3,310
Views
32
CrossRef citations to date
0
Altmetric
Review

Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi

, &
Pages 426-446 | Received 26 Jun 2017, Accepted 04 Dec 2017, Published online: 01 Mar 2018

References

  • King N. Amino acids and the mitochondria. In: Schaffer SW, Suleiman MS, eds. Mitochondria: the Dynamic Organelle / Advances in Biochemistry in Health and Disease. New York, NY: Springer; 2007. 151–66.
  • Muhlenhoff U, Hoffmann B, Richter N, et al. Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol. 2015;94:292–308. http://doi.org/10.1016/j.ejcb.2015.05.003.
  • Ernster L, Schatz G. Mitochondria: a historical review. J Cell Biol. 1981;91:227s–55s. http://doi.org/10.1083/jcb.91.3.227s.
  • Luft R, Ikkos D, Palmieri G, et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest. 1962;41:1776–804. http://doi.org/10.1172/JCI104637.
  • Linnane AW, Saunders GW, Gingold EB, et al. The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1968;59:903–10. http://doi.org/10.1073/pnas.59.3.903.
  • Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331:717–9. http://doi.org/10.1038/331717a0.
  • Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science. 1988;242:1427–30. http://doi.org/10.1126/science.3201231.
  • Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12. http://doi.org/10.1126/science.281.5381.1309.
  • Parker WD, Jr., Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol. 1989;26:719–23. http://doi.org/10.1002/ana.410260606.
  • Parker WD, .Jr. Cytochrome oxidase deficiency in Alzheimer's disease. Ann N Y Acad Sci. 1991;640:59–64. http://doi.org/10.1111/j.1749-6632.1991.tb00191.x.
  • Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12:537–77. http://doi.org/10.1089/ars.2009.2531.
  • Birsoy K, Wang T, Chen WW, et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 2015;162:540–51. http://doi.org/10.1016/j.cell.2015.07.016.
  • Pellegrino MW, Nargund AM, Kirienko NV, et al. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature. 2014;516:414–7. http://doi.org/10.1038/nature13818.
  • Hadwiger LA, Polashock J. Fungal mitochondrial DNases: effectors with the potential to activate plant defenses in nonhost resistance. Phytopathology. 2013;103:81–90. http://doi.org/10.1094/PHYTO-04-12-0085-R.
  • Luckhart S, Pakpour N, Giulivi C. Host-pathogen interactions in malaria: cross-kingdom signaling and mitochondrial regulation. Curr Opin Immunol. 2015;36:73–9. http://doi.org/10.1016/j.coi.2015.07.002.
  • Rudel T, Kepp O, Kozjak-Pavlovic V. Interactions between bacterial pathogens and mitochondrial cell death pathways. Nat Rev Microbiol. 2010;8:693–705. http://doi.org/10.1038/nrmicro2421.
  • Makiuchi T, Nozaki T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie. 2014;100:3–17. http://doi.org/10.1016/j.biochi.2013.11.018.
  • Freibert S-A, Goldberg AV, Hacker C, et al. Evolutionary conservation and in vitro reconstitution of microsporidian iron-sulfur cluster biosynthesis. Nat Commun. 2017;8:13932. http://doi.org/10.1038/ncomms13932.
  • Ma H, Hagen F, Stekel DJ, et al. The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation. Proc Natl Acad Sci U S A. 2009;106:12980–5. http://doi.org/10.1073/pnas.0902963106.
  • She X, Zhang L, Chen H, et al. Cell surface changes in the Candida albicans mitochondrial mutant goa1Δ are associated with reduced recognition by innate immune cells. Cell Microbiol. 2013;15:1572–84. http://doi.org/10.1111/cmi.12135.
  • Sun N, Fonzi W, Chen H, et al. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants. Antimicrob Agents Chemother. 2013;57:532–42. http://doi.org/10.1128/AAC.01520-12.
