6,864
Views
61
CrossRef citations to date
0
Altmetric
Review - Commissioned

In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging

, , , , & ORCID Icon
Pages 28-63 | Received 30 Jun 2017, Accepted 18 Aug 2017, Published online: 08 Dec 2017

References

  • Zimmer M. GFP: from jellyfish to the Nobel prize and beyond. Chem Soc Rev. 2009; 38:2823-32. http://doi.org/10.1039/b904023d. PMID:19771329
  • Kricka LJ, Leach FR. In memoriam Dr Marlene DeLuca. 1987 O. M. Smith Lecture. Firefly luciferase: mechanism of action, cloning and expression of the active enzyme. J Biolumin Chemilumin. 1989; 3:1-5. http://doi.org/10.1002/bio.1170030102. PMID:2652989
  • Baldwin TO. Firefly luciferase: the structure is known, but the mystery remains. Structure. 1996; 4:223-28. http://doi.org/10.1016/S0969-2126(96)00026-3. PMID:8805542
  • Nakatani N, Hasegawa JY, Nakatsuji H. Red light in chemiluminescence and yellow-green light in bioluminescence: color-tuning mechanism of firefly, Photinus pyralis, studied by the symmetry-adapted cluster-configuration interaction method. J Am Chem Soc. 2007; 129:8756-65. http://doi.org/10.1021/ja0611691. PMID:17585760
  • Branchini BR, Southworth TL, Murtiashaw MH, Magyar RA, Gonzalez SA, Ruggiero MC, Stroh JG. An alternative mechanism of bioluminescence color determination in firefly luciferase. Biochemistry. 2004; 43:7255-62. http://doi.org/10.1021/bi036175d. PMID:15182171
  • Greer LF, 3rd, Szalay AA. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence. 2002; 17:43-74. http://doi.org/10.1002/bio.676. PMID:11816060
  • Herring PJ. Systematic distribution of bioluminescence in living organisms. J Biolumin Chemilumin. 1987; 1:147-63. http://doi.org/10.1002/bio.1170010303. PMID:3503524
  • Chen AK, Latz MI, Frangos JA. The use of dinoflagellate bioluminescence to characterize cell stimulation in bioreactors. Biotechnol Bioeng. 2003; 83:93-103. http://doi.org/10.1002/bit.10647. PMID:12740936
  • Bechara EJ. Bioluminescence: a fungal nightlight with an internal timer. Curr Biol. 2015; 25:R283-85. http://doi.org/10.1016/j.cub.2015.01.004. PMID:25829013
  • Zhang Y, Bressler JP, Neal J, Lal B, Bhang HE, Laterra J, Pomper MG. ABCG2/BCRP expression modulates D-Luciferin based bioluminescence imaging. Cancer Res. 2007; 67:9389-97. http://doi.org/10.1158/0008-5472.CAN-07-0944. PMID:17909048
  • Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA. Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci U S A. 2008; 105:12128-33. http://doi.org/10.1073/pnas.0805374105. PMID:18713866
  • Heise K, Oppermann H, Meixensberger J, Gebhardt R, Gaunitz F. Dual luciferase assay for secreted luciferases based on Gaussia and NanoLuc. Assay Drug Dev Technol. 2013; 11:244-52. http://doi.org/10.1089/adt.2013.509. PMID:23679848
  • Francis KP, Yu J, Bellinger-Kawahara C, Joh D, Hawkinson MJ, Xiao G, Purchio TF, Caparon MG, Lipsitch M, Contag PR. Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun. 2001; 69:3350-58. http://doi.org/10.1128/IAI.69.5.3350-3358.2001. PMID:11292758
  • England CG, Ehlerding EB, Cai W. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjug Chem. 2016; 27:1175-87. http://doi.org/10.1021/acs.bioconjchem.6b00112. PMID:27045664
  • Hutchens M, Luker GD. Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol. 2007; 9:2315-22. http://doi.org/10.1111/j.1462-5822.2007.00995.x. PMID:17587328
  • Gahan CG. The bacterial lux reporter system: applications in bacterial localisation studies. Curr Gene Ther. 2012; 12:12-19. http://doi.org/10.2174/156652312799789244. PMID:22263920
  • Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol. 1995; 18:593-603. http://doi.org/10.1111/j.1365-2958.1995.mmi_18040593.x. PMID:8817482
  • Vecchio D, Dai T, Huang L, Fantetti L, Roncucci G, Hamblin MR. Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistant Staphylococcus aureus and improves wound healing in a mouse model of infected skin abrasion PDT with RLP068/Cl in infected mouse skin abrasion. J Biophotonics. 2013; 6:733-42. http://doi.org/10.1002/jbio.201200121. PMID:22987338
  • Ryan PL, Christiansen DL, Hopper RM, Walters FK, Moulton K, Curbelo J, Greene JM, Willard ST. Horse species symposium: a novel approach to monitoring pathogen progression during uterine and placental infection in the mare using bioluminescence imaging technology and lux-modified bacteria. J Anim Sci. 2011; 89:1541-51. http://doi.org/10.2527/jas.2010-3629. PMID:21239661
  • Wiles S, Clare S, Harker J, Huett A, Young D, Dougan G, Frankel G. Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Cell Microbiol. 2004; 6:963-72. http://doi.org/10.1111/j.1462-5822.2004.00414.x. PMID:15339271
  • Short KR, Diavatopoulos DA, Reading PC, Brown LE, Rogers KL, Strugnell RA, Wijburg OL. Using bioluminescent imaging to investigate synergism between Streptococcus pneumoniae and influenza A virus in infant mice. J Vis Exp. 2011; 50: 2357. https://doi.org/10.3791/2357. PMID: 21525841
  • Zhang T, Li SY, Converse PJ, Almeida DV, Grosset JH, Nuermberger EL. Using bioluminescence to monitor treatment response in real time in mice with Mycobacterium ulcerans infection. Antimicrob Agents Chemother. 2011; 55:56-61. http://doi.org/10.1128/AAC.01260-10. PMID:21078940
  • Jacobsen ID, Lüttich A, Kurzai O, Hube B, Brock M. In vivo imaging of disseminated murine Candida albicans infection reveals unexpected host sites of fungal persistence during antifungal therapy. J Antimicrob Chemother. 2014; 69:2785-96. http://doi.org/10.1093/jac/dku198. PMID:24951534
  • Mosci P, Gabrielli E, Luciano E, Perito S, Cassone A, Pericolini E, Vecchiarelli A. Involvement of IL-17A in preventing the development of deep-seated candidiasis from oropharyngeal infection. Microbes Infect. 2014; 16:678-89. http://doi.org/10.1016/j.micinf.2014.06.007. PMID:24980544
  • Mosci P, Pericolini E, Gabrielli E, Kenno S, Perito S, Bistoni F, d'Enfert C, Vecchiarelli A. A novel bioluminescence mouse model for monitoring oropharyngeal candidiasis in mice. Virulence. 2013; 4:250-54. http://doi.org/10.4161/viru.23529. PMID:23334179
  • Pietrella D, Rachini A, Pines M, Pandey N, Mosci P, Bistoni F, d'Enfert C, Vecchiarelli A. Th17 cells and IL-17 in protective immunity to vaginal candidiasis. PLoS One. 2011; 6:e22770.http://doi.org/10.1371/journal.pone.0022770. PMID:21818387
  • Ibrahim-Granet O, Jouvion G, Hohl TM, Droin-Bergère S, Philippart F, Kim OY, Adib-Conquy M, Schwendener R, Cavaillon JM, Brock M. In vivo bioluminescence imaging and histopathopathologic analysis reveal distinct roles for resident and recruited immune effector cells in defense against invasive aspergillosis. BMC Microbiol. 2010; 10:105.http://doi.org/10.1186/1471-2180-10-105. PMID:20377900
  • Hamblin MR, O'Donnell DA, Murthy N, Contag CH, Hasan T. Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol. 2002; 75:51-57. http://doi.org/10.1562/0031-8655(2002)075%3c0051:RCOWIB%3e2.0.CO;2. PMID:11837327
  • Dai T, Tegos GP, Lu Z, Huang L, Zhiyentayev T, Franklin MJ, Baer DG, Hamblin MR. Photodynamic therapy for Acinetobacter baumannii burn infections in mice. Antimicrob Agents Chemother. 2009; 53:3929-34. http://doi.org/10.1128/AAC.00027-09. PMID:19564369
