3,389
Views
42
CrossRef citations to date
0
Altmetric
Research Paper

The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection

&
Pages 402-413 | Received 03 Jan 2017, Accepted 09 Nov 2017, Published online: 01 Mar 2018

References

  • Vilcinskas A, Götz P. Parasitic Fungi and their Interactions with the Insect Immune System. In: Stothard JR, Baker RM, Rollinson D, editors. Advances in Parasitology USA: Academic Press. 1999. p. 267–313. doi:10.1016/S0065-308X(08)60244-4
  • St Leger RJ, Joshi L, Bidochka MJ, et al. Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl Environ Microbiol. 1996;62(4):1257–64
  • St Leger RJ, Charnley AK, Cooper RM. Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliae. Arch Biochem Biophys. 1987;253(1):221–32
  • Freimoser FM, Hu G, St Leger RJ. Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology. 2005;151(Pt 2):361–71. doi:10.1099/mic.0.27560-0
  • Gillespie JP, Bailey AM, Cobb B, et al. Fungi as elicitors of insect immune responses. Arch Insect Biochem Physiol. 2000;44(2):49–68. doi:10.1002/15206327(200006)44:2<49::AID-ARCH1>3.0.CO;2-F
  • Vilcinskas A. Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence. 2010;1(3):206–14. doi:10.4161/viru.1.3.12072
  • Staats CC, Junges A, Guedes RL, et al. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics. 2014;15:822. doi:10.1186/1471-2164-15-822
  • Mukherjee K, Vilcinskas A. Development and immunity-related microRNAs of the lepidopteran model host Galleria mellonella. BMC Genomics. 2014;15:705. doi:10.1186/1471-2164-15-705
  • Mukherjee K, Fischer R, Vilcinskas A. Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection. Front Zool. 2012;9(1):25. doi:10.1186/1742-9994-9-25
  • Vilcinskas A. The role of epigenetics in host-parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum. Zoology (Jena, Germany). 2016;119(4):273–80. doi:10.1016/j.zool.2016.05.004
  • Mukherjee K, Twyman RM, Vilcinskas A. Insects as models to study the epigenetic basis of disease. Prog Biophys Mol Biol. 2015;118(1–2):69–78. doi:10.1016/j.pbiomolbio.2015.02.009
  • Adekoya OA, Sylte I. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chem Biol Drug Des. 2009;73(1):7–16. doi:10.1111/j.1747-0285.2008.00757.x
  • Qazi SS, Khachatourians GG. Hydrated conidia of Metarhizium anisopliae release a family of metalloproteases. J Invertebr Pathol. 2007;95(1):48–59. doi:10.1016/j.jip.2006.12.002
  • Altincicek B, Linder M, Linder D, et al. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun. 2007;75(1):175–83. doi:10.1128/iai.01385-06
  • Griesch J, Wedde M, Vilcinskas A. Recognition and regulation of metalloproteinase activity in the haemolymph of Galleria mellonella: a new pathway mediating induction of humoral immune responses. Insect Biochem Mol Biol. 2000;30(6):461–72
  • Altincicek B, Berisha A, Mukherjee K, et al. Identification of collagen IV derived danger/alarm signals in insect immunity by nanoLC-FTICR MS. Biol Chem. 2009;390(12):1303–11. doi:10.1515/bc.2009.128
  • Berisha A, Mukherjee K, Vilcinskas A, et al. High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity. PLoS One. 2013;8(11):e80406. doi:10.1371/journal.pone.0080406
  • Clermont A, Wedde M, Seitz V, et al. Cloning and expression of an inhibitor of microbial metalloproteinases from insects contributing to innate immunity. Biochem J. 2004;382(Pt 1):315–22. doi:10.1042/bj20031923
  • Wedde M, Weise C, Nuck C, et al. The insect metalloproteinase inhibitor gene of the lepidopteran Galleria mellonella encodes two distinct inhibitors. Biol Chem. 2007;388(1):119–27. doi:10.1515/BC.2007.013
  • Joop G, Vilcinskas A. Coevolution of parasitic fungi and insect hosts. Zoology (Jena, Germany). 2016;119(4):350–8. doi:10.1016/j.zool.2016.06.005
  • Vogel H, Altincicek B, Glockner G, et al. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics. 2011;12:308. doi:10.1186/1471-2164-12-308
  • Rahnamaeian M, Langen G, Imani J, et al. Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J Exp Bot. 2009;60(14):4105–14. doi:10.1093/jxb/erp240