  • Bambach A, Fernandes MP, Ghosh A, et al. Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence. Eukaryot Cell. 2009;8:1706–20. http://doi.org/10.1128/EC.00066-09.
  • Kretschmer M, Klose J, Kronstad JW. Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis. Eukaryot Cell. 2012;11:1055–66. http://doi.org/10.1128/EC.00129-12.
  • Olson Å, Stenlid J Plant pathogens: mitochondrial control of fungal hybrid virulence. Nature. 2001;411:438.
  • Mahlert M, Vogler C, Stelter K, et al. The a2 mating-type-locus gene lga2 of Ustilago maydis interferes with mitochondrial dynamics and fusion, partially in dependence on a Dnm1-like fission component. J Cell Sci. 2009;122:2402–12. http://doi.org/10.1242/jcs.039354.
  • Du Y, Zhang H, Hong L, et al. Acetolactate synthases MoIlv2 and MoIlv6 are required for infection-related morphogenesis in Magnaporthe oryzae. Mol Plant Pathol. 2013;14:870–84. http://doi.org/10.1111/mpp.12053.
  • Foury F, Roganti T, Lecrenier N, et al. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 1998;440:325–31. http://doi.org/10.1016/S0014-5793(98)01467-7.
  • Langkjaer RB, Casaregola S, Ussery DW, et al. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts. Nucleic Acids Res. 2003;31:3081–91. http://doi.org/10.1093/nar/gkg423.
  • Koszul R, Malpertuy A, Frangeul L, et al. The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS Lett. 2003;534:39–48. http://doi.org/10.1016/S0014-5793(02)03749-3.
  • Ma H, May RC. Mitochondria and the regulation of hypervirulence in the fatal fungal outbreak on Vancouver Island. Virulence. 2010;1:197–201. http://doi.org/10.4161/viru.1.3.11053.
  • Joardar V, Abrams NF, Hostetler J, et al. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability. BMC Genomics. 2012;13:698. http://doi.org/10.1186/1471-2164-13-698.
  • Brown GD, Denning DW, Gow NAR, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165.rv13. http://doi.org/10.1126/scitranslmed.3004404.
  • Calderone R, Li D, Traven A. System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Res. 2015;15:fov027. http://doi.org/10.1093/femsyr/fov027.
  • Li D, Calderone R. Exploiting mitochondria as targets for the development of new antifungals. Virulence. 2017;8:159–68. http://doi.org/10.1080/21505594.2016.1188235.
  • Thangamani S, Maland M, Mohammad H, et al. Repurposing approach identifies auranofin with broad spectrum antifungal activity that targets Mia40-Erv1 pathway. Front Cell Infect Microbiol. 2017;7:4. http://doi.org/10.3389/fcimb.2017.00004.
  • Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005;39:503–36. http://doi.org/10.1146/annurev.genet.38.072902.093019.
  • Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–5. http://doi.org/10.1126/science.1219855.
  • Neubauer M, Zhu Z, Penka M, et al. Mitochondrial dynamics in the pathogenic mold Aspergillus fumigatus: therapeutic and evolutionary implications. Mol Microbiol. 2015;98:930–45. http://doi.org/10.1111/mmi.13167.
  • Hagen F, Khayhan K, Theelen B, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015;78:16–48. http://doi.org/10.1016/j.fgb.2015.02.009.
  • Byrnes EJ, 3rd, Li W, Lewit Y, et al. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog. 2010;6:e1000850. http://doi.org/10.1371/journal.ppat.1000850.
  • Voelz K, Johnston SA, Smith LM, et al. ‘Division of labour’ in response to host oxidative burst drives a fatal Cryptococcus gattii outbreak. Nat Commun. 2014;5:5194. http://doi.org/10.1038/ncomms6194.
  • Thomas E, Roman E, Claypool S, et al. Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans. Antimicrob Agents Chemother. 2013;57:5580–99. http://doi.org/10.1128/AAC.00889-13.