  • Gad F, Zahra T, Francis KP, Hasan T, Hamblin MR. Targeted photodynamic therapy of established soft-tissue infections in mice. Photochem Photobiol Sci. 2004; 3:451-58. http://doi.org/10.1039/b311901g. PMID:15122362
  • Garcez AS, Ribeiro MS, Tegos GP, Núñez SC, Jorge AO, Hamblin MR. Antimicrobial photodynamic therapy combined with conventional endodontic treatment to eliminate root canal biofilm infection. Lasers Surg Med. 2007; 39:59-66. http://doi.org/10.1002/lsm.20415. PMID:17066481
  • Maoz A, Mayr R, Bresolin G, Neuhaus K, Francis KP, Scherer S. Sensitive in situ monitoring of a recombinant bioluminescent Yersinia enterocolitica reporter mutant in real time on Camembert cheese. Appl Environ Microbiol. 2002; 68:5737-40. http://doi.org/10.1128/AEM.68.11.5737-5740.2002. PMID:12406772
  • Enjalbert B, Rachini A, Vediyappan G, Pietrella D, Spaccapelo R, Vecchiarelli A, Brown AJ, d'Enfert C. A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect Immun. 2009; 77:4847-58. http://doi.org/10.1128/IAI.00223-09. PMID:19687206
  • Jett BD, Hatter KL, Huycke MM, Gilmore MS. Simplified agar plate method for quantifying viable bacteria. Biotechniques. 1997; 23:648-50. PMID:9343684
  • Dai T, Kharkwal GB, Tanaka M, Huang YY, Bil de Arce VJ, Hamblin MR. Animal models of external traumatic wound infections. Virulence. 2011; 2:296-315. http://doi.org/10.4161/viru.2.4.16840. PMID:21701256
  • Demidova TN, Gad F, Zahra T, Francis KP, Hamblin MR. Monitoring photodynamic therapy of localized infections by bioluminescence imaging of genetically engineered bacteria. J Photochem Photobiol B. 2005; 81:15-25. http://doi.org/10.1016/j.jphotobiol.2005.05.007. PMID:16040251
  • Dai T, Huang YY, Hamblin MR. Photodynamic therapy for localized infections–state of the art. Photodiagnosis Photodyn Ther. 2009; 6:170-188. http://doi.org/10.1016/j.pdpdt.2009.10.008. PMID:19932449
  • Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004; 3:436-50. http://doi.org/10.1039/b311900a. PMID:15122361
  • Hamblin MR, Zahra T, Contag CH, McManus AT, Hasan T. Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis. 2003; 187:1717-25. http://doi.org/10.1086/375244. PMID:12751029
  • Lu Z, Dai T, Huang L, Kurup DB, Tegos GP, Jahnke A, Wharton T, Hamblin MR. Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine (Lond). 2010; 5:1525-33. http://doi.org/10.2217/nnm.10.98. PMID:21143031
  • Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR. Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med. 2010; 42:38-44. http://doi.org/10.1002/lsm.20887. PMID:20077489
  • Dai T, Bil de Arce VJ, Tegos GP, Hamblin MR. Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother. 2011; 55:5710-17. http://doi.org/10.1128/AAC.05404-11. PMID:21930868
  • Heunis TD, Smith C, Dicks LM. Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother. 2013; 57:3928-35. http://doi.org/10.1128/AAC.00622-13. PMID:23733456
  • Hertlein T, Sturm V, Jakob P, Ohlsen K. 19F magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a Staphylococcus aureus infection model. PLoS One. 2013; 8:e64440.http://doi.org/10.1371/journal.pone.0064440. PMID:23724049
  • Engelsman AF, van Dam GM, van der Mei HC, Busscher HJ, Ploeg RJ. In vivo evaluation of bacterial infection involving morphologically different surgical meshes. Ann Surg. 2010; 251:133-37. http://doi.org/10.1097/SLA.0b013e3181b61d9a. PMID:19864938
  • Peetermans M, Vanassche T, Liesenborghs L, Claes J, Vande Velde G, Kwiecinksi J, Jin T, De Geest B, Hoylaerts MF, Lijnen RH, et al. Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. BMC Microbiol. 2014; 14:310.http://doi.org/10.1186/s12866-014-0310-7. PMID:25515118
  • Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR. Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antimicrob Agents Chemother. 2011; 55:3432-38. http://doi.org/10.1128/AAC.01803-10. PMID:21502618
  • Ragàs X, Dai T, Tegos GP, Agut M, Nonell S, Hamblin MR. Photodynamic inactivation of Acinetobacter baumannii using phenothiazinium dyes: in vitro and in vivo studies. Lasers Surg Med. 2010; 42:384-90. http://doi.org/10.1002/lsm.20922. PMID:20583252
  • Ragàs X, Sánchez-García D, Ruiz-González R, Dai T, Agut M, Hamblin MR, Nonell S. Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy. J Med Chem. 2010; 53:7796-803. http://doi.org/10.1021/jm1009555. PMID:20936792
  • Dirschl DR, Almekinders LC. Osteomyelitis. Common causes and treatment recommendations. Drugs. 1993; 45:29-43. http://doi.org/10.2165/00003495-199345010-00004. PMID:7680983
  • Shi S, Zhang X. Interaction of Staphylococcus aureus with osteoblasts (Review). Exp Ther Med. 2012; 3:367-70. http://doi.org/10.3892/etm.2011.423. PMID:22969897
  • Li D, Gromov K, Søballe K, Puzas JE, O'Keefe RJ, Awad H, Drissi H, Schwarz EM. Quantitative mouse model of implant-associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity. J Orthop Res. 2008; 26:96-105. http://doi.org/10.1002/jor.20452. PMID:17676625
  • Hardy J, Chu P, Contag CH. Foci of Listeria monocytogenes persist in the bone marrow. Dis Model Mech. 2009; 2:39-46. http://doi.org/10.1242/dmm.000836. PMID:19132117
  • Funao H, Ishii K, Nagai S, Sasaki A, Hoshikawa T, Aizawa M, Okada Y, Chiba K, Koyasu S, Toyama Y, et al. Establishment of a real-time, quantitative, and reproducible mouse model of Staphylococcus osteomyelitis using bioluminescence imaging. Infect Immun. 2012; 80:733-41. http://doi.org/10.1128/IAI.06166-11. PMID:22104103
  • Bisland SK, Chien C, Wilson BC, Burch S. Pre-clinical in vitro and in vivo studies to examine the potential use of photodynamic therapy in the treatment of osteomyelitis. Photochem Photobiol Sci. 2006; 5:31-38. http://doi.org/10.1039/B507082A. PMID:16395425
  • Wainwright M, Byrne MN, Gattrell MA. Phenothiazinium-based photobactericidal materials. J Photochem Photobiol B. 2006; 84:227-30. http://doi.org/10.1016/j.jphotobiol.2006.03.002. PMID:16713280
  • Bellnier DA, Greco WR, Loewen GM, Nava H, Oseroff AR, Dougherty TJ. Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (Photofrin), 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (Photochlor) and 5-ALA-induced protoporphyrin IX. Lasers Surg Med. 2006; 38:439-44. http://doi.org/10.1002/lsm.20340. PMID:16634075
  • Wickham ME, Brown NF, Provias J, Finlay BB, Coombes BK. Oral infection of mice with Salmonella enterica serovar Typhimurium causes meningitis and infection of the brain. BMC Infect Dis. 2007; 7:65.http://doi.org/10.1186/1471-2334-7-65. PMID:17597539
  • Monack DM, Bouley DM, Falkow S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med. 2004; 199:231-41. http://doi.org/10.1084/jem.20031319. PMID:14734525
  • Burns-Guydish SM, Olomu IN, Zhao H, Wong RJ, Stevenson DK, Contag CH. Monitoring age-related susceptibility of young mice to oral Salmonella enterica serovar Typhimurium infection using an in vivo murine model. Pediatr Res. 2005; 58:153-58. http://doi.org/10.1203/01.PDR.0000157725.44213.C4. PMID:15774831
