2,494
Views
29
CrossRef citations to date
0
Altmetric
Research Paper

A plant pathogenic bacterium exploits the tricarboxylic acid cycle metabolic pathway of its insect vector

ORCID Icon, , &
Pages 99-109 | Received 31 Mar 2017, Accepted 01 Jun 2017, Published online: 30 Jun 2017

References

  • Gottwald TR. Current epidemiological understanding of citrus Huanglongbing. Annu Rev Phytopathol 2010; 48:119-39; PMID:20415578; http://doi.org/10.1146/annurev-phyto-073009-114418
  • Jagoueix S, Bove JM, Garnier M. The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria. Int J Syst Bacteriol 1994; 44:379-86; PMID:7520729; http://doi.org/10.1099/00207713-44-3-379
  • Bové JM. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 2006; 88:7-37; http://doi.org/10.4454/jpp.v88i1.828
  • Tatineni S, Sagaram US, Gowda S, Robertson CJ, Dawson WO, Iwanami T, Wang N. In planta distribution of “Candidatus Liberibacter asiaticus” as revealed by polymerase chain reaction (PCR) and real-time PCR. Phytopathol 2008; 98:592-9; PMID:18943228; http://doi.org/10.1094/PHYTO-98-5-0592
  • Halbert SE, Manjunath KL. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Florida Entomol 2004; 87:330-53; http://doi.org/10.1653/0015-4040(2004)087[0330:ACPSPA]2.0.CO;2
  • Bové J, Garnier M. Phloem-and xylem-restricted plant pathogenic bacteria. Plant Sci 2003; 164:423-38; http://doi.org/10.1016/S0168-9452(03)00033-5
  • Douglas AE. Phloem-sap feeding by animals: problems and solutions. J Exp Bot 2006; 57:747-54; PMID:16449374; http://doi.org/10.1093/jxb/erj067
  • Meyer JM, Hoy MA. Molecular survey of endosymbionts in Florida populations of Diaphorina citri (Hemiptera: Psyllidae) and its parasitoids Tamarixia radiata (Hymenoptera: Eulophidae) and Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae). Florida Entomol 2008; 91:294-304; http://doi.org/10.1653/0015-4040(2008)91[294:MSOEIF]2.0.CO;2
  • Fletcher J, Wayadande A, Melcher U, Ye F. The phytopathogenic mollicute-insect vector interface: A closer look. Phytopathol 1998; 88:1351-8; PMID:18944839; http://doi.org/10.1094/PHYTO.1998.88.12.1351
  • Hall DG, Richardson ML, Ammar E-D, Halbert SE. Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomol Exp Appl 2013; 146:207-23; http://doi.org/10.1111/eea.12025
  • Ammar E-D, Ramos JE, Hall DG, Dawson WO, Shatters RG. Acquisition, replication and inoculation of Candidatus Liberibacter asiaticus following various acquisition periods on Huanglongbing-infected citrus by nymphs and adults of the Asian citrus psyllid. PLoS One 2016; 11:e0159594; PMID:27441694; http://doi.org/10.1371/journal.pone.0159594
  • Ammar ED, Shatters RG, Lynch C, Hall DG. Detection and relative titer of Candidatus Liberibacter asiaticus in the salivary glands and alimentary canal of Diaphorina citri (Hemiptera: Psyllidae) vector of citrus Huanglongbing disease. Ann Entomol Soc Am 2011; 104:526-33; http://doi.org/10.1603/AN10134
  • Pelz-Stelinski K, Killiny N. Better together: association with “Candidatus Liberibacter Asiaticus” increases the reproductive fitness of its insect vector, Diaphorina citri (Hemiptera: Liviidae). Ann Entomol Soc Am 2016; 48:539-48; PMID:27418697; http://doi.org/10.1093/aesa/saw007
  • Martini X, Hoffmann M, Coy MR, Stelinski LL, Pelz-Stelinski KS. Infection of an insect vector with a bacterial plant pathogen increases its propensity for dispersal. PLoS One 2015; 10:e0129373; PMID:26083763; http://doi.org/10.1371/journal.pone.0129373
  • Tiwari S, Pelz-Stelinski K, Stelinski LL. Effect of Candidatus Liberibacter asiaticus infection on susceptibility of Asian citrus psyllid, Diaphorina citri, to selected insecticides. Pest Manag Sci 2011; 67:94-9; PMID:20960471; http://doi.org/10.1002/ps.2038
  • Perilla-Henao LM, Casteel CL. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front Plant Sci 2016; 7:1163: 1–15; PMID:27555855; http://doi.org/10.3389/fpls.2016.01163
