov/compound/20977 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=101097383, 2015. https://pubchem.ncbi.nlm.nih.gov/compound/101097383 (accessed April 18, 2017).
  • Collin F, Karkare S, Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol 2011; 92:479-97; PMID:21904817.
  • National Center for Biotechnology Information. PubChem Compound Database; CID=16131340, 2007. https://pubchem.ncbi.nlm.nih.gov/compound/16131340 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=6224, 2009. https://pubchem.ncbi.nlm.nih.gov/compound/6224 (accessed April 18, 2017).
  • National Center for Biotechnology Information. PubChem Compound Database; CID=6144, 2007. https://pubchem.ncbi.nlm.nih.gov/compound/6144 (accessed April 18, 2017).
  • Kota S, Adibhatla KSBR, Venkaiah CN. Improved process for the preparation of cadexomer iodine. Natco Pharma Limited. Patent no. WO2008117300 A2; 2008.
  • National Center for Biotechnology Information. PubChem Compound Database; CID=16198951, 2007. https://pubchem.ncbi.nlm.nih.gov/compound/16198951 (accessed April 18, 2017).
  • Franklin M, Nivens D, Weadge J, Howell P. Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl. Frontiers Microbiol 2011; 2(167); PMCID: 3159412; http://doi.org/10.3389/fmicb.2011.00167
  • Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 2012; 36:893-916; PMID:22212072; http://doi.org/10.1111/j.1574-6976.2011.00322.x
  • Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS, Sadovskaya I, Secor PR, Tseng BS, Scian M, Filloux A, et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci US A 2015; 112:11353-8; PMID:26311845; http://doi.org/10.1073/pnas.1503058112
  • Mistretta N, Danve E, Moreau M. Conjugates obtained by reductive amination of the pneumococcus serotype 5 capsular polysaccharide. Aventis Pasteur S.A. Patent no. US7812006 B2; 2010.
  • Kim JS, Ha TY, Ahn J, Kim S. Analysis and distribution of esculetin in plasma and tissues of rats after oral administration. Preventive Nutrition Food Sci 2014; 19:321-6; PMID:25580397; http://doi.org/10.3746/pnf.2014.19.4.321
  • Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A 2006; 103:16568-73; PMID:17050681; http://doi.org/10.1073/pnas.0607822103
  • National Center for Biotechnology Information. PubChem Compound Database; CID=51166, 2005. https://pubchem.ncbi.nlm.nih.gov/compound/51166 (accessed April 18, 2017).