  • Burns-Guydish SM, Zhao H, Stevenson DK, Contag CH. The potential Salmonella aroA- vaccine strain is safe and effective in young BALB/c mice. Neonatology. 2007; 91:114-20. http://doi.org/10.1159/000097128. PMID:17344661
  • Özkaya H, Akcan AB, Aydemir G, Aydinöz S, Razia Y, Gammon ST, McKinney J. Salmonella typhimurium infections in BALB/c mice: a comparison of tissue bioluminescence, tissue cultures and mice clinical scores. New Microbiol. 2012; 35:53-59. PMID:22378553
  • Rhee KJ, Cheng H, Harris A, Morin C, Kaper JB, Hecht G. Determination of spatial and temporal colonization of enteropathogenic E. coli and enterohemorrhagic E. coli in mice using bioluminescent in vivo imaging. Gut Microbes. 2011; 2:34-41. http://doi.org/10.4161/gmic.2.1.14882. PMID:21637016
  • Sun J, Wang XD, Liu H, Xu JG. Ketamine suppresses endotoxin-induced NF-kappaB activation and cytokines production in the intestine. Acta Anaesthesiol Scand. 2004; 48:317-21. http://doi.org/10.1111/j.0001-5172.2004.0312.x. PMID:14982564
  • Welters ID, Hafer G, Menzebach A, Mühling J, Neuhäuser C, Browning P, Goumon Y. Ketamine inhibits transcription factors activator protein 1 and nuclear factor-kappaB, interleukin-8 production, as well as CD11b and CD16 expression: studies in human leukocytes and leukocytic cell lines. Anesth Analg. 2010; 110:934-41. http://doi.org/10.1213/ANE.0b013e3181c95cfa. PMID:20185670
  • La Rosa SL, Diep DB, Nes IF, Brede DA. Construction and application of a luxABCDE reporter system for real-time monitoring of Enterococcus faecalis gene expression and growth. Appl Environ Microbiol. 2012; 78:7003-11. http://doi.org/10.1128/AEM.02018-12. PMID:22843522
  • La Rosa SL, Casey PG, Hill C, Diep DB, Nes IF, Brede DA. In vivo assessment of growth and virulence gene expression during commensal and pathogenic lifestyles of luxABCDE-tagged Enterococcus faecalis strains in murine gastrointestinal and intravenous infection models. Appl Environ Microbiol. 2013; 79:3986-97. http://doi.org/10.1128/AEM.00831-13. PMID:23603680
  • Parajuli NP, Maharjan P, Parajuli H, Joshi G, Paudel D, Sayami S, Khanal PR. High rates of multidrug resistance among uropathogenic Escherichia coli in children and analyses of ESBL producers from Nepal. Antimicrob Resist Infect Control. 2017; 6:9.http://doi.org/10.1186/s13756-016-0168-6. PMID:28096977
  • Tofte N, Nielsen AC, Trøstrup H, Andersen CB, Von Linstow M, Hansen B, Biering-Sørensen F, Høiby N, Moser C. Chronic urinary tract infections in patients with spinal cord lesions – biofilm infection with need for long-term antibiotic treatment. APMIS. 2017; 125:385-91. http://doi.org/10.1111/apm.12685. PMID:28407430
  • Balsara ZR, Ross SS, Dolber PC, Wiener JS, Tang Y, Seed PC. Enhanced susceptibility to urinary tract infection in the spinal cord-injured host with neurogenic bladder. Infect Immun. 2013; 81:3018-26. http://doi.org/10.1128/IAI.00255-13. PMID:23753628
  • Mulvey MA, Schilling JD, Hultgren SJ. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun. 2001; 69:4572-79. http://doi.org/10.1128/IAI.69.7.4572-4579.2001. PMID:11402001
  • Andrew PW, Roberts IS. Construction of a bioluminescent mycobacterium and its use for assay of antimycobacterial agents. J Clin Microbiol. 1993; 31:2251-54. PMID:8408541
  • Deb DK, Srivastava KK, Srivastava R, Srivastava BS. Bioluminescent Mycobacterium aurum expressing firefly luciferase for rapid and high throughput screening of antimycobacterial drugs in vitro and in infected macrophages. Biochem Biophys Res Commun. 2000; 279:457-61. http://doi.org/10.1006/bbrc.2000.3957. PMID:11118308
  • Arain TM, Resconi AE, Singh DC, Stover CK. Reporter gene technology to assess activity of antimycobacterial agents in macrophages. Antimicrob Agents Chemother. 1996; 40:1542-44. PMID:8726035
  • Andreu N, Fletcher T, Krishnan N, Wiles S, Robertson BD. Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence. J Antimicrob Chemother. 2012; 67:404-14. http://doi.org/10.1093/jac/dkr472. PMID:22101217
  • Andreu N, Zelmer A, Sampson SL, Ikeh M, Bancroft GJ, Schaible UE, Wiles S, Robertson BD. Rapid in vivo assessment of drug efficacy against Mycobacterium tuberculosis using an improved firefly luciferase. J Antimicrob Chemother. 2013; 68:2118-27. http://doi.org/10.1093/jac/dkt155. PMID:23633686
  • Andreu N, Zelmer A, Fletcher T, Elkington PT, Ward TH, Ripoll J, Parish T, Bancroft GJ, Schaible U, Robertson BD, et al. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS One. 2010; 5:e10777.http://doi.org/10.1371/journal.pone.0010777. PMID:20520722
  • Zhang T, Li SY, Nuermberger EL. Autoluminescent Mycobacterium tuberculosis for rapid, real-time, non-invasive assessment of drug and vaccine efficacy. PLoS One. 2012; 7:e29774.http://doi.org/10.1371/journal.pone.0029774. PMID:22253776
  • Siqueira JF, Jr. Endodontic infections: concepts, paradigms, and perspectives. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002; 94:281-93. http://doi.org/10.1067/moe.2002.126163. PMID:12324780
  • Garcez AS, Nunez SC, Lage-Marques JL, Hamblin MR, Ribeiro MS. Photonic real-time monitoring of bacterial reduction in root canals by genetically engineered bacteria after chemomechanical endodontic therapy. Braz Dent J. 2007; 18:202-07. http://doi.org/10.1590/S0103-64402007000300005. PMID:18176710
  • Sedgley CM, Nagel AC, Hall D, Applegate B. Influence of irrigant needle depth in removing bioluminescent bacteria inoculated into instrumented root canals using real-time imaging in vitro. Int Endod J. 2005; 38:97-104. http://doi.org/10.1111/j.1365-2591.2004.00906.x. PMID:15667631
  • Sedgley C, Applegate B, Nagel A, Hall D. Real-time imaging and quantification of bioluminescent bacteria in root canals in vitro. J Endod. 2004; 30:893-98. http://doi.org/10.1097/01.DON.0000132299.02265.6C. PMID:15564873
  • Sabino CP, Garcez AS, Núñez SC, Ribeiro MS, Hamblin MR. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans bio- film in curved root canals. Lasers Med Sci. 2014; 6: 1657–65. https://doi:10.1007/s10103-014-1629-x. PMID:25060900
  • Bray M, Lawler J, Paragas J, Jahrling PB, Mollura DJ. Molecular imaging of influenza and other emerging respiratory viral infections. J Infect Dis. 2011; 203:1348-59. http://doi.org/10.1093/infdis/jir038. PMID:21422476
  • Smith MW, Schmidt JE, Rehg JE, Orihuela CJ, McCullers JA. Induction of pro- and anti-inflammatory molecules in a mouse model of pneumococcal pneumonia after influenza. Comp Med. 2007; 57:82-89. PMID:17348295
  • Henken S, Bohling J, Ogunniyi AD, Paton JC, Salisbury VC, Welte T, Maus UA. Evaluation of biophotonic imaging to estimate bacterial burden in mice infected with highly virulent compared to less virulent Streptococcus pneumoniae serotypes. Antimicrob Agents Chemother. 2010; 54:3155-60. http://doi.org/10.1128/AAC.00310-10. PMID:20530224
  • Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, Balloy V, Touqui L. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis. 2010; 201:1096-104. http://doi.org/10.1086/651135. PMID:20196657