  • Khan IA, Ning G, Liu X, et al. Mitochondrial fission protein MoFis1 mediates conidiation and is required for full virulence of the rice blast fungus Magnaporthe oryzae. Microbiol Res. 2015;178:51–8. http://doi.org/10.1016/j.micres.2015.06.002.
  • Patkar RN, Ramos-Pamplona M, Gupta AP, et al. Mitochondrial β-oxidation regulates organellar integrity and is necessary for conidial germination and invasive growth in Magnaporthe oryzae. Mol Microbiol. 2012;86:1345–63. http://doi.org/10.1111/mmi.12060.
  • Ulrich JT, Mathre DE. Mode of action of oxathiin systemic fungicides. V. Effect on electron transport system of Ustilago maydis and Saccharomyces cerevisiae. J Bacteriol. 1972;110:628–32.
  • Walter H, Tobler H, Gribkov D, et al. Sedaxane, isopyrazam and solatenol: novel broad-spectrum fungicides inhibiting succinate dehydrogenase (SDH) – synthesis challenges and biological aspects. Chimia. 2015;69:425–34. http://doi.org/10.2533/chimia.2015.425.
  • Bartlett DW, Clough JM, Godwin JR, et al. The strobilurin fungicides. Pest Manag Sci. 2002;58:649–62. http://doi.org/10.1002/ps.520.
  • Sierotzki H, Scalliet G. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology. 2013;103:880–7. http://doi.org/10.1094/PHYTO-01-13-0009-RVW.
  • Takahata S, Kubota N, Takei-Masuda N, et al. Mechanism of action of ME1111, a novel antifungal agent for topical treatment of onychomycosis. Antimicrob Agents Chemother. 2016;60:873–80. http://doi.org/10.1128/AAC.01790-15.
  • Oliver JD, Sibley GEM, Beckmann N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci USA. 2016;113:12809–14. http://doi.org/10.1073/pnas.1608304113.
  • Vincent BM, Langlois J-B, Srinivas R, et al. A fungal-selective cytochrome bc1 inhibitor impairs virulence and prevents the evolution of drug resistance. Cell Chem Biol. 2016;23:978–91. http://doi.org/10.1016/j.chembiol.2016.06.016.
  • Guan G, Wang H, Liang W, et al. The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans. Fungal Genet Biol. 2015;81:150–9. http://doi.org/10.1016/j.fgb.2015.01.006.
  • Xu J, Yan Z, Guo H. Divergence, hybridization, and recombination in the mitochondrial genome of the human pathogenic yeast Cryptococcus gattii. Mol Ecol. 2009;18:2628–42.http://doi.org/10.1111/j.1365-294X.2009.04227.x.
  • Bovers M, Hagen F, Kuramae EE, et al. Promiscuous mitochondria in Cryptococcus gattii. FEMS Yeast Res. 2009;9:489–503.http://doi.org/10.1111/j.1567-1364.2009.00494.x.
  • Farrer RA, Desjardins CA, Sakthikumar S, et al. Genome evolution and innovation across the four major lineages of Cryptococcus gattii. mBio. 2015;6:e00868–15. http://doi.org/10.1128/mBio.00868-15.
  • Voelz K, Ma H, Phadke S, et al. Transmission of Hypervirulence traits via sexual reproduction within and between lineages of the human fungal pathogen Cryptococcus gattii. PLoS Genet. 2013;9:e1003771. http://doi.org/10.1371/journal.pgen.1003771.
  • Fraser JA, Giles SS, Wenink EC, et al. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature. 2005;437:1360–4. http://doi.org/10.1038/nature04220.
  • Fu C, Sun S, Billmyre RB, et al. Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fungal Genet Biol. 2015;78:65–75. http://doi.org/10.1016/j.fgb.2014.08.008.
