1,029
Views
8
CrossRef citations to date
0
Altmetric
Editorial

Reprogramming the virulence: Insect defense molecules navigating the epigenetic landscape of Metarhizium robertsii

ORCID Icon
Pages 447-449 | Received 20 Nov 2017, Accepted 20 Nov 2017, Published online: 05 Mar 2018

References

  • Hussain A, Ahmed S, Shahid M. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites. Neotrop Entomol. 2011;40:244–50.
  • Lomer CJ, Bateman RP, Johnson DL, et al. Biological control of locusts and grasshoppers. Annu Rev Entomol [Internet]. 2001;46:667–702. doi:10.1146/annurev.ento.46.1.667.
  • Remadevi O, Sasidharan T, Balachander M, et al. Metarhizium based mycoinsecticides for forest pest management. J Biopestic. 2010;3:470–3.
  • Hussain A, Tian MY, He YR, et al. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biol Control [Internet]. 2010;55:166–73. doi:10.1016/j.biocontrol.2010.08.009.
  • Butt TM, Greenfield BPJ, Greig C, et al. Metarhizium anisopliae pathogenesis of mosquito larvae: A verdict of accidental death. PLoS One [Internet]. 2013;8:e81686. doi:10.1371/journal.pone.0081686.
  • Batta YA, Kavallieratos NG. The use of entomopathogenic fungi for the control of stored-grain insects. Int J Pest Manag [Internet]. 2017;1–11. Available from: https://www.tandfonline.com/doi/full/10.1080/09670874.2017.1329565.
  • Milner RJ, Pereira RM. Microbial control of urban pests – cockroaches, ants and termites [Internet]. In: Field Manual of Techniques in Invertebrate Pathology Dordrecht: Springer Netherlands. 2007; page 695–711. Available from: http://link.springer.com/10.1007/978-1-4020-5933-9_34.
  • Quesada-Moraga E, Santos-Quirós R, Valverde-García P, et al. Virulence, horizontal transmission, and sublethal reproductive effects of Metarhizium anisopliae (Anamorphic fungi) on the German cockroach (Blattodea: Blattellidae). J Invertebr Pathol [Internet]. 2004;87:51–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022201104001168 doi:10.1016/j.jip.2004.07.002.
  • Hussain A, Tian MY, He YR, et al. Entomopathogenic fungi disturbed the larval growth and feeding performance of Ocinara varians (Lepidoptera: Bombycidae) larvae. Insect Sci. 2009;16:511–7. doi:10.1111/j.1744-7917.2009.01272.x.
  • Vilcinskas A, Götz P. Parasitic fungi and their interactions with the insect immune system [Internet]. 1999. page 267–313. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0065308X08602444
  • Staats C, Junges Â, Guedes RL, et al. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics [Internet]. 2014;15:822. Available from: http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-822 doi:10.1186/1471-2164-15-822.
  • Hussain A, Li YF, Cheng Y, et al. Immune-related transcriptome of Coptotermes formosanus Shiraki workers: The defense mechanism. PLoS One. 2013;8:e69543. doi:10.1371/journal.pone.0069543.
  • Hussain A, Rizwan-ul-Haq M, Al-Ayedh H, et al. Susceptibility and immune defence mechanisms of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) against entomopathogenic fungal infections. Int J Mol Sci [Internet]. 2016;17:1518. Available from: http://www.mdpi.com/1422-0067/17/9/1518 doi:10.3390/ijms17091518.
  • Tanaka H, Ishibashi J, Fujita K, et al. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol [Internet]. 2008;38:1087–110. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18835443 doi:10.1016/j.ibmb.2008.09.001.
  • Yassine H, Osta MA. Anopheles gambiae innate immunity. Cell Microbiol [Internet]. 2010;12:1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19804484 doi:10.1111/j.1462-5822.2009.01388.x.
  • Zou Z, Evans JD, Lu Z, et al. Comparative genomic analysis of the Tribolium immune system. Genome Biol [Internet]. 2007;8:R177. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17727709 doi:10.1186/gb-2007-8-8-r177.
  • Mukherjee K, Vilcinskas A. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection. Virulence. 2017; doi:10.1080/21505594.2017.1405190.
  • Wang S, Fang W, Wang C, et al. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLoS Pathog [Internet]. 2011;7:e1002097. Available from: http://dx.plos.org/10.1371/journal.ppat.1002097 doi:10.1371/journal.ppat.1002097.
  • Wang S, Leclerque A, Pava-Ripoll M, et al. Comparative genomics using Microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae. Eukaryot Cell [Internet]. 2009;8:888–98. Available from: http://ec.asm.org/cgi/doi/10.1128/EC.00058-09 doi:10.1128/EC.00058-09.
  • Lopes da Rosa J, Boyartchuk VL, Zhu LJ, et al. Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci [Internet]. 2010;107:1594–9. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0912427107 doi:10.1073/pnas.0912427107.
  • Wurtele H, Tsao S, Lépine G, et al. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med [Internet]. 2010;16:774–80. Available from: http://www.nature.com/doifinder/10.1038/nm.2175 doi:10.1038/nm.2175.