  • Giebink GS, Payne EE, Mills EL, Juhn SK, Quie PG. Experimental otitis media due to Streptococcus pneumoniae: immunopathogenic response in the chinchilla. J Infect Dis. 1976; 134:595-604. http://doi.org/10.1093/infdis/134.6.595. PMID:12236
  • Lusis PI, Soltys MA. Immunization of mice and chinchillas against Pseudomonas aeruginosa. Can J Comp Med. 1971; 35:60-66. PMID:4251417
  • Doyle WJ, Supance JS, Marshak G, Cantekin EI, Bluestone CD, Rohn DD. An animal model of acute otitis media consequent to beta-lactamase-producing nontypable Haemophilus influenzae. Otolaryngol Head Neck Surg. 1982; 90:831-36. http://doi.org/10.1177/019459988209000627. PMID:10994438
  • Chung MH, Enrique R, Lim DJ, De Maria TF. Moraxella (Branhamella) catarrhalis-induced experimental otitis media in the chinchilla. Acta Otolaryngol. 1994; 114:415-22. http://doi.org/10.3109/00016489409126080. PMID:7976314
  • Post JC. Direct evidence of bacterial biofilms in otitis media. Laryngoscope. 2001; 111:2083-94. http://doi.org/10.1097/00005537-200112000-00001. PMID:11802002
  • Giebink GS. Otitis media: the chinchilla model. Microb Drug Resist. 1999; 5:57-72. http://doi.org/10.1089/mdr.1999.5.57. PMID:10332723
  • Chaney EJ, Nguyen CT, Boppart SA. Novel method for non-invasive induction of a middle-ear biofilm in the rat. Vaccine. 2011; 29:1628-33. http://doi.org/10.1016/j.vaccine.2010.12.076. PMID:21211589
  • Novotny LA, Mason KM, Bakaletz LO. Development of a chinchilla model to allow direct, continuous, biophotonic imaging of bioluminescent nontypeable Haemophilus influenzae during experimental otitis media. Infect Immun. 2005; 73:609-11. http://doi.org/10.1128/IAI.73.1.609-611.2005. PMID:15618201
  • Peltola VT, Boyd KL, McAuley JL, Rehg JE, McCullers JA. Bacterial sinusitis and otitis media following influenza virus infection in ferrets. Infect Immun. 2006. 74: 2562-67. https://doi.org/10.1128/IAI.74.5.2562-2567.2006. PMID: 16622191
  • Saez-Llorens X, McCracken GH, Jr. Bacterial meningitis in neonates and children. Infect Dis Clin North Am. 1990; 4:623-44. PMID:2277192
  • Sjolinder H, Jonsson AB. In vivo imaging of meningococcal disease dynamics. Methods Mol Biol. 2012; 799:153-68. http://doi.org/10.1007/978-1-61779-346-2_10. PMID:21993645
  • Sjolinder H, Jonsson AB. Imaging of disease dynamics during meningococcal sepsis. PLoS One. 2007; 2:e241.http://doi.org/10.1371/journal.pone.0000241. PMID:17311106
  • Mook-Kanamori BB, Rouse MS, Kang CI, van de Beek D, Steckelberg JM, Patel R. Daptomycin in experimental murine pneumococcal meningitis. BMC Infect Dis. 2009; 9:50.http://doi.org/10.1186/1471-2334-9-50. PMID:19405978
  • Kadurugamuwa JL, Modi K, Coquoz O, Rice B, Smith S, Contag PR, Purchio T. Reduction of astrogliosis by early treatment of pneumococcal meningitis measured by simultaneous imaging, in vivo, of the pathogen and host response. Infect Immun. 2005; 73:7836-43. http://doi.org/10.1128/IAI.73.12.7836-7843.2005. PMID:16299273
  • Yadav KK, Mandal AK, Sen IK, Chakraborti S, Islam SS, Chakraborty R. Flocculating property of extracellular polymeric substances produced by a biofilm-forming bacterium Acinetobacter junii BB1A. Appl Biochem Biotechnol. 2012; 168:1621-34. http://doi.org/10.1007/s12010-012-9883-5. PMID:22968590
  • Alavi MR, Stojadinovic A, Izadjoo MJ. An overview of biofilm and its detection in clinical samples. J Wound Care. 2012; 21:376-83. http://doi.org/10.12968/jowc.2012.21.8.376. PMID:22885310
  • Mombelli A, Decaillet F. The characteristics of biofilms in peri-implant disease. J Clin Periodontol. 2011; 38(Suppl 11):203-13. http://doi.org/10.1111/j.1600-051X.2010.01666.x. PMID:21323716
  • Lönn-Stensrud J, Landin MA, Benneche T, Petersen FC, Scheie AA. Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections? J Antimicrob Chemother. 2009; 63:309-16. http://doi.org/10.1093/jac/dkn501. PMID:19098295
  • Pribaz JR, Bernthal NM, Billi F, Cho JS, Ramos RI, Guo Y, Cheung AL, Francis KP, Miller LS. Mouse model of chronic post-arthroplasty infection: noninvasive in vivo bioluminescence imaging to monitor bacterial burden for long-term study. J Orthop Res. 2012; 30:335-40. http://doi.org/10.1002/jor.21519. PMID:21837686
  • Engelsman AF, van der Mei HC, Francis KP, Busscher HJ, Ploeg RJ, van Dam GM. Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model. J Biomed Mater Res B Appl Biomater. 2009; 88:123-29. http://doi.org/10.1002/jbm.b.31158. PMID:18618733
  • Niska JA, Shahbazian JH, Ramos RI, Pribaz JR, Billi F, Francis KP, Miller LS. Daptomycin and tigecycline have broader effective dose ranges than vancomycin as prophylaxis against a Staphylococcus aureus surgical implant infection in mice. Antimicrob Agents Chemother. 2012; 56:2590-97. http://doi.org/10.1128/AAC.06291-11. PMID:22371896
  • Chauhan A, Lebeaux D, Decante B, Kriegel I, Escande MC, Ghigo JM, Beloin C. A rat model of central venous catheter to study establishment of long-term bacterial biofilm and related acute and chronic infections. PLoS One. 2012; 7:e37281.http://doi.org/10.1371/journal.pone.0037281. PMID:22615964
  • Xiong YQ, Willard J, Kadurugamuwa JL, Yu J, Francis KP, Bayer AS. Real-time in vivo bioluminescent imaging for evaluating the efficacy of antibiotics in a rat Staphylococcus aureus endocarditis model. Antimicrob Agents Chemother. 2005; 49:380-387. http://doi.org/10.1128/AAC.49.1.380-387.2005. PMID:15616318
  • Soll DR. The regulation of cellular differentiation in the dimorphic yeast Candida albicans. Bioessays. 1986; 5:5-11. http://doi.org/10.1002/bies.950050103. PMID:3539113
  • Soll DR, Morrow B, Srikantha T. High-frequency phenotypic switching in Candida albicans. Trends Genet. 1993; 9:61-65. http://doi.org/10.1016/0168-9525(93)90189-O. PMID:8456504
  • Srikantha T, Klapach A, Lorenz WW, Tsai LK, Laughlin LA, Gorman JA, Soll DR. The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans. J Bacteriol. 1996; 178:121-29. http://doi.org/10.1128/jb.178.1.121-129.1996. PMID:8550405
  • Papon N, Courdavault V, Lanoue A, Clastre M, Brock M. Illuminating fungal infections with bioluminescence. PLoS Pathog. 2014; 10:e1004179.http://doi.org/10.1371/journal.ppat.1004179. PMID:25010008
  • Zhao H, Doyle TC, Wong RJ, Cao Y, Stevenson DK, Piwnica-Worms D, Contag CH. Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging. 2004; 3:43-54. http://doi.org/10.1162/153535004773861714. PMID:15142411
  • Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther. 2005; 11:435-43. http://doi.org/10.1016/j.ymthe.2004.10.016. PMID:15727940
  • Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt. 2001; 6:432-40. http://doi.org/10.1117/1.1413210. PMID:11728202
  • Turman MA, Mathews A. A simple luciferase assay to measure atp levels in small numbers of cells using a fluorescent plate reader. In Vitro Cell Dev Biol Anim. 1996; 32:1-4. http://doi.org/10.1007/BF02722985. PMID:8835310
  • Brock M. Application of bioluminescence imaging for in vivo monitoring of fungal infections. Int J Microbiol. 2012; 2012:956794.http://doi.org/10.1155/2012/956794. PMID:22121368
  • Tatsumi H, Masuda T, Nakano E. Synthesis of Enzymatically Active Firefly Luciferase in Yeast. Agricultural and Biological Chemistry. 1988; 52:1123-27.