  • Phadke SS, Feretzaki M, Clancey SA, et al. Unisexual reproduction of Cryptococcus gattii. PLoS One. 2014;9:e111089. http://doi.org/10.1371/journal.pone.0111089.
  • O'Gorman CM, Fuller HT, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 2009;457:471–4. http://doi.org/10.1038/nature07528.
  • Losada L, Sugui JA, Eckhaus MA, et al. Genetic analysis using an isogenic mating pair of Aspergillus fumigatus identifies Aazole resistance genes and lack of MAT locus's role in virulence. PLoS Pathog. 2015;11:e1004834. http://doi.org/10.1371/journal.ppat.1004834.
  • Forche A, Alby K, Schaefer D, et al. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 2008;6:e110. http://doi.org/10.1371/journal.pbio.0060110.
  • Bennett RJ, Johnson AD. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 2003;22:2505–15. http://doi.org/10.1093/emboj/cdg235.
  • Jacobsen MD, Rattray AMJ, Gow NAR, et al. Mitochondrial haplotypes and recombination in Candida albicans. Med Mycol. 2008;46:647–54. http://doi.org/10.1080/13693780801986631.
  • Valach M, Pryszcz LP, Tomaska L, et al. Mitochondrial genome variability within the Candida parapsilosis species complex. Mitochondrion. 2012;12:514–9. http://doi.org/10.1016/j.mito.2012.07.109.
  • Anderson JB, Wickens C, Khan M, et al. Infrequent genetic exchange and recombination in the mitochondrial genome of Candida albicans. J Bacteriol. 2001;183:865–72. http://doi.org/10.1128/JB.183.3.865-872.2001.
  • Pryszcz LP, Németh T, Saus E, et al. The genomic aftermath of hybridization in the opportunistic pathogen Candida metapsilosis. PLoS Genet. 2015;11:e1005626. http://doi.org/10.1371/journal.pgen.1005626.
  • Hamari Z, Toth B, Beer Z, et al. Interpretation of intraspecific variability in mtDNAs of Aspergillus niger strains and rearrangement of their mtDNAs following mitochondrial transmissions. FEMS Microbiol Lett. 2003;221:63–71. http://doi.org/10.1016/S0378-1097(03)00165-4.
  • Yan Z, Xu J. Mitochondria are inherited from the MATa parent in crosses of the basidiomycete fungus Cryptococcus neoformans. Genetics. 2003;163:1315–25.
  • Gyawali R, Lin X. Prezygotic and postzygotic control of uniparental mitochondrial DNA inheritance in Cryptococcus neoformans. mBio. 2013;4:e00112–13. http://doi.org/10.1128/mBio.00112-13.
  • Zhu P, Zhai B, Lin X, et al. Congenic strains for genetic analysis of virulence traits in Cryptococcus gattii. Infect Immun. 2013;81:2616–25. http://doi.org/10.1128/IAI.00018-13.
  • Shakya VPS, Idnurm A. Sex determination directs uniparental mitochondrial inheritance in Phycomyces. Eukaryot Cell. 2014;13:186–9. http://doi.org/10.1128/EC.00203-13.
  • Parikh VS, Morgan MM, Scott R, et al. The mitochondrial genotype can influence nuclear gene expression in yeast. Science. 1987;235:576–80. http://doi.org/10.1126/science.3027892.
  • Liao X, Butow RA. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell. 1993;72:61–71. http://doi.org/10.1016/0092-8674(93)90050-Z.
  • Hallstrom TC, Moye-Rowley WS. Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem. 2000;275:37347–56. http://doi.org/10.1074/jbc.M007338200.
  • Moye-Rowley WS. Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae. Gene. 2005;354:15–21. http://doi.org/10.1016/j.gene.2005.03.019.
  • Traven A, Wong JMS, Xu D, et al. Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial DNA mutant. J Biol Chem. 2001;276:4020–7. http://doi.org/10.1074/jbc.M006807200.