  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 2000; 23:131-42; PMID:10929108; http://doi.org/10.1046/j.1365-313x.2000.00774.x
  • Hawes TC, Hines AC, Viant MR, Bale JS, Worland MR, Convey P. Metabolomic fingerprint of cryo-stress in a freeze tolerant insect. Cryo Letters 2008; 29:505-15; PMID:19280054
  • Snart CJP, Hardy ICW, Barrett DA. Entometabolomics: applications of modern analytical techniques to insect studies. Entomol Exp Appl 2015; 155:1-17; PMID:27478203; http://doi.org/10.1111/eea.12281
  • Cevallos-Cevallos JM, Danyluk MD, Reyes-De-Corcuera JI. GC-MS Based metabolomics for rapid simultaneous detection of Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Muenchen, and Salmonella Hartford in ground beef and chicken. J Food Sci 2011; 76:M238-46; PMID:22417363; http://doi.org/10.1111/j.1750-3841.2011.02132.x
  • Birkenstock T, Liebeke M, Winstel V, Krismer B, Gekeler C, Niemiec MJ, Bisswanger H, Lalk M, Peschel A. Exometabolome analysis identifies pyruvate dehydrogenase as a target for the antibiotic triphenylbismuthdichloride in multiresistant bacterial pathogens. J Biol Chem 2012; 287:2887-95; PMID:22144679; http://doi.org/10.1074/jbc.M111.288894
  • Aliferis KA, Copley T, Jabaji S. Gas chromatography–mass spectrometry metabolite profiling of worker honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection. J Insect Physiol 2012; 58:1349-59; PMID:22841888; http://doi.org/10.1016/j.jinsphys.2012.07.010
  • Xu Y-J, Luo F, Gao Q, Shang Y, Wang C. Metabolomics reveals insect metabolic responses associated with fungal infection. Anal Bioanal Chem 2015; 407:4815-21; PMID:25895944; http://doi.org/10.1007/s00216-015-8648-8
  • Teixeira D do C, Danet JL, Eveillard S, Martins EC, Junior WC, de J, Yamamoto PT, Lopes SA, Bassanezi RB, Ayres AJ, Saillard C, et al. Citrus Huanglongbing in São Paulo state, Brazil: PCR detection of the “Candidatus” Liberibacter species associated with the disease. Mol Cell Probes 2005; 19:173-9; http://doi.org/10.1016/j.mcp.2004.11.002
  • Cevallos-Cevallos JM, Futch DB, Shilts T, Folimonova SY, Reyes-De-Corcuera JI. GC–MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus Huanglongbing. Plant Physiol Biochem 2012; 53:69-76; PMID:22326359; http://doi.org/10.1016/j.plaphy.2012.01.010
  • Albrecht U, Fiehn O, Bowman KD. Metabolic variations in different citrus rootstock cultivars associated with different responses to Huanglongbing. Plant Physiol Biochem 2016; 107:33-44; PMID:27236226; http://doi.org/10.1016/j.plaphy.2016.05.030
  • Hijaz F, Manthey JA, Folimonova SY, Davis CL, Jones SE, Reyes-De-Corcuera JI. An HPLC-MS characterization of the changes in sweet orange leaf metabolite profile following infection by the bacterial pathogen Candidatus liberibacter asiaticus. PLoS One 2013; 8:1-15; PMID:24223954; http://doi.org/10.1371/journal.pone.0079485
  • Wang N, Trivedi P. Citrus Huanglongbing: a newly relevant disease presents unprecedented challenges. Phytopathol 2013; 103:652-65; PMID:23441969; http://doi.org/10.1094/PHYTO-12-12-0331-RVW
  • Bursell E. The Role of Proline in Energy Metabolism. In: Energy Metabolism in Insects. Boston, MA: Springer US; 1981. page 135-154; http://doi.org/10.1007/978-1-4615-9221-1_5
  • Ryu S-N, Ham T, Chu S, Han SJ. γ-Aminobutyric acid metabolism in plant under environmental stresses. Korean J Crop Sci 2012; 57:144-50; https://doi.org/10.7740/kjcs.2012.57.2.144
  • Killiny N, Hijaz F. Amino acids implicated in plant defense are higher in Candidatus Liberibacter asiaticus-tolerant citrus varieties. Plant Signal Behav 2016; 11:e1171449; PMID:27057814; http://doi.org/10.1080/15592324.2016.1171449
  • Killiny N, Hijaz F, El-Shesheny I, Alfaress S, Jones SE, Rogers ME. Metabolomic analyses of the haemolymph of the Asian citrus psyllid Diaphorina citri, the vector of Huanglongbing. Physiol Entomol 2016; 42:134-45; http://doi.org/10.1111/phen.12183