  • Griesch J, Vilcinskas A. Proteases released by entomopathogenic fungi impair phagocytic activity, attachment and spreading of plasmatocytes isolated from haemolymph of the greater wax moth Galleria mellonella. Biocontrol Sci Technol. 1998;8(4):517–31. doi:10.1080/09583159830036
  • Vilcinskas A, Wedde M. Inhibition of Beauveria bassiana Proteases and Fungal Development by Inducible Protease Inhibitors in the Haemolymph of Galleria mellonella larvae. Biocontrol Sci Technol. 1997;7(4):591–602. doi:10.1080/09583159730640
  • Dubovskiy IM, Whitten MM, Kryukov VY, et al. More than a colour change: insect melanism, disease resistance and fecundity. Proc Biol Sci. 2013;280(1763):20130584. doi:10.1098/rspb.2013.0584
  • Vilcinskas A. Evolutionary plasticity of insect immunity. J Insect Physiol. 2013;59(2):123–9
  • Wang S, Leclerque A, Pava-Ripoll M, et al. Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae. Eukaryot Cell. 2009;8(6):888–98. doi:10.1128/ec.00058-09
  • Wang S, Fang W, Wang C, et al. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLoS Pathog. 2011;7(6):e1002097. doi:10.1371/journal.ppat.1002097
  • Arolas JL, Botelho TO, Vilcinskas A, et al. Structural evidence for standard-mechanism inhibition in metallopeptidases from a complex poised to resynthesize a peptide bond. Angew Chem Int Ed Engl. 2011;50(44):10357–60. doi:10.1002/anie.201103262
  • Schrank A, Vainstein MH. Metarhizium anisopliae enzymes and toxins. Toxicon. 2010;56(7):1267–74. doi:10.1016/j.toxicon.2010.03.008
  • Vilcinskas A, Matha V, Götz P. Effects of the entomopathogenic fungus Metarhizium anisopliae and its secondary metabolites on morphology and cytoskeleton of plasmatocytes isolated from the greater wax moth, Galleria mellonella. J Insect Physiol. 1997;43(12):1149–59. http://doi.org/10.1016/S0022-1910(97)00066-8
  • Pal S, St Leger RJ, Wu LP. Fungal peptide Destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J Biol Chem. 2007;282(12):8969–77. doi:10.1074/jbc.M605927200
  • Wang C, St Leger RJ. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci USA. 2006;103(17):6647–52. doi:10.1073/pnas.0601951103
  • de Bekker C, Quevillon LE, Smith PB, et al. Species-specific ant brain manipulation by a specialized fungal parasite. BMC Evol Biol. 2014;14:166. doi:10.1186/s12862-014-0166-3
  • Bader MW, Sanowar S, Daley ME, et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell. 2005;122(3):461–72. doi:10.1016/j.cell.2005.05.030
  • Yamauchi Y, Boukari H, Banerjee I, et al. Histone deacetylase 8 is required for centrosome cohesion and influenza A virus entry. PLoS Pathog. 2011;7(10):e1002316. doi:10.1371/journal.ppat.1002316
  • Chaal BK, Gupta AP, Wastuwidyaningtyas BD, et al. Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle. PLoS Pathog. 2010;6(1):e1000737. doi:10.1371/journal.ppat.1000737
  • Bougdour A, Maubon D, Baldacci P, et al. Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites. J Exp Med. 2009;206(4):953–66. doi:10.1084/jem.20082826
  • Lopes da Rosa J, Boyartchuk VL, Zhu LJ, et al. Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci USA. 2010;107(4):1594–9. doi:10.1073/pnas.0912427107
  • Wurtele H, Tsao S, Lepine G, et al. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med. 2010;16(7):774–80. doi:10.1038/nm.2175
  • Mukherjee K, Grizanova E, Chertkova E, et al. Experimental evolution of resistance against Bacillus thuringiensis in the insect model host Galleria mellonella results in epigenetic modifications. Virulence. 2017:1–13. doi: 10.1080/21505594.2017.1325975. ( in press).
  • Bolouri Moghaddam MR, Vilcinskas A, Rahnamaeian M. The insect-derived antimicrobial peptide metchnikowin targets Fusarium graminearum beta(1,3)glucanosyltransferase Gel1, which is required for the maintenance of cell wall integrity. Biol Chem. 2016;398(4):491–8. doi:10.1515/hsz-2016-0295
  • Baumler A, Fang FC. Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med. 2013;3(12):a010041. doi:10.1101/cshperspect.a010041
  • Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50(3):346–63. doi:10.1002/bimj.200810425
  • Zeileis A. Econometric computing with HC and HAC Covariance matrix estimators. J Statistical Software. 2004;11(10):1–17. doi: 10.18637/jss.v011.i10