  • Spinazzola A, Zeviani M. Mitochondrial diseases: a cross-talk between mitochondrial and nuclear genomes. Adv Exp Med Biol. 2009;652:69–84. http://doi.org/10.1007/978-90-481-2813-6_6.
  • Zhang X, Moye-Rowley WS. Saccharomyces cerevisiae multidrug resistance gene expression inversely correlates with the status of the F0 component of the mitochondrial ATPase. J Biol Chem. 2001;276:47844–52. http://doi.org/10.1074/jbc.M106285200.
  • Shingu-Vazquez M, Traven A. Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell. 2011;10:1376–83. http://doi.org/10.1128/EC.05184-11.
  • Brun S, Bergès T, Poupard P, et al. Mechanisms of azole resistance in petite mutants of Candida glabrata. Antimicrob Agents Chemother. 2004;48:1788–96. http://doi.org/10.1128/AAC.48.5.1788-1796.2004.
  • Paul S, Schmidt JA, Moye-Rowley WS. Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot Cell. 2011;10:187–97. http://doi.org/10.1128/EC.00277-10.
  • Tsai H-F, Krol AA, Sarti KE, et al. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother. 2006;50:1384–92. http://doi.org/10.1128/AAC.50.4.1384-1392.2006.
  • Paul S, Bair TB, Moye-Rowley WS. Identification of genomic binding sites for Candida glabrata Pdr1 transcription factor in wild-type and ρ0 cells. Antimicrob Agents Chemother. 2014;58:6904–12. http://doi.org/10.1128/AAC.03921-14.
  • Ferrari S, Ischer F, Calabrese D, et al. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog. 2009;5:e1000268. http://doi.org/10.1371/journal.ppat.1000268.
  • Ferrari S, Sanguinetti M, De Bernardis F, Torelli R, et al. Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother. 2011;55:1852–60. http://doi.org/10.1128/AAC.01271-10.
  • Devaux F, Carvajal E, Moye-Rowley S, et al. Genome-wide studies on the nuclear PDR3-controlled response to mitochondrial dysfunction in yeast. FEBS Lett. 2002;515:25–8. http://doi.org/10.1016/S0014-5793(02)02387-6.
  • Panwar SL, Moye-Rowley WS. Long chain base tolerance in Saccharomyces cerevisiae is induced by retrograde signals from the mitochondria. J Biol Chem. 2006;281:6376–84. http://doi.org/10.1074/jbc.M512115200.
  • Gulshan K, Schmidt JA, Shahi P, et al. Evidence for the bifunctional nature of mitochondrial phosphatidylserine decarboxylase: role in Pdr3-dependent retrograde regulation of PDR5 expression. Mol Cell Biol. 2008;28:5851–64. http://doi.org/10.1128/MCB.00405-08.
  • Batova M, Borecka-Melkusova S, Simockova M, et al. Functional characterization of the CgPGS1 gene reveals a link between mitochondrial phospholipid homeostasis and drug resistance in Candida glabrata. Curr Genet. 2008;53:313–22. http://doi.org/10.1007/s00294-008-0187-9.
  • Singh A, Yadav V, Prasad R. Comparative lipidomics in clinical isolates of Candida albicans reveal crosstalk between mitochondria, cell wall integrity and azole resistance. PLoS One. 2012;7:e39812. http://doi.org/10.1371/journal.pone.0039812.
  • López-Marqués RL, Poulsen LR, Bailly A, et al. Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta. 2015;1850:461–75. http://doi.org/10.1016/j.bbagen.2014.04.008.
  • Bromley M, Johns A, Davies E, et al. Mitochondrial complex I Is a global regulator of secondary metabolism, virulence and azole sensitivity in fungi. PLoS One. 2016;11:e0158724. http://doi.org/10.1371/journal.pone.0158724.