  • Vieites JM, Navarro-García F, Pérez-Díaz R, Pla J, Nombela C. Expression and in vivo determination of firefly luciferase as gene reporter in Saccharomyces cerevisiae. Yeast. 1994; 10:1321-27. http://doi.org/10.1002/yea.320101009. PMID:7900421
  • Leskinen P, Virta M, Karp M. One-step measurement of firefly luciferase activity in yeast. Yeast. 2003; 20:1109-13. http://doi.org/10.1002/yea.1024. PMID:14558144
  • Suzuki T, Ueda T, Ohama T, Osawa S, Watanabe K. The gene for serine tRNA having anticodon sequence CAG in a pathogenic yeast, Candida albicans. Nucleic Acids Res. 1993; 21:356.http://doi.org/10.1093/nar/21.2.356. PMID:8441644
  • de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987; 7:725-37. http://doi.org/10.1128/MCB.7.2.725. PMID:3821727
  • Doyle TC, Nawotka KA, Purchio AF, Akin AR, Francis KP, Contag PR. Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants. Microb Pathog. 2006; 40:69-81. http://doi.org/10.1016/j.micpath.2005.11.002. PMID:16427765
  • d'Enfert C, Vecchiarelli A, Brown AJ. Bioluminescent fungi for real-time monitoring of fungal infections. Virulence. 2010; 1:174-76. http://doi.org/10.4161/viru.1.3.11119. PMID:21178436
  • Brock M, Jouvion G, Droin-Bergère S, Dussurget O, Nicola MA, Ibrahim-Granet O. Bioluminescent Aspergillus fumigatus, a new tool for drug efficiency testing and in vivo monitoring of invasive aspergillosis. Appl Environ Microbiol. 2008; 74:7023-35. http://doi.org/10.1128/AEM.01288-08. PMID:18820063
  • Galiger C, Brock M, Jouvion G, Savers A, Parlato M, Ibrahim-Granet O. Assessment of efficacy of antifungals against Aspergillus fumigatus: value of real-time bioluminescence imaging. Antimicrob Agents Chemother. 2013; 57:3046-59. http://doi.org/10.1128/AAC.01660-12. PMID:23587947
  • Donat S, Hasenberg M, Schäfer T, Ohlsen K, Gunzer M, Einsele H, Löffler J, Beilhack A, Krappmann S. Surface display of Gaussia princeps luciferase allows sensitive fungal pathogen detection during cutaneous aspergillosis. Virulence. 2012; 3:51-61. http://doi.org/10.4161/viru.3.1.18799. PMID:22286700
  • Vecchiarelli A, d'Enfert C. Shedding natural light on fungal infections. Virulence. 2012; 3:15-17. http://doi.org/10.4161/viru.3.1.19247. PMID:22286695
  • Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis M, Loros JJ, Dunlap JC. Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. Eukaryot Cell. 2008; 7:28-37. http://doi.org/10.1128/EC.00257-07. PMID:17766461
  • Doyle TC, Nawotka KA, Kawahara CB, Francis KP, Contag PR. Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb Pathog. 2006; 40:82-90. http://doi.org/10.1016/j.micpath.2005.11.003. PMID:16426810
  • Pietrella D, Rachini A, Torosantucci A, Chiani P, Brown AJ, Bistoni F, Costantino P, Mosci P, d'Enfert C, Rappuoli R, et al. A beta-glucan-conjugate vaccine and anti-beta-glucan antibodies are effective against murine vaginal candidiasis as assessed by a novel in vivo imaging technique. Vaccine. 2010; 28:1717-25. http://doi.org/10.1016/j.vaccine.2009.12.021. PMID:20038431
  • Vande Velde G, Kucharíková S, Schrevens S, Himmelreich U, Van Dijck P. Towards non-invasive monitoring of pathogen-host interactions during Candida albicans biofilm formation using in vivo bioluminescence. Cell Microbiol. 2014; 16:115-30. http://doi.org/10.1111/cmi.12184. PMID:23962311
  • Vande Velde G, Kucharíková S, Van Dijck P, Himmelreich U. Bioluminescence imaging of fungal biofilm development in live animals. Methods Mol Biol. 2014; 1098:153-67. http://doi.org/10.1007/978-1-62703-718-1_13. PMID:24166376
  • Franke-Fayard B, Waters AP, Janse CJ. Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nat Protoc. 2006; 1:476-85. http://doi.org/10.1038/nprot.2006.69. PMID:17406270
  • Braks J, Aime E, Spaccapelo R, Klop O, Janse CJ, Franke-Fayard B. Bioluminescence imaging of P. berghei Schizont sequestration in rodents. Methods Mol Biol. 2013; 923:353-68. http://doi.org/10.1007/978-1-62703-026-7_25. PMID:22990791
  • Lin JW, Sajid M, Ramesar J, Khan SM, Janse CJ, Franke-Fayard B. Screening inhibitors of P. berghei blood stages using bioluminescent reporter parasites. Methods Mol Biol. 2013; 923:507-22. http://doi.org/10.1007/978-1-62703-026-7_35. PMID:22990801
  • Ploemen I, Behet M, Nganou-Makamdop K, van Gemert GJ, Bijker E, Hermsen C, Sauerwein R. Evaluation of immunity against malaria using luciferase-expressing Plasmodium berghei parasites. Malar J. 2011; 10:350.http://doi.org/10.1186/1475-2875-10-350. PMID:22152047
  • Miller JL, Murray S, Vaughan AM, Harupa A, Sack B, Baldwin M, Crispe IN, Kappe SH. Quantitative bioluminescent imaging of pre-erythrocytic malaria parasite infection using luciferase-expressing Plasmodium yoelii. PLoS One. 2013; 8:e60820.http://doi.org/10.1371/journal.pone.0060820. PMID:23593316
  • Li Q, Xie L, Caridha D, Roncal N, Zeng Q, Zhang J, Zhang P, Hickman M, Read L. Comparative Susceptibility of Different Mouse Strains to Liver-Stage Infection With Plasmodium berghei Sporozoites Assessed Using In Vivo Imaging. Mil Med. 2017; 182:360-68. http://doi.org/10.7205/MILMED-D-16-00090. PMID:28291500
  • Paloque L, Vidal N, Casanova M, Dumètre A, Verhaeghe P, Parzy D, Azas N. A new, rapid and sensitive bioluminescence assay for drug screening on Leishmania. J Microbiol Methods. 2013; 95:320-23. http://doi.org/10.1016/j.mimet.2013.09.006. PMID:24055386
  • Beattie L, Evans KJ, Kaye PM, Smith DF. Transgenic Leishmania and the immune response to infection. Parasite Immunol. 2008; 30:255-66. http://doi.org/10.1111/j.1365-3024.2008.01020.x. PMID:18266814
  • Lang T, Goyard S, Lebastard M, Milon G. Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cell Microbiol. 2005; 7:383-92. http://doi.org/10.1111/j.1462-5822.2004.00468.x. PMID:15679841
  • de La Llave E, Lecoeur H, Besse A, Milon G, Prina E, Lang T. A combined luciferase imaging and reverse transcription polymerase chain reaction assay for the study of Leishmania amastigote burden and correlated mouse tissue transcript fluctuations. Cell Microbiol. 2011; 13:81-91. http://doi.org/10.1111/j.1462-5822.2010.01521.x. PMID:20846338
  • Reimão JQ, Trinconi CT, Yokoyama-Yasunaka JK, Miguel DC, Kalil SP, Uliana SR. Parasite burden in Leishmania (Leishmania) amazonensis-infected mice: validation of luciferase as a quantitative tool. J Microbiol Methods. 2013; 93:95-101. http://doi.org/10.1016/j.mimet.2013.02.007. PMID:23466934
