1,876
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

Immunomodulatory properties of Brucella melitensis lipopolysaccharide determinants on mouse dendritic cells in vitro and in vivo

, , , , , , & show all
Pages 465-479 | Received 30 Jun 2017, Accepted 27 Sep 2017, Published online: 06 Mar 2018

References

  • Dean AS, Crump L, Greter H, Schelling E, Zinsstag J. Global burden of human brucellosis: A systematic review of disease frequency. PLoS Negl Trop Dis. 2012;6. doi:10.1371/journal.pntd.0001865. PMID:23145195
  • Gorvel JP, Moreno E. Brucella intracellular life: From invasion to intracellular replication. Vet Microbiol. 2002;90:281–97. doi:10.1016/S0378-1135(02)00214-6. PMID:12414149
  • Gorvel JP. “If you bring an alarm, we will destroy it,” said Brucella to the host cell. Virulence. 2014;5:460–2. doi:10.4161/viru.29092. PMID:24786767
  • Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C, Rucavado A, Moriyón I, Moreno E. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One. 2007;2. doi:10.1371/journal.pone.0000631. PMID:17637846
  • Celli J. Surviving inside a macrophage: The many ways of Brucella. Res Microbiol. 2006;157:93–8. doi:10.1016/j.resmic.2005.10.002. PMID:16364608
  • Erridge C, Bennett-Guerrero E, Poxton IR. Structure and function of lipopolysaccharides. Microbes Infect. 2002;4:837–51. doi:10.1016/S1286-4579(02)01604-0. PMID:12270731
  • Cardoso PG, Macedo GC, Azevedo V, Oliveira SC. Brucella spp noncanonical LPS: Structure, biosynthesis, and interaction with host immune system. Microb Cell Fact. 2006;5:13. doi:10.1186/1475-2859-5-S1-S13 10.1186/1475-2859-5-S1-P13 10.1186/1475-2859-5-13. PMID:16556309
  • Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2:151–61. doi:10.1038/nri746. PMID:11913066
  • Hey YY, O'Neill HC. Murine spleen contains a diversity of myeloid and dendritic cells distinct in antigen presenting function. J Cell Mol Med. 2012;16:2611–9. doi:10.1111/j.1582-4934.2012.01608.x. PMID:22862733
  • Naik SH, Proietto AI, Wilson NS, Dakic A, Schnorrer P, Fuchsberger M, Lahoud MH, O'Keeffe M, Shao QX, Chen WF, et al. Cutting edge: Generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol. 2005;174:6592–7. doi:10.4049/jimmunol.174.11.6592. PMID:15905497
  • Naik SH, Sathe P, Park HY, Metcalf D, Proietto AI, Dakic A, Carotta S, O'Keeffe M, Bahlo M, Papenfuss A, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol. 2007;8:1217–26. doi:10.1038/ni1522. PMID:17922015
  • Swiecki M, Colonna M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev. 2010;234:142–62. doi:10.1111/j.0105-2896.2009.00881.x. PMID:20193017
  • Behboudi S, Moore A, Hill AVS. Splenic dendritic cell subsets prime and boost CD8 T cells and are involved in the generation of effector CD8 T cells. Cell Immunol. 2004;228:15–9. doi:10.1016/j.cellimm.2004.03.010. PMID:15203315
  • Leon B, Ardavin C. Monocyte-derived dendritic cells in innate and adaptive immunity. Immunol Cell Biol. 2008;86:320–4. doi:10.1038/icb.2008.14. PMID:18362945
  • Qu CF, Brinck-Jensen NS, Zang MY, Chen K. Monocyte-derived dendritic cells: Targets as potent antigen-presenting cells for the design of vaccines against infectious diseases. Int J Infect Dis. 2014;19:1–5. doi:10.1016/j.ijid.2013.09.023. PMID:24216295
  • Langlet C, Tamoutounour S, Henri S, Luche H, Ardouin L, Gregoire C, Malissen B, Guilliams M. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J Immunol. 2012;188:1751–60. doi:10.4049/jimmunol.1102744. PMID:22262658
  • Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen B, et al. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 2013;38:322–35. doi:10.1016/j.immuni.2012.10.016. PMID:23352232
  • Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E, Longhi MP, Jeffrey KL, Anthony RM, Kluger C, Nchinda G, et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell. 2010;143:416–29. doi:10.1016/j.cell.2010.09.039. PMID:21029863
  • Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM. Generation of large numbers of dendritic cells from mouse bone-marrow cultures supplemented with granulocyte macrophage colony-stimulating factor. J Exp Med. 1992;176:1693–702. doi:10.1084/jem.176.6.1693. PMID:1460426
  • Weigel BJ, Nath N, Taylor PA, Panoskaltsis-Mortari A, Chen W, Krieg AM, Brasel K, Blazar BR. Comparative analysis of murine marrow-derived dendritic cells generated by Flt3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses. Blood. 2002;100:4169–76. doi:10.1182/blood-2002-04-1063. PMID:12393694
  • Xu Y, Zhan Y, Lew AM, Naik SH, Kershaw MH. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol. 2007;179:7577–84. doi:10.4049/jimmunol.179.11.7577. PMID:18025203
  • Conde-Alvarez R, Arce-Gorvel V, Iriarte M, Mancek-Keber M, Barquero-Calvo E, Palacios-Chaves L, Chacón-Díaz C, Chaves-Olarte E, Martirosyan A, von Bargen K, et al. The lipopolysaccharide core of brucella abortus acts as a shield against innate immunity recognition. PLoS Pathog. 2012;8. doi:10.1371/journal.ppat.1002675. PMID:22589715
  • Fontana C, Conde-Alvarez R, Stahle J, Holst O, Iriarte M, Zhao Y, Arce-Gorvel V, Hanniffy S, Gorvel JP, Moriyón I, et al. Structural studies of lipopolysaccharide-defective mutants from brucella melitensis identify a core oligosaccharide critical in virulence. J Biol Chem. 2016;291:7727–41. doi:10.1074/jbc.M115.701540. PMID:26867577
  • Papadopoulos A, Gagnaire A, Degos C, de Chastellier C, Gorvel JP. Brucella discriminates between mouse dendritic cell subsets upon in vitro infection. Virulence. 2016;7:33–44. doi:10.1080/21505594.2015.1108516. PMID:26606688
  • Gil-Ramirez Y, Conde-Alvarez R, Palacios-Chaves L, Zuniga-Ripa A, Grillo MJ, Arce-Gorvel V, Hanniffy S, Moriyón I, Iriarte M. The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus. Microb Pathog. 2014;73:53–9. doi:10.1016/j.micpath.2014.06.002. PMID:24927935
  • Barquero-Calvo E, Conde-Alvarez R, Chacon-Diaz C, Quesada-Lobo L, Martirosyan A, Guzman-Verri C, Iriarte M, Mancek-Keber M, Jerala R, Gorvel JP, et al. The differential interaction of Brucella and Ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens. PLoS One. 2009;4. doi:10.1371/journal.pone.0005893. PMID:19529776
  • Velasco J, Bengoechea JA, Brandenburg K, Lindner B, Seydel U, Gonzalez D, Zähringer U, Moreno E, Moriyón I. Brucella abortus and its closest phylogenetic relative, Ochrobactrum spp., differ in outer membrane permeability and cationic peptide resistance. Infect Immun. 2000;68:3210–8. doi:10.1128/IAI.68.6.3210-3218.2000. PMID:10816465
  • Velasco J, Moll H, Knirel YA, Sinnwell V, Moriyon I, Zahringer U. Structural studies on the lipopolysaccharide from a rough strain of Ochrobactrum anthropi containing a 2,3-diamino-2,3-dideoxy-D-glucose disaccharide lipid A backbone. Carbohydr Res. 1998;306:283–90. doi:10.1016/S0008-6215(97)10029-5. PMID:9691452
  • Goldstein J, Hoffman T, Frasch C, Lizzio EF, Beining PR, Hochstein D, Lee YL, Angus RD, Golding B. Lipopolysaccharide (Lps) from Brucella-abortus is less toxic than that from Escherichia-coli, suggesting the possible use of B-abortus or Lps from B-abortus as a carrier in vaccines. Infect Immun. 1992;60:1385–9. PMID:1548064
  • Lapaque N, Moriyon I, Moreno E, Gorvel JP. Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol. 2005;8:60–6. doi:10.1016/j.mib.2004.12.003. PMID:15694858
  • Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev. 2011;240:211–34. doi:10.1111/j.1600-065X.2010.00982.x. PMID:21349096