  • Vandeputte P, Tronchin G, Rocher F, et al. Hypersusceptibility to azole antifungals in a clinical isolate of Candida glabrata with reduced aerobic growth. Antimicrob Agents Chemother. 2009;53:3034–41. http://doi.org/10.1128/AAC.01384-08.
  • Epstein CB, Waddle JA, Hale IV W, et al. Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell. 2001;12:297–308. http://doi.org/10.1091/mbc.12.2.297.
  • Girvan HM, Munro AW. Heme sensor proteins. J Biol Chem. 2013;288:13194–203. http://doi.org/10.1074/jbc.R112.422642.
  • Cresnar B, Petric S. Cytochrome P450 enzymes in the fungal kingdom. Biochim Biophys Acta. 2011;1814:29–35. http://doi.org/10.1016/j.bbapap.2010.06.020.
  • Balding PR, Porro CS, McLean KJ, et al. How do azoles inhibit cytochrome P450 enzymes? A density functional study. J Phys Chem A. 2008;112:12911–8. http://doi.org/10.1021/jp802087w.
  • Lupetti A, Danesi R, Campa M, et al. Molecular basis of resistance to azole antifungals. Trends Mol Med. 2002;8:76–81. http://doi.org/10.1016/S1471-4914(02)02280-3.
  • Hosogaya N, Miyazaki T, Nagi M, et al. The heme-binding protein Dap1 links iron homeostasis to azole resistance via the P450 protein Erg11 in Candida glabrata. FEMS Yeast Res. 2013;13:411–21. http://doi.org/10.1111/1567-1364.12043.
  • Song J, Zhai P, Zhang Y, et al. The Aspergillus fumigatus damage resistance protein family coordinately regulates ergosterol biosynthesis and azole susceptibility. mBio. 2016;7:e01919–15. http://doi.org/10.1128/mBio.01919-15.
  • Mallory JC, Crudden G, Johnson BL, et al. Dap1p, a heme-binding protein that regulates the cytochrome P450 protein Erg11p/Cyp51p in Saccharomyces cerevisiae. Mol Cell Biol. 2005;25:1669–79. http://doi.org/10.1128/MCB.25.5.1669-1679.2005.
  • Hughes AL, Powell DW, Bard M, et al. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab. 2007;5:143–9. http://doi.org/10.1016/j.cmet.2006.12.009.
  • Long N, Xu X, Qian H, et al. A putative mitochondrial iron transporter MrsA in Aspergillus fumigatus plays important roles in azole-, oxidative stress responses and virulence. Front Microbiol. 2016;7:716. http://doi.org/10.3389/fmicb.2016.00716.
  • Schrettl M, Kim HS, Eisendle M, et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol Microbiol. 2008;70:27–43. http://doi.org/10.1111/j.1365-2958.2008.06376.x.
  • Stehling O, Lill R. The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol. 2013;5:a011312. http://doi.org/10.1101/cshperspect.a011312.
  • Braymer JJ, Lill R. Iron-sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem. 2017;292:12754–63. http://doi.org/10.1074/jbc.R117.787101.
  • Buschlen S, Amillet J-M, Guiard B, et al. The S. cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression. Comp Funct Genomics. 2003;4:37–46. http://doi.org/10.1002/cfg.254.
  • McNabb DS, Xing Y, Guarente L. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev. 1995;9:47–58. http://doi.org/10.1101/gad.9.1.47.
  • Tanaka A, Kato M, Nagase T, et al. Isolation of genes encoding novel transcription factors which interact with the Hap complex from Aspergillus species. Biochim Biophys Acta. 2002;1576:176–82. http://doi.org/10.1016/S0167-4781(02)00286-5.
  • Schrettl M, Beckmann N, Varga J, et al. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog. 2010;6:e1001124. http://doi.org/10.1371/journal.ppat.1001124.
  • Hortschansky P, Eisendle M, Al-Abdallah Q, et al. Interaction of HapX with the CCAAT-binding complex—a novel mechanism of gene regulation by iron. EMBO J. 2007;26:3157–68. http://doi.org/10.1038/sj.emboj.7601752.