  • Bown AW, MacGregor KB, Shelp BJ. Gamma-aminobutyrate: defense against invertebrate pests? Trends Plant Sci 2006; 11:424-7; PMID:16890474; http://doi.org/10.1016/j.tplants.2006.07.002
  • Ramsey JS, Johnson RS, Hoki JS, Kruse A, Mahoney J, Hilf ME, Hunter WB, Hall DG, Schroeder FC, MacCoss MJ, et al. Metabolic interplay between the Asian citrus psyllid and its Profftella symbiont: An Achilles' heel of the citrus greening insect vector. PLoS One 2015; 10:e0140826; PMID:26580079; http://doi.org/10.1371/journal.pone.0140826
  • Vyas M, Fisher TW, He R, Nelson W, Yin G, Cicero JM, Willer M, Kim R, Kramer R, May GA, et al. Asian citrus psyllid expression profiles suggest Candidatus Liberibacter asiaticus-mediated alteration of adult nutrition and metabolism, and of nymphal development and immunity. PLoS One 2015; 10:e0130328; PMID:26091106; http://doi.org/10.1371/journal.pone.0130328
  • Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H, Liu L, Vahling CM, Gabriel DW, Williams KP, et al. Complete genome sequence of citrus Huanglongbing bacterium, “Candidatus Liberibacter asiaticus” obtained through metagenomics. Mol Plant Microbe Interact 2009; 22:1011-20; PMID:19589076; http://doi.org/10.1094/MPMI-22-8-1011
  • Vahling CM, Duan Y, Lin H. Characterization of an ATP translocase identified in the destructive plant pathogen “Candidatus Liberibacter asiaticus”. J Bacteriol 2010; 192:834-40; PMID:19948801; http://doi.org/10.1128/JB.01279-09
  • Killiny N, Hijaz F, Ebert TA, Rogers ME. Plant bacterial pathogen manipulates the energy metabolism of its insect vector. Appl Environ Microbiol 2016; e03005-16; AEM.03005-16; PMID:28039132; http://doi.org/10.1128/AEM.03005-16
  • Copeland JM, Cho J, Lo T, Jr, Hur JH, Bahadorani S, Arabyan T, Rabie J, Soh J, Walker DW. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 2009; 19:1591-8; PMID:19747824; http://doi.org/10.1016/j.cub.2009.08.016
  • Rascón B, Harrison JF. Lifespan and oxidative stress show a non-linear response to atmospheric oxygen in Drosophila. J Exp Biol 2010; 213:3441-8; PMID:20889824; http://doi.org/10.1242/jeb.044867
  • Sohal RS. Oxygen consumption and life span in the adult male housefly, Musca domestica. Age (Omaha) 1982; 5:21-4; http://doi.org/10.1007/BF02431719
  • Crnokrak P, Roff DA. Trade-offs to flight capability in Gryllus firmus: the influence of whole-organism respiration rate on fitness. J Evol Biol 2002; 15:388-98; http://doi.org/10.1046/j.1420-9101.2002.00401.x
  • Friedman S. Treholose regulation, one aspect of metabolic homeostasis. Annu Rev Entomol 1978; 23:389-407; http://doi.org/10.1146/annurev.en.23.010178.002133
  • Hijaz F, Killiny N. Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (Sweet Orange). PLoS One 2014; 9:e101830; PMID:25014027; http://doi.org/10.1371/journal.pone.0101830
  • Moriwaki N, Matsushita K, Nishina M, Matsuda K, Kono Y. High myo-inositol concentration in the hemolymph of planthoppers. Appl Entomol Zool 2003; 38:359-64; http://doi.org/10.1303/aez.2003.359
  • Killiny N. Generous hosts: What makes Madagascar periwinkle (Catharanthus roseus) the perfect experimental host plant for fastidious bacteria? Plant Physiol Biochem 2016; 109:28-35; PMID:27620272; http://doi.org/10.1016/j.plaphy.2016.09.002
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001; 25:402-8; http://doi.org/10.1006/meth.2001.1262
  • Tiwari S, Gondhalekar AD, Mann RS, Scharf ME, Stelinski LL. Characterization of five CYP4 genes from Asian citrus psyllid and their expression levels in Candidatus Liberibacter asiaticus-infected and uninfected psyllids. Insect Mol Biol 2011; 20:733-44; PMID:21919983; http://doi.org/10.1111/j.1365-2583.2011.01103.x
  • Killiny N, Hajeri S, Tiwari S, Gowda S, Stelinski LL. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri. PLoS One 2014; 9:e110536; PMID:25330026; http://doi.org/10.1371/journal.pone.0110536