  • Rouault E, Lecoeur H, Meriem AB, Minoprio P, Goyard S, Lang T. Imaging visceral leishmaniasis in real time with golden hamster model: Monitoring the parasite burden and hamster transcripts to further characterize the immunological responses of the host. Parasitol Int. 2017; 66:933-39. http://doi.org/10.1016/j.parint.2016.10.020. PMID:27794505
  • Kessler RL, Gradia DF, Pontello Rampazzo Rde C, Lourenço ÉE, Fidêncio NJ, Manhaes L, Probst CM, Ávila AR, Fragoso SP. Stage-regulated GFP Expression in Trypanosoma cruzi: applications from host-parasite interactions to drug screening. PLoS One. 2013; 8:e67441. http://doi.org/10.1371/journal.pone.0067441. PMID:23840703
  • D'Archivio S, Cosson A, Medina M, Lang T, Minoprio P, Goyard S. Non-invasive in vivo study of the Trypanosoma vivax infectious process consolidates the brain commitment in late infections. PLoS Negl Trop Dis. 2013; 7:e1976.http://doi.org/10.1371/journal.pntd.0001976. PMID:23301112
  • Myburgh E, Coles JA, Ritchie R, Kennedy PG, McLatchie AP, Rodgers J, Taylor MC, Barrett MP, Brewer JM, Mottram JC. In vivo imaging of trypanosome-brain interactions and development of a rapid screening test for drugs against CNS stage trypanosomiasis. PLoS Negl Trop Dis. 2013; 7:e2384.http://doi.org/10.1371/journal.pntd.0002384. PMID:23991236
  • Martinez-Calvillo S, Lopez I, Hernandez R. pRIBOTEX expression vector: a pTEX derivative for a rapid selection of Trypanosoma cruzi transfectants. Gene. 1997; 199:71-76. http://doi.org/10.1016/S0378-1119(97)00348-X. PMID:9358041
  • Canavaci AM, Bustamante JM, Padilla AM, Perez Brandan CM, Simpson LJ, Xu D, Boehlke CL, Tarleton RL. In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Negl Trop Dis. 2010; 4:e740.http://doi.org/10.1371/journal.pntd.0000740. PMID:20644616
  • Claes F, Vodnala SK, van Reet N, Boucher N, Lunden-Miguel H, Baltz T, Goddeeris BM, Büscher P, Rottenberg ME. Bioluminescent imaging of Trypanosoma brucei shows preferential testis dissemination which may hamper drug efficacy in sleeping sickness. PLoS Negl Trop Dis. 2009; 3:e486.http://doi.org/10.1371/journal.pntd.0000486. PMID:19621071
  • Henriques C, Castro DP, Gomes LH, Garcia ES, de Souza W. Bioluminescent imaging of Trypanosoma cruzi infection in Rhodnius prolixus. Parasit Vectors. 2012; 5:214.http://doi.org/10.1186/1756-3305-5-214. PMID:23013827
  • Silva-Dos-Santos D, Barreto-de-Albuquerque J, Guerra B, Moreira OC, Berbert LR, Ramos MT, Mascarenhas BAS, Britto C, Morrot A, Serra Villa-Verde DM, et al. Unraveling Chagas disease transmission through the oral route: Gateways to Trypanosoma cruzi infection and target tissues. PLoS Negl Trop Dis. 2017; 11:e0005507.http://doi.org/10.1371/journal.pntd.0005507. PMID:28379959
  • Dellacasa-Lindberg I, Hitziger N, Barragan A. Localized recrudescence of Toxoplasma infections in the central nervous system of immunocompromised mice assessed by in vivo bioluminescence imaging. Microbes Infect. 2007; 9:1291-98. http://doi.org/10.1016/j.micinf.2007.06.003. PMID:17897859
  • Subauste C. Animal models for Toxoplasma gondii infection. Curr Protoc Immunol. 2012; Chapter 19: Unit 19 13:11-23.
  • Kamerkar S, Davis PH. Toxoplasma on the brain: understanding host-pathogen interactions in chronic CNS infection. J Parasitol Res. 2012; 2012:589295.http://doi.org/10.1155/2012/589295. PMID:22545203
  • Saeij JP, Boyle JP, Grigg ME, Arrizabalaga G, Boothroyd JC. Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between strains. Infect Immun. 2005; 73:695-702. http://doi.org/10.1128/IAI.73.2.695-702.2005. PMID:15664907
  • Hitziger N, Dellacasa I, Albiger B, Barragan A. Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging. Cell Microbiol. 2005; 7:837-48. http://doi.org/10.1111/j.1462-5822.2005.00517.x. PMID:15888086
  • Swedin L, Arrighi R, Andersson-Willman B, Murray A, Chen Y, Karlsson MC, Georén SK, Tkach AV, Shvedova AA, Fadeel B, et al. Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii. Part Fibre Toxicol. 2012; 9:16.http://doi.org/10.1186/1743-8977-9-16. PMID:22621311
  • Luker KE, Luker GD. Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antiviral Res. 2008; 78:179-87. http://doi.org/10.1016/j.antiviral.2008.01.158. PMID:18358543
  • Rodriguez JF, Rodriguez D, Rodriguez JR, McGowan EB, Esteban M. Expression of the firefly luciferase gene in vaccinia virus: a highly sensitive gene marker to follow virus dissemination in tissues of infected animals. Proc Natl Acad Sci U S A. 1988; 85:1667-71. http://doi.org/10.1073/pnas.85.5.1667. PMID:3422754
  • Zaitseva M, Kapnick S, Golding H. Measurements of vaccinia virus dissemination using whole body imaging: approaches for predicting of lethality in challenge models and testing of vaccines and antiviral treatments. Methods Mol Biol. 2012; 890:161-76. http://doi.org/10.1007/978-1-61779-876-4_10. PMID:22688767
  • Luker KE, Hutchens M, Schultz T, Pekosz A, Luker GD. Bioluminescence imaging of vaccinia virus: effects of interferon on viral replication and spread. Virology. 2005; 341:284-300. http://doi.org/10.1016/j.virol.2005.06.049. PMID:16095645
  • Lipshutz GS, Gruber CA, Cao Y, Hardy J, Contag CH, Gaensler KM. In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther. 2001; 3:284-92. http://doi.org/10.1006/mthe.2001.0267. PMID:11273769
  • Luker GD, Prior JL, Song J, Pica CM, Leib DA. Bioluminescence imaging reveals systemic dissemination of herpes simplex virus type 1 in the absence of interferon receptors. J Virol. 2003; 77:11082-93. http://doi.org/10.1128/JVI.77.20.11082-11093.2003. PMID:14512556
  • Luker GD, Bardill JP, Prior JL, Pica CM, Piwnica-Worms D, Leib DA. Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J Virol. 2002; 76:12149-61. http://doi.org/10.1128/JVI.76.23.12149-12161.2002. PMID:12414955
  • Murphy AA, Rosato PC, Parker ZM, Khalenkov A, Leib DA. Synergistic control of herpes simplex virus pathogenesis by IRF-3, and IRF-7 revealed through non-invasive bioluminescence imaging. Virology. 2013; 444:71-79. http://doi.org/10.1016/j.virol.2013.05.034. PMID:23777662
  • Cook SH, Griffin DE. Luciferase imaging of a neurotropic viral infection in intact animals. J Virol. 2003; 77:5333-38. http://doi.org/10.1128/JVI.77.9.5333-5338.2003. PMID:12692235