  • Hsu P-C, Yang C-Y, Lan C-Y. Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Eukaryot Cell. 2011;10:207–25. http://doi.org/10.1128/EC.00158-10.
  • Jung WH, Saikia S, Hu G, et al. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans. PLoS Pathog. 2010;6:e1001209. http://doi.org/10.1371/journal.ppat.1001209.
  • López-Berges MS, Capilla J, Turrà D, et al. HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell. 2012;24:3805–22. http://doi.org/10.1105/tpc.112.098624.
  • Caza M, Hu G, Price M, et al. The zinc finger protein Mig1 regulates mitochondrial function and azole drug susceptibility in the pathogenic fungus Cryptococcus neoformans. mSphere. 2016;http://doi.org/10.1128/mSphere.00080-15.
  • Garcia-Santamarina S, Uzarska MA, Festa RA, et al. Cryptococcus neoformans iron-sulfur protein biogenesis machinery is a novel layer of protection against Cu stress. mBio. 2017;8:e01742–17. http://doi.org/10.1128/mBio.01742-17.
  • Qu Y, Jelicic B, Pettolino F, et al. Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence. Eukaryot Cell. 2012;11:532–44. http://doi.org/10.1128/EC.05292-11.
  • Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007;76:723–49. http://doi.org/10.1146/annurev.biochem.76.052705.163409.
  • Chacinska A, Koehler CM, Milenkovic D, et al. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–44. http://doi.org/10.1016/j.cell.2009.08.005.
  • Ellenrieder L, Opaliński Ł, Becker L, et al. Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat Commun. 2016;7:13021. http://doi.org/10.1038/ncomms13021.
  • Dagley MJ, Gentle IE, Beilharz TH, et al. Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2. Mol Microbiol. 2011;79:968–89. http://doi.org/10.1111/j.1365-2958.2010.07503.x.
  • Hewitt VL, Heinz E, Shingu-Vazquez M, et al. A model system for mitochondrial biogenesis reveals evolutionary rewiring of protein import and membrane assembly pathways. Proc Natl Acad Sci U S A. 2012;109:E3358–66. http://doi.org/10.1073/pnas.1206345109.
  • Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol. 2011;3:a004424. http://doi.org/10.1101/cshperspect.a004424.
  • Rainbolt TK, Saunders JM, Wiseman RL. Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol Metab. 2014;25:528–37. http://doi.org/10.1016/j.tem.2014.06.007.
  • Kornmann B, Currie E, Collins SR, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science. 2009;325:477–81. http://doi.org/10.1126/science.1175088.
  • Tucey TM, Verma-Gaur J, Nguyen J, et al. The endoplasmic reticulum-mitochondrion tether ERMES orchestrates fungal immune evasion, illuminating inflammasome responses to hyphal signals. mSphere. 2016;1:e00074–16. http://doi.org/10.1128/mSphere.00074-16.
  • Becker JM, Kauffman SJ, Hauser M, et al. Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model. Proc Natl Acad Sci U S A. 2010;107:22044–9. http://doi.org/10.1073/pnas.1009845107.
  • Friedman JR, Lackner LL, West M, et al. ER tubules mark sites of mitochondrial division. Science. 2011;334:358–62. http://doi.org/10.1126/science.1207385.
  • Michel AH, Kornmann B. The ERMES complex and ER-mitochondria connections. Biochem Soc Trans. 2012;40:445–50. http://doi.org/10.1042/BST20110758.
  • Geißel B, Penka M, Neubauer M, et al. The ER-mitochondria encounter structure contributes to hyphal growth, mitochondrial morphology and virulence of the pathogenic mold Aspergillus fumigatus. Int J Med Microbiol. 2017;307:37–43. http://doi.org/10.1016/j.ijmm.2016.11.005.