  • Jamalan M, Ardestani SK, Zeinali M, Mosaveri N, Mohammad Taheri M. Effectiveness of Brucella abortus lipopolysaccharide as an adjuvant for tuberculin PPD. Biologicals. 2011;39:23–8. doi:10.1016/j.biologicals.2010.08.005. PMID:20965746
  • Kianmehr Z, Soleimanjahi H, Ardestani SK, Fotouhi F, Abdoli A. Influence of Brucella abortus lipopolysaccharide as an adjuvant on the immunogenicity of HPV-16 L1VLP vaccine in mice. Med Microbiol Immunol. 2015;204:205–13. doi:10.1007/s00430-014-0356-z. PMID:25187406
  • Moreno E, Kurtz RS, Berman DT. Induction of immune and adjuvant immunoglobulin G responses in mice by Brucella lipopolysaccharide. Infect Immun. 1984;46:74–80. PMID:6434430
  • Conde-Alvarez R, Arce-Gorvel V, Gil-Ramirez Y, Iriarte M, Grillo MJ, Gorvel JP, Moriyón I. Lipopolysaccharide as a target for brucellosis vaccine design. Microb Pathog. 2013;58:29–34. doi:10.1016/j.micpath.2012.11.011. PMID:23219811
  • Berg DJ, Kuhn R, Rajewsky K, Muller W, Menon S, Davidson N, Grünig G, Rennick D. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest. 1995;96:2339–47. doi:10.1172/JCI118290. PMID:7593621
  • Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316. doi:10.3389/fimmu.2014.00316. PMID:25071777
  • Ahmed K, Al-Matrouk KA, Martinez G, Oishi K, Rotimi VO, Nagatake T. Increased serum levels of interferon-gamma and interleukin-12 during human brucellosis. Am J Trop Med Hyg. 1999;61:425–7. doi:10.4269/ajtmh.1999.61.425. PMID:10497984
  • Baldwin CL, Goenka R. Host immune responses to the intracellular bacteria Brucella: Does the bacteria instruct the host to facilitate chronic infection? Crit Rev Immunol. 2006;26:407–42. doi:10.1615/CritRevImmunol.v26.i5.30. PMID:17341186
  • Zhan Y, Cheers C. Endogenous interleukin-12 is involved in resistance to Brucella abortus infection. Infect Immun. 1995;63:1387–90. PMID:7890399
  • Macedo GC, Magnani DM, Carvalho NB, Bruna-Romero O, Gazzinelli RT, Oliveira SC. Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection. J Immunol. 2008;180:1080–7. doi:10.4049/jimmunol.180.2.1080. PMID:18178848
  • Brandao AP, Oliveira FS, Carvalho NB, Vieira LQ, Azevedo V, Macedo GC, Oliveira SC. Host susceptibility to Brucella abortus infection is more pronounced in IFN-gamma knockout than IL-12/beta2-microglobulin double-deficient mice. Clin Dev Immunol. 2012;2012:589494. doi:10.1155/2012/589494. PMID:22194770
  • Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villadangos JA. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev. 2004;199:9–26. doi:10.1111/j.0105-2896.2004.00142.x. PMID:15233723
  • Naik SH. Demystifying the development of dendritic cell subtypes, a little. Immunol Cell Biol. 2008;86:439–52. doi:10.1038/icb.2008.28. PMID:18414430
  • Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. The function of Fcgamma receptors in dendritic cells and macrophages. Nat Rev Immunol. 2014;14:94–108. doi:10.1038/nri3582 10.1038/nri3666. PMID:24445665
  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product. J Immunol. 1999;162:3749–52. PMID:10201887
  • Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ. Cutting edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol. 2000;165:618–22. doi:10.4049/jimmunol.165.2.618. PMID:10878331
  • Lapaque N, Takeuchi O, Corrales F, Akira S, Moriyon I, Howard JC, Gorvel JP. Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cell Microbiol. 2006;8:401–13. doi:10.1111/j.1462-5822.2005.00629.x. PMID:16469053
  • Martirosyan A, Ohne Y, Degos C, Gorvel L, Moriyon I, Oh S, Gorvel JP. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses. PLoS One. 2013;8:e55117. doi:10.1371/journal.pone.0055117. PMID:23390517