  • Doyle TC, Burns SM, Contag CH. In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol. 2004; 6:303-17. http://doi.org/10.1111/j.1462-5822.2004.00378.x. PMID:15009023
  • Sun C, Gardner CL, Watson AM, Ryman KD, Klimstra WB. Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease. J Virol. 2014; 88:2035-46. http://doi.org/10.1128/JVI.02990-13. PMID:24307590
  • Li K, Thomasson D, Ketai L, Contag C, Pomper M, Wright M, Bray M. Potential applications of conventional and molecular imaging to biodefense research. Clin Infect Dis. 2005; 40:1471-80. http://doi.org/10.1086/429723. PMID:15844070
  • Zaitseva M, Kapnick SM, Scott J, King LR, Manischewitz J, Sirota L, Kodihalli S, Golding H. Application of bioluminescence imaging to the prediction of lethality in vaccinia virus-infected mice. J Virol. 2009; 83:10437-47. http://doi.org/10.1128/JVI.01296-09. PMID:19656894
  • Americo JL, Sood CL, Cotter CA, Vogel JL, Kristie TM, Moss B, Earl PL. Susceptibility of the wild-derived inbred CAST/Ei mouse to infection by orthopoxviruses analyzed by live bioluminescence imaging. Virology. 2014; 449:120-32. http://doi.org/10.1016/j.virol.2013.11.017. PMID:24418545
  • Luker KE, Schultz T, Romine J, Leib DA, Luker GD. Transgenic reporter mouse for bioluminescence imaging of herpes simplex virus 1 infection in living mice. Virology. 2006; 347:286-295. http://doi.org/10.1016/j.virol.2005.12.016. PMID:16430938
  • Burgos JS, Guzman-Sanchez F, Sastre I, Fillat C, Valdivieso F. Non-invasive bioluminescence imaging for monitoring herpes simplex virus type 1 hematogenous infection. Microbes Infect. 2006; 8:1330-38. http://doi.org/10.1016/j.micinf.2005.12.021. PMID:16682243
  • Wang L, Fu Q, Dong Y, Zhou Y, Jia S, Du J, Zhao F, Wang Y, Wang X, Peng J, Yang S, et al. Bioluminescence imaging of Hepatitis C virus NS3/4A serine protease activity in cells and living animals. Antiviral Res. 2010; 87:50-56. http://doi.org/10.1016/j.antiviral.2010.04.010. PMID:20420854
  • Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel). 2011; 11:180-206. http://doi.org/10.3390/s110100180. PMID:22346573
  • Du J, Zhao F, Zhou Y, Yan H, Duan XG, Liang SQ, Wang YL, Fu QX, Wang XH, Peng JC, et al. Bioluminescence imaging allows monitoring hepatitis C virus core protein inhibitors in mice. PLoS One. 2010; 5:e14043.http://doi.org/10.1371/journal.pone.0014043. PMID:21124971
  • Billerbeck E, Horwitz JA, Labitt RN, Donovan BM, Vega K, Budell WC, Koo GC, Rice CM, Ploss A. Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice. J Immunol. 2013; 191:1753-64. http://doi.org/10.4049/jimmunol.1201518. PMID:23833235
  • Du J, Zhou Y, Fu QX, Gong WL, Zhao F, Peng JC, Zhan LS. Bioluminescence imaging of hepatitis B virus enhancer and promoter activities in mice. FEBS Lett. 2008; 582:3552-56. http://doi.org/10.1016/j.febslet.2008.09.035. PMID:18822287
  • Zhao F, Liang SQ, Zhou Y, Wang YL, Yan H, Wang XH, Wang HP, Du J, Zhan LS. Evaluation of hepatitis B virus promoters for sustained transgene expression in mice by bioluminescence imaging. Virus Res. 2010; 149:162-66. http://doi.org/10.1016/j.virusres.2010.01.012. PMID:20122974
  • Liang SQ, Du J, Yan H, Zhou QQ, Zhou Y, Yuan ZN, Yan SD, Fu QX, Wang XH, Jia SZ, et al. A mouse model for studying the clearance of hepatitis B virus in vivo using a luciferase reporter. PLoS One. 2013; 8:e60005.http://doi.org/10.1371/journal.pone.0060005. PMID:23577080
  • Harmache A, LeBerre M, Droineau S, Giovannini M, Brémont M. Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for Novirhabdovirus. J Virol. 2006; 80:3655-59. http://doi.org/10.1128/JVI.80.7.3655-3659.2006. PMID:16537634
  • Li XF, Li XD, Deng CL, Dong HL, Zhang QY, Ye Q, Ye HQ, Huang XY, Deng YQ, Zhang B, et al. Visualization of a neurotropic flavivirus infection in mouse reveals unique viscerotropism controlled by host type I interferon signaling. Theranostics. 2017; 7:912-25. http://doi.org/10.7150/thno.16615. PMID:28382163
  • Karlsson EA, Meliopoulos VA, Savage C, Livingston B, Mehle A, Schultz-Cherry S. Visualizing real-time influenza virus infection, transmission and protection in ferrets. Nat Commun. 2015; 6:6378.http://doi.org/10.1038/ncomms7378. PMID:25744559
  • Luker KE, Luker GD. Bioluminescence imaging of reporter mice for studies of infection and inflammation. Antiviral Res. 2010; 86:93-100. http://doi.org/10.1016/j.antiviral.2010.02.002. PMID:20417377
  • Karsi A, Howe K, Kirkpatrick TB, Wills R, Bailey RH, Lawrence ML. Development of bioluminescent Salmonella strains for use in food safety. BMC Microbiol. 2008; 8:10.http://doi.org/10.1186/1471-2180-8-10. PMID:18211715
  • Kassem II, Sanad Y, Gangaiah D, Lilburn M, Lejeune J, Rajashekara G. Use of bioluminescence imaging to monitor Campylobacter survival in chicken litter. J Appl Microbiol. 2010; 109:1988-997. http://doi.org/10.1111/j.1365-2672.2010.04828.x. PMID:20722878
  • Xu X, Miller SA, Baysal-Gurel F, Gartemann KH, Eichenlaub R, Rajashekara G. Bioluminescence imaging of Clavibacter michiganensis subsp. michiganensis infection of tomato seeds and plants. Appl Environ Microbiol. 2010; 76:3978-88. http://doi.org/10.1128/AEM.00493-10. PMID:20400561
  • Kassem II, Splitter GA, Miller S, Rajashekara G. Let There Be Light! Bioluminescent Imaging to Study Bacterial Pathogenesis in Live Animals and Plants. Adv Biochem Eng Biotechnol. 2014; 154: 119–45. https://doi:10.1007/10_2014_280. PMID: 25395174
  • Chaudhari AJ, Darvas F, Bading JR, Moats RA, Conti PS, Smith DJ, Cherry SR, Leahy RM. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys Med Biol. 2005; 50:5421-41. http://doi.org/10.1088/0031-9155/50/23/001. PMID:16306643
  • Collins JW, Meganck JA, Kuo C, Francis KP, Frankel G. 4D multimodality imaging of Citrobacter rodentium infections in mice. J Vis Exp. 2013; 78: 50450. 10.3791/50450. PMID: 23979310
  • Laxminarayan R, Powers JH. Antibacterial R&D incentives. Nat Rev Drug Discov. 2011; 10:727-28. http://doi.org/10.1038/nrd3560. PMID:21959280
  • Cooper MA, Shlaes D. Fix the antibiotics pipeline. Nature. 2011; 472:32.http://doi.org/10.1038/472032a. PMID:21475175
  • Shlaes DM. The abandonment of antibacterials: why and wherefore? Curr Opin Pharmacol. 2003; 3:470-73. http://doi.org/10.1016/j.coph.2003.04.003. PMID:14559090
  • O'Neill J. Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2014. pp. http://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_21.pdf.