  • Jo A, Ham S, Lee GH, et al. Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Res Int. 2015;2015:305716. http://doi.org/10.1155/2015/305716.
  • Verma S, Idnurm A. The Uve1 endonuclease is regulated by the white collar complex to protect Cryptococcus neoformans from UV damage. PLoS Genet. 2013;9:e1003769. http://doi.org/10.1371/journal.pgen.1003769.
  • Rhodes J, Desjardins CA, Sykes SM, et al. Tracing genetic exchange and biogeography of Cryptococcus neoformans var. grubii at the global population level. Genetics. 2017;207:327–46. http://doi.org/10.1534/genetics.117.203836.
  • Ianiri G, Idnurm A. Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization. mBio. 2015;6:e02334–14. http://doi.org/10.1128/mBio.02334-14.
  • Scheckhuber CQ, Erjavec N, Tinazli A, et al. Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol. 2007;9:99–105. http://doi.org/10.1038/ncb1524.
  • Scheckhuber CQ, Osiewacz HD. Podospora anserina: a model organism to study mechanisms of healthy ageing. Mol Genet Genomics. 2008;280:365–74. http://doi.org/10.1007/s00438-008-0378-6.
  • Bouklas T, Pechuan X, Goldman DL, et al. Old Cryptococcus neoformans cells contribute to virulence in chronic cryptococcosis. mBio. 2013;4:e00455–13. http://doi.org/10.1128/mBio.00455-13.
  • Bouklas T, Alonso-Crisóstomo L, Székely T, Jr., et al. Generational distribution of a Candida glabrata population: resilient old cells prevail, while younger cells dominate in the vulnerable host. PLoS Pathog. 2017;13:e1006355. http://doi.org/10.1371/journal.ppat.1006355.
  • Nakai K, Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992;14:897–911. http://doi.org/10.1016/S0888-7543(05)80111-9.
  • Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241:779–86. http://doi.org/10.1111/j.1432-1033.1996.00779.x.
  • Bassilana M, Blyth J, Arkowitz RA. Cdc24, the GDP-GTP exchange factor for Cdc42, is required for invasive hyphal growth of Candida albicans. Eukaryot Cell. 2003;2:9–18. http://doi.org/10.1128/EC.2.1.9-18.2003.
  • Cleary IA, Lazzell AL, Monteagudo C, et al. BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol Microbiol. 2012;85:557–73. http://doi.org/10.1111/j.1365-2958.2012.08127.x.
  • Kingsbury JM, McCusker JH. Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2Δ) mutants is influenced by the carbon source and rapamycin. Microbiology. 2010;156:929–39. http://doi.org/10.1099/mic.0.034348-0.
  • Gabriel I, Kur K, Laforce-Nesbitt SS, et al. Phenotypic consequences of LYS4 gene disruption in Candida albicans. Yeast. 2014;31:299–308. http://doi.org/10.1002/yea.3021.
  • Li Y, Su C, Mao X, et al. Roles of Candida albicans Sfl1 in hyphal development. Eukaryot Cell. 2007;6:2112–21. http://doi.org/10.1128/EC.00199-07.
  • Jackson BE, Wilhelmus KR, Mitchell BM. Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection. Microb Pathog. 2007;42:88–93. http://doi.org/10.1016/j.micpath.2006.11.005.
  • Chaves GM, Bates S, MacCallum DM, et al. Candida albicans GRX2, encoding a putative glutaredoxin, is required for virulence in a murine model. Genet Mol Res. 2007;6:1051–63.
  • Zakikhany K, Naglik JR, Schmidt-Westhausen A, et al. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol. 2007;9:2938–54. http://doi.org/10.1111/j.1462-5822.2007.01009.x.
  • Skrzypek MS, Binkley J, Binkley G, et al. The Candida Genome Database (CGD): incorporation of assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 2017;45:D592–D6. http://doi.org/10.1093/nar/gkw924.