  • Thorne N, Inglese J, Auld DS. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol. 2010; 17:646-57. http://doi.org/10.1016/j.chembiol.2010.05.012. PMID:20609414
  • Feder JL, Velez S. Intergenic exchange, geographic isolation, and the evolution of bioluminescent color for Pyrophorus click beetles. Evolution. 2009; 63:1203-16. http://doi.org/10.1111/j.1558-5646.2009.00623.x. PMID:19154393
  • Nishiguchi T, Yamada T, Nasu Y, Ito M, Yoshimura H, Ozawa T. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans. J Biomed Opt. 2015; 20:101205.http://doi.org/10.1117/1.JBO.20.10.101205. PMID:26313214
  • Bhaumik S, Gambhir SS. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A. 2002; 99:377-82. http://doi.org/10.1073/pnas.012611099. PMID:11752410
  • Kim SB, Izumi H. Functional artificial luciferases as an optical readout for bioassays. Biochem Biophys Res Commun. 2014; 448:418-23. http://doi.org/10.1016/j.bbrc.2014.04.128. PMID:24802399
  • Chopra A. Gaussia princeps luciferase. Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD); 2004-2013. PMID: 20641352
  • Francis KP, Joh D, Bellinger-Kawahara C, Hawkinson MJ, Purchio TF, Contag PR. Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun. 2000; 68:3594-600. http://doi.org/10.1128/IAI.68.6.3594-3600.2000. PMID:10816517
  • Golberg A, Broelsch GF, Vecchio D, Khan S, Hamblin MR, Austen WG, Jr, Sheridan RL, Yarmush ML. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field. Technology (Singap World Sci). 2014; 2:153-60. PMID:25089285
  • Huang L, Wang M, Dai T, Sperandio FF, Huang YY, Xuan Y, Chiang LY, Hamblin MR. Antimicrobial photodynamic therapy with decacationic monoadducts and bisadducts of [70]fullerene: in vitro and in vivo studies. Nanomedicine (Lond). 2014; 9:253-66. http://doi.org/10.2217/nnm.13.22. PMID:23738632
  • Dai T, Gupta A, Huang YY, Yin R, Murray CK, Vrahas MS, Sherwood ME, Tegos GP, Hamblin MR. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother. 2013; 57:1238-45. http://doi.org/10.1128/AAC.01652-12. PMID:23262998
  • Dai T, Kharkwal GB, Zhao J, St Denis TG, Wu Q, Xia Y, Huang L, Sharma SK, d'Enfert C, Hamblin MR. Ultraviolet-C light for treatment of Candida albicans burn infection in mice. Photochem Photobiol. 2011; 87:342-49. http://doi.org/10.1111/j.1751-1097.2011.00886.x. PMID:21208209
  • Lambrechts SA, Demidova TN, Aalders MC, Hasan T, Hamblin MR. Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem Photobiol Sci. 2005; 4:503-09. http://doi.org/10.1039/b502125a. PMID:15986057
  • Dai T, Murray CK, Vrahas MS, Baer DG, Tegos GP, Hamblin MR. Ultraviolet C light for Acinetobacter baumannii wound infections in mice: potential use for battlefield wound decontamination? J Trauma Acute Care Surg. 2012; 73:661-67. http://doi.org/10.1097/TA.0b013e31825c149c. PMID:22929495
  • Hu Y, Hegde V, Johansen D, Loftin AH, Dworsky E, Zoller SD, Park HY, Hamad CD, Nelson GE, Francis KP, et al. Combinatory antibiotic therapy increases rate of bacterial kill but not final outcome in a novel mouse model of Staphylococcus aureus spinal implant infection. PLoS One. 2017; 12:e0173019.http://doi.org/10.1371/journal.pone.0173019. PMID:28245229
  • van Zyl WF, Deane SM, Dicks LM. Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 excludes Listeria monocytogenes from the GIT, as shown by bioluminescent studies in mice. Benef Microbes. 2016; 7:227-35. http://doi.org/10.3920/BM2015.0082. PMID:26689230
  • Witcomb LA, Collins JW, McCarthy AJ, Frankel G, Taylor PW. Bioluminescent imaging reveals novel patterns of colonization and invasion in systemic Escherichia coli K1 experimental infection in the neonatal rat. Infect Immun. 2015; 83:4528-40. http://doi.org/10.1128/IAI.00953-15. PMID:26351276
  • Ghoneim HE, McCullers JA. Adjunctive corticosteroid therapy improves lung immunopathology and survival during severe secondary pneumococcal pneumonia in mice. J Infect Dis. 2014; 209:1459-68. http://doi.org/10.1093/infdis/jit653. PMID:24273183
  • Munder A, Wölbeling F, Klockgether J, Wiehlmann L, Tümmler B. In vivo imaging of bioluminescent Pseudomonas aeruginosa in an acute murine airway infection model. Pathog Dis. 2014; 72:74-77. http://doi.org/10.1111/2049-632X.12184. PMID:24833236
  • Johnson AW, Sidman JD, Lin J. Bioluminescent imaging of pneumococcal otitis media in chinchillas. Ann Otol Rhinol Laryngol. 2013; 122:344-52. http://doi.org/10.1177/000348941312200510. PMID:23815053
  • Wang X, Li Z, Dong X, Chi H, Wang G, Li J, Sun R, Chen M, Zhang X, Wang Y, et al. Development of Bioluminescent Cronobacter sakazakii ATCC 29544 in a Mouse Model. J Food Prot. 2015; 78:1007-12. http://doi.org/10.4315/0362-028X.JFP-14-482. PMID:25951398
  • Kadurugamuwa JL, Sin L, Albert E, Yu J, Francis K, DeBoer M, Rubin M, Bellinger-Kawahara C, Parr TR, Jr, Contag PR. Direct continuous method for monitoring biofilm infection in a mouse model. Infect Immun. 2003; 71:882-90. http://doi.org/10.1128/IAI.71.2.882-890.2003. PMID:12540570
  • Vuong C, Kocianova S, Yu J, Kadurugamuwa JL, Otto M. Development of real-time in vivo imaging of device-related Staphylococcus epidermidis infection in mice and influence of animal immune status on susceptibility to infection. J Infect Dis. 2008; 198:258-61. http://doi.org/10.1086/589307. PMID:18491976
  • Bayer AS, Abdelhady W, Li L, Gonzales R, Xiong YQ. Comparative Efficacies of Tedizolid Phosphate, Linezolid, and Vancomycin in a Murine Model of Subcutaneous Catheter-Related Biofilm Infection Due to Methicillin-Susceptible and -Resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2016; 60:5092-96. http://doi.org/10.1128/AAC.00880-16. PMID:27297485
  • Delarze E, Ischer F, Sanglard D, Coste AT. Adaptation of a Gaussia princeps Luciferase reporter system in Candida albicans for in vivo detection in the Galleria mellonella infection model. Virulence. 2015; 6:684-93. http://doi.org/10.1080/21505594.2015.1081330. PMID:26305489
  • Slesiona S, Ibrahim-Granet O, Olias P, Brock M, Jacobsen ID. Murine infection models for Aspergillus terreus pulmonary aspergillosis reveal long-term persistence of conidia and liver degeneration. J Infect Dis. 2012; 205:1268-77. http://doi.org/10.1093/infdis/jis193. PMID:22438397
  • Lewis MD, Fortes Francisco A, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA, Kelly JM. Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol. 2014; 16:1285-300. http://doi.org/10.1111/cmi.12297. PMID:24712539
  • Biteau N, Asencio C, Izotte J, Rousseau B, Fèvre M, Pillay D, Baltz T. Trypanosoma brucei gambiense Infections in Mice Lead to Tropism to the Reproductive Organs, and Horizontal and Vertical Transmission. PLoS Negl Trop Dis. 2016; 10:e0004350.http://doi.org/10.1371/journal.pntd.0004350. PMID:26735855
  • Thalhofer CJ, Graff JW, Love-Homan L, Hickerson SM, Craft N, Beverley SM, Wilson ME. In vivo imaging of transgenic Leishmania parasites in a live host. J Vis Exp. 2010; 41:1980. https://doi.org/10.3791/1980.PMID:20689512
  • Giraud E, Lecoeur H, Rouault E, Goyard S, Milon G, Lang T. A combined luciferase-expressing Leishmania imaging/RT-qPCR assay provides new insights into the sequential bilateral processes deployed in the ear pinna of C57BL/6 mice. Parasitol Int. 2014; 63:245-53. http://doi.org/10.1016/j.parint.2013.08.013. PMID:24001683